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ON TAIL BOUNDS FOR RANDOM
RECURSIVE TREES
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Abstract

We consider a multivariate distributional recursion of sum type, as arises in the
probabilistic analysis of algorithms and random trees. We prove an upper tail bound for
the solution using Chernoff’s bounding technique by estimating the Laplace transform.
The problem is traced back to the corresponding problem for binary search trees by
stochastic domination. The result obtained is applied to the internal path length and
Wiener index of random b-ary recursive trees with weighted edges and random linear
recursive trees. Finally, lower tail bounds for the Wiener index of these trees are given.
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1. Introduction

Many parameters of recursive algorithms, trees, or other recursive structures can often be
described by a recursion of sum type:

Xn
d=

b∑
i=1

Ai(In)X
(i)
In,i

+ d(In, Z), n ≥ 2. (1)

Here X
(1)
n , . . . , X

(b)
n have the same distribution as Xn, d : R

b ×R
b → R

k and Ai : R
b → R

k×k

are deterministic functions, In = (In,1, . . . , In,b) ∈ {0, . . . , n − 1}b and Z ∈ R
b≥0 are random

vectors with E[d(In, Z)] = 0, and X
(1)
n , . . . , X

(b)
n , In, and Z are independent. By ‘

d=’ we
denote equality in distribution.

From the algorithmic point of view, such a recurrence arises by considering so-called divide-
and-conquer algorithms. Let Yn denote the parameter of interest of the algorithm applied to a
problem of size n. The algorithm splits the large problem into b subproblems of the smaller sizes
In,1, . . . , In,b. If the considered parameter Yn is essentially given by the (possible weighted)
sum of the corresponding parameters of the smaller subproblems, for a matrix Cn, the vector
Xn := Cn(Yn − E[Yn]) satisfies recurrence (1), where the coefficients Ai(In) are the weights
of the subproblems (scaled by Cn and CIn,i

) and the additional function d gives the cost for
splitting the problem in this manner and merging the solutions of the subproblems to a solution
of the size-n problem. The vector Z provides more universality.

One famous example of a parameter satisfying recursion (1) is the distribution of the number
of comparisons made by Quicksort, which is equal in distribution to the internal path length of the
random binary search tree. McDiarmid and Hayward [11] used martingale difference methods
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On tail bounds for random recursive trees 567

to show upper tail bounds for the number of comparisons made by Quicksort. Rösler [15]
as well as Fill and Janson [6] obtained upper bounds for its Laplace transform by induction.
Having upper bounds for the Laplace transform, they obtained upper bounds for the tails of
the distribution by application of Chernoff’s bounding technique. Ali Khan and Neininger [2]
generalized this procedure to the two-dimensional recursion for the Wiener index and the
internal path length of the random binary search tree, extending their technique used in [1] to
analyze tail bounds for the complexity of a randomized algorithm to evaluate game trees.

In this paper we apply the method of [2] to multivariate functionals satisfying recursion
(1), where the operator norm of the coefficient matrices Ai can be stochastically bounded in a
certain way.

We denote by ‘�st’ the stochastic order, by ‖ · ‖ the Euclidean norm in R
k , and by ‖ · ‖op the

operator norm for matrices. Let U be a random variable uniformly distributed on [0, 1]. The
fundamental result of this paper is the following theorem.

Theorem 1. Let Xn be a solution of the distributional recursion (1). Assume that X1 = 0,
‖d(In, Z)‖ ≤ D almost surely for all n ∈ N and a constant D ∈ R, and that

b∑
i=1

‖Ai(In)‖2
op �st 1 − U(1 − U)

as well as ‖Ai‖op ≤ 1 for all i ∈ {1, . . . , b}. Let γ ≈ 2.0047 be the positive solution of 12
7 =

e2/γ − 2/γ , and let L0 ≈ 5.0177 be the largest root of eL = 6L2. Then we have, for all t > 0,
n ∈ N, and any componentXn,j ofXn (j ∈ {1, . . . , k}) withC := 48D/γ +D

√
48(48/γ 2 − 5),

P(Xn,j > t) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

(
− t2

10γ 2D2

)
if 0 ≤ t ≤ 5γD,

exp

(
5

2
− t

γD

)
if 5γD < t ≤ C,

exp

(
− t2

96D2

)
if C < t ≤ 48DL0,

exp

(
24L2

0 − L0

D
t

)
if 48DL0 < t ≤ 4DeL0 ,

exp

(
t

D
− t

D
log

(
t

4D

))
if 4DeL0 < t .

(2)

The same bounds hold for the left tail P(Xn,j < −t).

As an application of Theorem 1, we obtain upper tail bounds for the distribution of the
internal path length and the Wiener index in random b-ary recursive trees with weighted edges
by showing the stochastic domination condition. The distance between two nodes in a tree with
weighted edges is defined as the sum of the edge weights along the unique path between the
two nodes. Then, the internal path length of a rooted tree is the sum of all node depths of the
tree where the depth of a node is its distance to the root, and the Wiener index is the sum of the
distances between all unordered pairs of nodes.

The b-ary recursive tree with weighted edges is a rooted, ordered, labelled tree where the
outdegree is bounded by b, the labels along each path beginning at the root increase, and the
edges are endowed with random weights. It can be considered as a special case of the tree model
of Broutin and Devroye [4] in discrete time, where the lifetimes of the edges are independent,
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exponentially distributed random variables. The shape of the random tree is obtained as an
increasing tree by Bergeron et al. [3] and is a special case of the general model of random trees
in [5].

We define this tree model by the following recursive procedure. We consider the infinite
complete b-ary rooted, ordered tree and start with the root as the first internal node and its b

children as external nodes. Given the random b-ary recursive tree with n − 1 internal nodes,
the nth internal node is added in the following way. We choose a random node uniformly
distributed on the set of all current external nodes, change it to an internal node, and add the
b children of this new node to the set of external nodes. Finally, the nodes are labelled in the
order of their appearance.

Let Z := (Z1, . . . , Zb) ∈ R
b≥0 be a random vector with nonnegative entries and attach to

every node u of the complete infinite b-ary tree an independent copy Z(u) of Z. We consider
the entries of Z(u) to be the weights of the edges from u to its b children. If all the Z(u) are
independent of Tn, we refer to Tn associated with the family {Z(u)} as a random b-ary recursive
tree with edge weights Z.

Theorem 2. Let Yn := (�n, �n)
	 denote the vector consisting of the Wiener index and the

internal path length of a random b-ary recursive tree of size n with edge weights Z, where ‖Z‖
is bounded almost surely. Then there exists a constant D such that Xn in the recursive formula
(1) is given by

Xn :=
⎡
⎢⎣

1

n2 0

0
1

n

⎤
⎥⎦ (Yn − E[Yn])

almost surely, ‖d(In, Z)‖ ≤ D, and the bounds in (2) are valid for

P

(
�n − E[�n]

n2 > t

)
and P

(
�n − E[�n]

n
> t

)

as well as for the corresponding left tails P(Xn,j < −t) for j = 1, 2.

Using the asymptotic expansion of the expectation of the internal path length and the Wiener
index, the following asymptotic tail bounds are obtained. We use the notation log(k) n :=
log(log(k−1) n) for k ≥ 2, where log(1) n := log n.

Corollary 1. Let �n denote the internal path length, and let �n be theWiener index of a random
b-ary recursive tree of size n with edge weights Z, where ‖Z‖ is bounded almost surely. Then,
there exists a constant D > 0 such that, for t > 0 and n → ∞,

P(|�n − E[�n]| > t E[�n]) ≤ exp

(
− b

b − 1

µ

D
t log n(log(2) n + log t + α + o(1))

)

and

P(|�n − E[�n]| > t E[�n]) ≤ exp

(
− b

b − 1

µ

D
t log n(log(2) n + log t + α + o(1))

)
,

where µ = E[Z1] and α := log(bµ/(4D(b − 1)e)).

Finally, by special choices of the edge weights and the use of transfer results in [13], the
corresponding bounds for random linear recursive trees are obtained. The model of linear
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recursive trees was introduced in [14]. Starting with the root, the linear recursive tree grows
node by node. In each step the new node is attached to a randomly chosen node of the previous
steps. The probability that node u is chosen is proportional to the weight wu = 1 + β deg(u),
where deg(u) is the number of children of u and β ∈ R≥0 is the parameter of the tree. This tree
model encompasses as special cases the random recursive tree (β = 0) and the plane-oriented
recursive tree (β = 1).

Corollary 2. Let �n denote the internal path length of a random linear recursive tree of size
n with weight function u �→ 1 + (b − 2) deg(u) for b ∈ N and b ≥ 2. Then there exists
D > 0 such that, for t > 0 and n → ∞, we have the same tail bounds as in Theorem 2 for
(�n − E[�n])/n and, in particular, we have, for t > 0 and n → ∞,

P(|�n − E[�n]| > t E[�n]) ≤ exp

(
− 1

b − 1

1

D
t log n(log(2) n + log t + α + o(1))

)

with α := − log(4D(b − 1)e).

Corollary 3. Let �n denote the Wiener index of a random linear recursive tree of size n with
weight function u �→ 1 + (b − 2) deg(u) for b ∈ N and b ≥ 2. Then there exists D > 0 such
that we have, for t > 0 and n → ∞,

P(|�n − E[�n]| > t E[�n]) ≤ exp

(
− 1

b − 1

1

D
t log n(log(2) n + log t + α + o(1))

)

with α := − log(4D(b − 1)e).

Using the Wentzel–Kramers–Brillouin method, Knessl and Szpankowski [9] obtained very
sharp bounds for the tail of the limit distribution of the internal path length of random binary
search trees. Rüschendorf and Schopp [16] obtained general upper bounds for tails of distribu-
tions given by a recursion of sum type in the one-dimensional case. For simply generated trees,
asymptotics for the right tail of the limit distribution of the total path length and the Wiener
index are shown in [7] and [8].

This paper is organized as follows. In Section 2 we consider the general recursion formula
(1) and give a proof of the upper tail bound given in Theorem 1. The b-ary recursive tree with
weighted edges is defined in Section 3. We then show the stochastic domination condition in this
case by a coupling argument, and provide proofs of Theorem 2 and Corollary 1 in Section 3.1.
Finally, using the transfer results from [13], we obtain the upper tail bounds in the case of
random linear recursive trees (Corollary 2 and Corollary 3) in Section 3.2. In Section 4 we give
a summary of corresponding results concerning lower tail bounds for the Wiener index.

For functions f and g, we respectively write f = o(g), f = O(g), and f = �(g) if
limn→∞ f (n)/g(n) = 0, |f (n)/g(n)| ≤ C, and c ≤ |f (n)/g(n)| ≤ C for all n and some
constants 0 < c ≤ C < ∞.

2. Upper tail bound for a general recursion

We consider a random k-dimensional vector Xn = (Xn,1, . . . , Xn,k) which solves the
distributional recursion formula

Xn
d=

b∑
i=1

Ai(In)X
(i)
In,i

+ d(In, Z),

where X
(1)
n , . . . , X

(b)
n have the same distribution as Xn, d : R

b×R
b → R

k and Ai : R
b → R

k×k
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are deterministic functions, Z ∈ R
b≥0 and In = (In,1, . . . , In,b) ∈ {0, . . . , n − 1}b are random

vectors with E[d(In, Z)] = 0, and (X
(1)
k )k≥0, . . . , (X

(b)
k )k≥0, In, and Z are independent.

Lemma 1. Let Xn be a solution of the distributional recursion (1). Assume that X1 = 0,
‖d(In, Z)‖ ≤ D almost surely for all n ∈ N and a constant D ∈ R, and that

b∑
i=1

‖Ai(In)‖2
op �st 1 − U(1 − U) (3)

as well as ‖Ai‖op ≤ 1. Let γ ≈ 2.0047 be the positive solution of

12

7
= e2/γ − 2

γ
and K = 5

2
D2γ 2.

Then we have, for all s ∈ R
k with ‖s‖ ≤ 1/(γD) and all n ∈ N,

E[exp(〈s, Xn〉)] ≤ exp(K‖s‖2).

Proof. We show the claim by induction on n. For n = 1, we have X1 = 0 and there is
nothing to show.

Condition (3) implies that there is a coupling of In with a uniformly distributed random
variable U ∈ [0, 1] such that

b∑
i=1

‖Ai(In)‖2
op ≤ 1 − U(1 − U) (4)

holds almost surely.
Using the recursion formula and the given independence, we obtain, for n ≥ 2,

E[exp(〈s, Xn〉)]

= E

[
exp

(〈
s,

b∑
i=1

Ai(In)X
(i)
In,i

+ d(In, Z)

〉)]

=
∑

x∈{0,...,n−1}b
E[e〈s,d(x,Z)〉]

b∏
i=1

E[exp(〈(Ai(x))	s, X(i)
xi

〉) | In = x] P(In = x).

The assumption that ‖Ai(x)‖op ≤ 1 implies that ‖Ai(x)	s‖ ≤ ‖s‖‖Ai(x)‖op ≤ ‖s‖. Since,
for every i ∈ {1, . . . , b}, we have xi ≤ n − 1, we can apply the induction hypothesis to obtain

E[exp(〈s, Xn〉)] ≤
∑

x∈{0,...,n−1}b
E[exp(〈s, d(x, Z)〉)] exp

( b∑
i=1

K‖s‖2‖Ai(x)‖2
op

)
P(In = x)

= E

[
exp(〈s, d(In, Z)〉) exp

(
K‖s‖2

b∑
i=1

‖Ai(In)‖2
op

)]
.

By condition (4) and the monotonicity of x �→ eλx for λ > 0, we conclude that

E[exp(〈s, Xn〉)] ≤ E[exp(〈s, d(In, Z)〉) exp(K‖s‖2(1 − U(1 − U)))]
= eK‖s‖2

E[exp(〈s, d(In, Z)〉) exp(−K‖s‖2U(1 − U))]. (5)
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Hence, using the Cauchy–Schwarz inequality, it suffices to show that

(E[exp(〈s, d(In, Z)〉) exp(−K‖s‖2U(1 − U))])2

≤ E[exp(2〈s, d(In, Z)〉)] E[exp(−2K‖s‖2U(1 − U))]
≤ 1. (6)

By assumption, ‖d(In, Z)‖ ≤ D holds almost surely and E[d(In, Z)] = 0. Thus, we obtain,
for ‖s‖ ≤ 1/(γD),

E[exp(2〈s, d(In, Z)〉)] = 1 + E

[
〈s, d(In, Z)〉2

∞∑
k=2

2k〈s, d(In, Z)〉k−2

k!
]

≤ 1 + ‖s‖2D2
∞∑

k=2

2k

k! γ k−2

= 1 + ‖s‖2D2γ 2
(

e2/γ − 1 − 2

γ

)
. (7)

For all x > 0, we have e−x ≤ 1 − x + 1
2x2. This yields

E[exp(−2K‖s‖2U(1 − U))] ≤ E[1 − 2K‖s‖2U(1 − U) + 2K2‖s‖4U2(1 − U)2]
= 1 − 1

3K‖s‖2 + 1
15K2‖s‖4. (8)

The estimates (7) and (8) imply that (6) follows from(
1 + ‖s‖2D2γ 2

(
e2/γ − 1 − 2

γ

))(
1 − 1

3
K‖s‖2 + 1

15
K2‖s‖4

)
≤ 1.

This in turn is equivalent to f (‖s‖) ≤ 0 for

f (‖s‖) := D2γ 2
(

e2/γ − 1 − 2

γ

)
− 1

3
K −

(
1

3
KD2γ 2

(
e2/γ − 1 − 2

γ

)
− 1

15
K2

)
‖s‖2

+ 1

15
K2D2γ 2

(
e2/γ − 1 − 2

γ

)
‖s‖4.

Substituting K = 5
2D2γ 2 and e2/γ − 1 − 2/γ = 5

7 we obtain

f (‖s‖) = D2γ 2( 5
7 − 5

6 + ( 5
12 − 25

42

)
(Dγ ‖s‖)2 + 25

84 (Dγ ‖s‖)4).
We see that f (0) ≤ 0 and f (1/(γD)) = 0. Since f is a biquadratic function in ‖s‖ with a
positive coefficient corresponding to ‖s‖4 and f (0) ≤ 0, it has at most two real roots. On the
interval between these two roots the function is negative and outside this interval the function
takes only positive values. Since f (1/(γD)) = 0, we therefore obtain f (‖s‖) ≤ 0 for all s

with 0 ≤ ‖s‖ ≤ 1/(γD).

Lemma 2. Let Xn be a solution of the distributional recursion (1). Assume that X1 = 0,
‖d(In, Z)‖ ≤ D almost surely for all n ∈ N and a constant D ∈ R, and that

b∑
i=1

‖Ai(In)‖2
op �st 1 − U(1 − U)
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as well as ‖Ai‖op ≤ 1. Let γ ≈ 2.0047 be the positive solution of 12
7 = e2/γ − 2/γ , and let

L0 ≈ 5.0177 be the largest root of eL = 6L2. Then we have, for 1/(γD) ≤ ‖s‖ ≤ L,

E[exp(〈s, Xn〉)] ≤ exp(KL‖s‖2),

where

KL :=
⎧⎨
⎩

24D2 for 1/(γD) < L ≤ L0/D,

4
1

L2 eLD for L0/D < L.

Proof. We again use induction on n. For n = 1, there is nothing to show. We use the same
arguments as in the beginning of the proof of Lemma 1 and obtain (5), i.e.

E[exp(〈s, Xn〉)] ≤ eKL‖s‖2
E[exp(〈s, d(In, Z)〉) exp(−KL‖s‖2U(1 − U))]

for a random variable U which is uniformly distributed on [0, 1] and coupled with In such that
(4) holds. Hence, it suffices to prove (6) under the new assumptions. Since ‖d(In, Z)‖ ≤ D

almost surely, the proof is completed by showing that

eD‖s‖ E[exp(−KL‖s‖2U(1 − U))] ≤ 1.

Fill and Janson [6, Section 4] proved that, for any K > 0,

E[exp(−2K‖s‖2U(1 − U))] ≤ 1 − exp(−K‖s‖2/2)

K‖s‖2/2

and, for 0.42 ≤ |λ| ≤ M ,

e|λ| 1 − exp(−KMλ2/2)

KMλ2/2
≤ 1 when KM =

⎧⎨
⎩

12 for M ≤ L0,
2eM

M2 for L0 < M.

In the present situation, it follows that

eD‖s‖ E[exp(−KL‖s‖2U(1 − U))] ≤ eD‖s‖
(

1 − exp

(
− KL

2D2

D2‖s‖2

2

))/(
KL

2D2

D2‖s‖2

2

)
≤ 1

when 1/γ ≤ D‖s‖ ≤ LD and

KL =
⎧⎨
⎩

24D2 for L ≤ L0/D,

4
1

L2 eLD for L0/D < L.

Thus, we obtain the claim because 1/γ ≥ 0.42.

We summarize the results of the two preceding lemmas.

Corollary 4. Let Xn be a solution of the distributional recursion (1). Assume that X1 = 0,
‖d(In, Z)‖ ≤ D almost surely for all n ∈ N and a constant D ∈ R, and that

b∑
i=1

‖Ai(In)‖2
op �st 1 − U(1 − U)
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as well as ‖Ai‖op ≤ 1. Let γ ≈ 2.0047 be the positive solution of 12
7 = e2/γ − 2/γ , and let

L0 ≈ 5.0177 be the largest root of eL = 6L2. Then we have, for every s and n ≥ 1,

E[exp(〈s, Xn〉)] ≤

⎧⎪⎨
⎪⎩

exp
( 5

2γ 2D2‖s‖2
)

for 0 ≤ ‖s‖ ≤ 1/(γD),

exp(24D2‖s‖2) for 1/(γD) < ‖s‖ ≤ L0/D,

exp(4eD‖s‖) for L0/D < ‖s‖.

Proof. The bounds for ‖s‖ ≤ L0/D follow immediately from Lemma 1 and Lemma 2. Since
the function x �→ eDx/x2 is monotonically increasing on the interval [L0/D, ∞), Lemma 2
also yields the bound in the ‖s‖ > L0/D case.

We now obtain the tail bound for any entry of the vector Xn.

Proof of Theorem 1. We denote by ej the vector with a 1 in the j th position and 0s elsewhere.
We use Chernoff’s bounding technique and obtain, for u > 0 and j ∈ {1, . . . , k} with
Corollary 4,

P(Xn,j > t) = P(exp(uXn,j ) > exp(ut))

≤ E[exp(uXn,j − ut)]
= E[exp(u〈ej , Xn〉 − ut)]
≤ exp(Kuu

2 − ut),

where

Ku =

⎧⎪⎪⎨
⎪⎪⎩

5
2γ 2D2 for 0 ≤ u ≤ 1/(γD),

24D2 for 1/(γD) < u ≤ L0/D,

4
eDu

u2 for L0/D < u.

For the left tail, we analogously obtain

P(Xn,j < −t) = P(exp(uXn,j ) < exp(−ut))

≤ E[exp(−uXn,j − ut)]
= E[exp(−u〈ej , Xn〉 − ut)]
≤ exp(Kuu

2 − ut).

In order to minimize this bound, we look for the minimum of the function f (u) := Kuu
2 −ut .

This function takes its minimum at ǔi (t) and has the value f (ǔi(t)):

ǔ1(t) = t

5D2γ 2 , f (ǔ1(t)) = − t2

10γ 2D2 , for Ku = 5

2
D2γ 2,

ǔ2(t) = t

48D2 , f (ǔ2(t)) = − t2

96D2 , for Ku = 24D2,

ǔ3(t) = 1

D
log

t

4D
, f (ǔ3(t)) = t

D
− t

D
log

t

4D
, for Ku = 4

eDu

u2 .

Here ǔi (t) ∈ Ui with U1 := [0, 1/(γD)], U2 := (1/(γD), L0/D], and U3 := (L0/D, ∞).
If ǔi (t) �∈ Ui for a given t , we can take u at the proper boundary of Ui .
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Comparing the different values of the minimum for i = 1, 2, 3 we obtain the total minimum.
For t ∈ [0, 5γD], we have the following possibilities:

ǔ1(t) = t

5D2γ 2 , f (ǔ1(t)) = − t2

10γ 2D2 ,

u2 = 1

γD
, f (u2) = 24

γ 2 − t

γD
,

u3 = L0

D
, f (u3) = 4eL0 − L0

D
t.

The minimum is given for ǔ1(t).
Similarly, we obtain the minimum in the other cases by making the following choices. For

t ∈ [5γD, 48D/γ + D
√

48
√

48/γ 2 − 5),

u1 = 1

γD
, Ku = 5

2
γ 2D2, f (u1) = 5

2
− t

γD
;

for t ∈ [48D/γ + D
√

48
√

48/γ 2 − 5, 48DL0),

ǔ2(t) = t

48D2 , Ku = 24D2, f (ǔ2(t)) = − t2

96D2 ;

for t ∈ [48DL0, 4DeL0),

u2 = L0

D
, Ku = 24D2, f (u2) = 24L2

0 − L0

D
t;

and, for t ∈ [4DeL0 , ∞),

ǔ3(t) = 1

D
log

t

4D
, Kǔ3(t) = 4eDǔ3(t)

ǔ3(t)
2 , f (ǔ3(t)) = t

D
− t

D
log

t

4D
.

3. Applications to random trees

An example of a vector which satisfies the recursion formula (1) is the vector consisting
of the internal path length and the Wiener index of a random tree in which all subtrees are
(conditioned upon their sizes) an independent copy of the whole tree.

The internal path length of a rooted tree is the sum of all node depths of the tree. The depth
of a node is given by the number of edges on the path from the node to the root. Analogously,
the Wiener index is the sum of the distances between all unordered pairs of nodes where the
distance is given by the number of edges on the unique path between the two nodes. If the
edges of the tree are endowed with weights, the distance between two nodes and the depth of
a node are given by the sum of the weights along the corresponding path.

3.1. The random b-ary recursive tree with weighted edges

In this subsection we consider the special case of a random b-ary recursive tree with
weighted edges. We recall the recursive definition of this tree model given in the introduction.
Considering the infinite complete b-ary rooted, ordered tree, we start with the root as the first
internal node and its b children as external nodes. Given the random b-ary recursive tree with
n − 1 internal nodes, the nth internal node is added in the following way. We choose a random
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node uniformly distributed on the set of all current external nodes, change it to an internal node,
and add the b children of this new node to the set of external nodes. Finally, the nodes are
labelled in the order of their appearance.

The edge weights are given by the entries of independent copies of a random vector Z :=
(Z1, . . . , Zb) ∈ R

b≥0 attached to every node u of the complete infinite b-ary tree.
While the entries of the vector Z may depend on each other, we assume that they are

identically distributed, i.e. for all i, j ∈ {1, . . . , b}, we have Zi
d= Zj , denoting its expectation

by µ := E[Z1]. This assumption is not restrictive for the intended limit theorems as can be
seen by a permutation argument (see [12, pp. 14–15]).

The shape of the random binary search tree has the same distribution as the shape of the
random b-ary recursive tree with edge weights (Z1, Z2) = (1, 1) for b = 2.

Let Yn = (�n, �n) denote the vector consisting of the Wiener index and the internal path
length of the random b-ary recursive tree of size n with edge weights Z. In [13] it was shown
that the vector

Xn :=
⎡
⎢⎣

1

n2 0

0
1

n

⎤
⎥⎦ (Yn − E[Yn]) (9)

satisfies the recursion formula (1), where the matrices Ai(In) are given by

Ai(In) =

⎡
⎢⎢⎢⎣

I 2
n,i

n2

In,i(n − In,i)

n2

0
In,i

n

⎤
⎥⎥⎥⎦ ,

and the vector d(In, Z) is given by

d
(n)
1 = b

b − 1
µ

b∑
i=1

In,i

n
log

In,i

n
+

∑
i �=j

(
1

2
(Zi + Zj ) + b

b − 1
µ

)
In,i

n

In,j

n
+ o(1) (10)

and

d
(n)
2 = b

b − 1
µ

b∑
i=1

In,i

n
log

In,i

n
+

b∑
i=1

Zi

In,i

n
+ o(1). (11)

To apply the result of the previous section, we have to prove the stochastic domination condition
for the b-ary recursive tree.

3.1.1. Coupling. For (x1, . . . , xb) ∈ R
b, we denote by (x(1), . . . , x(b)) the order statistic, i.e.

x(1) ≥ x(2) ≥ · · · ≥ x(b);
the entries of (x1, . . . , xb) and (x(1), . . . , x(b)) are the same. We consider the space R

b with
the partial order given by

(x1, . . . , xb) ≤ (y1, . . . , yb) ⇐⇒ xi ≤ yi for all i ∈ {1, . . . , b},
and define Eb := {(x1, . . . , xb) ∈ R

b≥0 | x1 ≥ x2 ≥ · · · ≥ xb}. Moreover, we denote by PU(b)

a Pólya urn with balls of b different colours {1, . . . , b}. The urn initially contains one ball of
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each colour. After a ball of colour j is drawn, it is returned to the urn together with another
b − 1 balls of the same colour.

Considering the evolution process which yields the random b-ary recursive tree, it is not
difficult to see that the vector of the sizes of the subtrees has the same distribution as the vector
of the numbers of drawings of a ball of each colour in the urn described above (for more details,
see [12, Section 2.2]). Using this, the next two lemmas provide the estimate we need.

Lemma 3. For j ∈ {1, . . . , b}, let Jn,j denote the number of times that the drawn ball is of
colour j during the first n drawings from the Pólya urn PU(b), and let In,j be the corresponding
size of the Pólya urn PU(b + 1). Then we have, for the vectors Jn := (Jn,1, . . . , Jn,b) and
In := (In,1, . . . , In,b+1),

(In,(1), . . . , In,(b)) �st (Jn,(1), . . . , Jn,(b)).

We prove this lemma by using a result about stochastic domination between Markov chains
(see [10, Section IV.5, Theorem 5.8]). Recall that ej ∈ R

b denotes the vector with a 1 in the
j th position and 0s elsewhere.

Proof of Lemma 3. It suffices to show that there is a coupling of I ′
n := (In,(1), . . . , In,(b))

and J ′
n := (Jn,(1), . . . , Jn,(b)) such that I ′

n ≤ J ′
n almost surely.

The sequences J ′
n and I ′

n are Markov chains. To write down the transition probabilities, we
define αj : Eb → N0 by

αj (x1, . . . , xb) :=
{

|{i | xj = xi}| if xj−1 > xj ,

0 otherwise.

Thus, the transition probability for J ′
n is given by the kernel Kn : Eb × Eb → [0, 1] with

Kn(x, x + ej ) := P(J ′
n+1 = x + ej | J ′

n = x) = 1 + xj (b − 1)

b + n(b − 1)
αj (x)

for x = (x1, . . . , xb) ∈ Eb and j = 1, . . . , b. For the transition probability of I ′
n, we have the

kernel K ′
n : Eb × Eb → [0, 1] with

K ′
n(x, x + ej ) := P(I ′

n+1 = x + ej | I ′
n = x) = 1 + xjb

b + 1 + nb
αj (x)

for j = 1, . . . , b and

K ′
n(x, x) := P(I ′

n+1 = x | I ′
n = x) = 1 + (n − ∑b

i=1 xi)b

b + 1 + nb
.

Let x, y ∈ Eb with y ≤ x. We claim that K ′
n(y, ·) is stochastically dominated by Kn(x, ·).

If
P(I ′

n+1 = y + ej | I ′
n = y) > 0,

we have αj (y) �= 0. For yj < xj , we obtain y+ej ≤ x. Thus, we only have to consider the case
where αj (y) �= 0 and yj = xj . Let j1, . . . , jm be the components for which αjl

(y) �= 0 and
xjl

= yjl
for 1 ≤ l ≤ m. Then we have αjl

(x) ≥ αjl
(y) because xjl−1 ≥ yjl−1 > yjl

= xjl
.

Since xjl
≤ n, we obtain

1 + xjl
(b − 1)

b + n(b − 1)
≥ 1 + xjl

b

b + 1 + nb
.
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This yields, for all l ∈ {1, . . . , m},

Kn(x, x + ejl
) = 1 + xjl

(b − 1)

b + n(b − 1)
αjl

(x) ≥ 1 + xjl
b

b + 1 + nb
αjl

(y) = K ′
n(y, y + ejl

).

For i ∈ {1, . . . , b} \ {j1, . . . , jm}, we obviously have

Kn(x, x + ei) ≥ 0 = K ′
n(y, y + ei).

Hence, we can find a coupling (J̃n+1, Ĩn+1) of J ′
n+1 and I ′

n+1 with

P(Ĩn+1 ≤ J̃n+1 | (J̃n, Ĩn) = (x, y)) = 1

for all x, y ∈ Eb with y ≤ x. This implies that Kn(x, ·) stochastically dominates K ′
n(y, ·).

Because of the Markov property we conclude by Theorem 5.8 of [10, Section IV.5] that there
exists a coupling (J̃ , Ĩ ) of J ′ and I ′ such that Ĩn ≤ J̃n almost surely for all n ∈ N.

Lemma 4. Let f : [0, 1] → R be the function given by

f (x) = x4 + (x2 − x3)(1 +
√

x2 + 1).

Then, for (x1, . . . , xb) ∈ Eb and (y1, . . . , yb+1) ∈ Eb+1 with

b∑
i=1

xi =
b+1∑
j=1

yj = 1

and (y1, . . . , yb) ≤ (x1, . . . , xb), we have

b+1∑
i=1

f (yi) ≤
b∑

i=1

f (xi).

Proof. We first show that the function f is convex. To do this, we derive the second
derivative, which is given by

f ′′(x) = 12x2 + (2 − 6x)(1 +
√

x2 + 1) + 2(2x2 − 3x3)√
x2 + 1

+ x2 − x3

(x2 + 1)3/2

≥ 10x2 + (2 − 6x)(1 +
√

x2 + 1) + 2(3x2 − 3x3)√
x2 + 1

+ x2 − x3

(x2 + 1)3/2 .

To show convexity, it suffices to show that f ′′ ≥ 0. Since, for x ∈ [0, 1], x2 ≥ x3, it remains
to show that

g(x) := 10x2 + (2 − 6x)(1 +
√

x2 + 1) ≥ 0.

By consideration of the first and second derivatives we see that the minimum of g is obtained
for x = 3

4 : g( 3
4 ) = 0. Taking everything into account, we obtain f ′′(x) ≥ 0 for all x ∈ [0, 1],

which implies that the first derivative f ′ is monotone increasing.
By assumption, there exist numbers α1, . . . , αb ≥ 0 with xi = yi +αiyb+1 for i = 1, . . . , b

and
∑b

i=1 αi = 1. The monotonicity of f ′ and f (0) = 0 imply that, using the mean value
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theorem,
f (xi) − f (yi)

αiyb+1
= f ′(ξ) ≥ f ′(η) = f (yb+1)

yb+1

for some ξ ∈ [yi, xi] and η ∈ [0, yb+1] ⊂ [0, yi]. This finally yields

b∑
i=1

f (xi) ≥
b∑

i=1

(f (yi) + αif (yb+1)) =
b+1∑
i=1

f (yi).

Proof of Theorem 2. As seen in (9), we have for the vector Xn the recursion formula (1),
where

Ai(In) =

⎡
⎢⎢⎢⎣

I 2
n,i

n2

In,i(n − In,i)

n2

0
In,i

n

⎤
⎥⎥⎥⎦ .

For the operator norm, we obtain

‖Ai(In)‖2
op = ‖Ai(In)

	Ai(In)‖op.

The matrix Ai(In)
	Ai(In) is symmetric. Thus, its operator norm is given by the largest absolute

eigenvalue. Solving the characteristic equation for the matrix we find that its eigenvalue being
larger in absolute value is given by

I 2
n,i

n2

(
1 − In,i

n
+ I 2

n,i

n2 +
(

1 − In,i

n

)√
I 2
n,i

n2 + 1

)
= f

(
In,i

n

)
,

with the function f as given in Lemma 4. The relation between the sizes of the subtrees and the
number of drawings in a Pólya urn gives, by repeated application of Lemma 3 and Lemma 4,

b∑
i=1

‖Ai(In)‖2
op �st ‖A1(Jn)‖2

op + ‖A2(Jn)‖2
op,

where Jn = (Jn,1, Jn,2) is the vector of the sizes of the subtrees of a random binary search tree,
i.e. Jn,1 is uniformly distributed on {0, . . . , n − 1} and Jn,2 = n − 1 − Jn,1. By Lemma 2.2 of
[2] we obtain the stochastic domination condition

b∑
i=1

‖Ai(In)‖2
op �st 1 − U(1 − U).

Considering the toll vector d(In, Z) in (10) and (11), the boundedness of ‖Z‖ implies that
its norm is bounded almost surely by some constant D. Furthermore, we trivially have X1 = 0
since the tree with one node is only the root. The claim follows by Theorem 1.

In [13] the asymptotic expansion of the expectation of �n and �n is determined. Using
these results, we obtain asymptotic tail bounds.

Proof of Corollary 1. With

yn = t E[�n]
n

= b

b − 1
µt log n + O(1)
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we obtain, by Theorem 2 and because limn→∞ yn = ∞,

P(|�n − E[�n]| ≥ t E[�n])
= P

( |�n − E[�n]|
n

≥ yn

)

≤ exp

((
b

b − 1

µ

D
t log n + O(1)

)(
1 − log

tbµ log n

4D(b − 1)

))

= exp

(
− b

b − 1

µ

D
t log n(log(2) n + log t + α + o(1))

)
.

With zn = t E[�n]/n2 = yn + O(1), the claim for �n follows as well.

3.2. Random linear recursive trees

In this subsection we transfer the results for the random b-ary recursive tree with weighted
edges to linear recursive trees. In this tree, every node u has a weight wu. Starting with the
root, the tree grows node by node. In each step the new node is attached to a randomly chosen
node of the previous steps. The probability that node u is chosen is proportional to the weight
wu of the node. In the case of linear recursive trees the weight is given by wu = 1 + β deg(u),
where deg(u) is the number of children of u and β ∈ R≥0 is the parameter of the tree.

Given a random linear recursive tree Tn of size n with weight function u �→ 1+(b−2) deg(u),
we consider a b-ary recursive tree T̃n−1 of size n − 1 where the edges are weighted by the
random vector Z which is obtained by a uniformly distributed permutation of the entries of
(1, 0, . . . , 0) ∈ R

b. In particular, we have µ = 1/b. Denote by �̃n−1, �̃n−1, and �n, �n the
internal path lengths and the Wiener indices of T̃n−1 and Tn, respectively.

Proof of Corollary 2. With the notation above, it was shown in [13] that

�n
d= �̃n−1 + n − 1

holds. Therefore, we have

�n − E[�n]
n

d= �̃n−1 − E[�̃n−1]
n

.

The claim follows immediately by Theorem 2 and Corollary 1.

Proof of Corollary 3. With the notation above, it was shown in [13] that

�n
d= �̃n−1 − �̃n−1 + (n − 1)2

holds. This yields

P(|�n − E[�n]| > t E[�n]) = P(|�̃n−1 − E[�̃n−1] − �̃n−1 + E[�̃n−1]| > t E[�n−1]).
Moreover, in [13] it was shown that var(�̃n−1) = �(n2) for n → ∞. Applying Chebycheff’s
inequality, we obtain, for any ε > 0,

P

( |�̃k−1,n − E[�̃n−1]|
n2 > ε

)
≤ O

(
1

n2

)
.
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Since E[�̃n−1] = E[�n] + O(n log n) = �(n2 log n), this yields, using Corollary 1,

P(|�n − E[�n]| > t E[�n]) ≤ P

( |�̃n−1 − E[�̃n−1]|
n2 + ε >

t E[�n]
n2

)
+ O

(
1

n2

)

≤ exp

(
− 1

b − 1

1

D
t log n(log(2) n + log t + α + o(1))

)
.

Remark 1. The random plane-oriented recursive tree without a node order is equal in distri-
bution to the random linear recursive tree with parameter β = 1. Since the internal path length
as well as the Wiener index are invariant under a change in the order of the tree, the tail bounds
in Corollary 2 and Corollary 3 with b = 3 provide in particular the corresponding tail bounds
for the plane-oriented recursive tree.

4. Lower tail bounds for the Wiener index

McDiarmid and Hayward [11] proved a lower bound for the tail of the distribution of the
number of comparisons made by Quicksort. They constructed a set of binary trees that had
high probability and implied a large number of comparisons. They succeeded in finding lower
and upper bounds which have the same asymptotical behaviour. This idea was employed by
Ali Khan and Neininger [2] to prove a lower tail bound for the Wiener index of binary search
trees.

In Section 7.2 of [12] the construction from [2] is extended to random b-ary recursive trees
with weighted edges where at least one entry of Z is 1. This yields the following lower bound
on the tail of the distribution of the Wiener index.

Theorem 3. Let �n denote the Wiener index of a random b-ary recursive tree of size n with
edge weights Z, where {Z1, . . . , Zb} ∩ {1} �= ∅ and Zi ≥ 0 hold almost surely. Then we have,
for fixed t > 0 and n → ∞,

P(|�n − E[�n]| > t E[�n]) ≥ exp

(
−4

b

b − 1
µt log n(log(2) n + O(log(3) n))

)
.

With the transfer results already used in Section 3.2 we obtain a lower bound for the
distribution of the Wiener index of random linear recursive trees.

Theorem 4. Let �n denote the Wiener index of a random linear recursive tree of size n with
weight function u �→ 1 + (b − 2) deg(u) for b ∈ N and b ≥ 2. Then we have, for fixed t > 0
and n → ∞,

P(|�n+1 − E[�n+1]| > t E[�n+1]) ≥ exp

(
−4

1

b − 1
t log n(log(2) n + O(log(3) n))

)
.

Remark 1 also holds for the lower tail bound.

Remark 2. The constants D arising in the results depend on the specific toll function which in
turn depends on the functional and the tree model considered. Since the toll function in (10) and
(11) is only known up to an o(1) term, it is in general not possible to determine this constant.
Nevertheless, it is an analytical problem and should be solvable for special functionals and tree
models. For instance, in the case of the vector (�n, �n) of the binary search tree, Ali Khan
and Neininger [2] showed that D ≤ 1.
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