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ELEMENTARY PROOF OF THE FUNDAMENTAL LEMMA
FOR A UNITARY GROUP

YUVAL Z. FLICKER

ABSTRACT.  The fundamental lemma in the theory of automorphic formsis proven
for the (quasi-split) unitary group U(3) in three variables associated with aquadratic ex-
tension of p-adic fields, and its endoscopic group U(2), by means of a new, elementary
technique. This lemmais a prereguisite for an application of the trace formulato clas-
sify the automorphic and admissible representations of U(3) in terms of those of U(2)
and base change to GL (3). It comparesthe (unstable) orbital integral of the characteris-
tic function of the standard maximal compact subgroup K of U(3) at aregular element
(whose centralizer T is a torus), with an analogous (stable) orbital integral on the en-
doscopic group U(2). The technique is based on computing the sum over the double
coset space T\G/K which describes the integral, by means of an intermediate double
coset space H\G/K for a subgroup H of G = U(3) containing T. Such an argument
originates from Weissauer’s work on the symplectic group. The lemma is proven for
both ramified and unramified regular elements, for which endoscopy occurs (the stable
conjugacy classis not asingle orhit).

1. Introduction. Let E/F be an unramified quadratic extension of p-adic fields,
p > 2,G = U(2,LE/F) the unitary group in 3 variables associated with E/F, H =
U(1,1) x U(1) a subgroup of G, where U(1,1) = U(1, 1,E/F) is a quasi-split unitary
groupin 2 variablesand U(1) = U(1;E/F) isan anisotropic torus, and T an anisotropic
F-torusin H (and G) which splitsover E; then T = U(1) x U(1) x U(2). Put T = T(F),
H = H(F), G = G(F) for the group of F-points of the F-groups T, H, G. Denote the
group of F-pointsof U(1) by E' = {x € EX; Nx = 1},N = Ne/r signifiesthe norm map
from E to F. Let K be the standard hyperspecial maximal compact subgroup of G, and
1k the unit element in the Hecke algebra of K-biinvariant compactly supported functions
onG.

For asuitable character x # 1 onthe set (with agroup structure) of conjugacy classes
within the stable conjugacy class of t = (a, b, c), aregular (a # b # c # a) element
inT = (EY)?, the x-orhital integral ® (t) is defined to be the sum—weighted by the
values of k—of the orbital integrals of 1x over the conjugacy classes within the stable
conjugacy class of t.

Analogously one has the standard maximal compact subgroup Ky in H, the measure
1k,,, and the stable orbital integral thKH (t) onH, where“st” indicatesk = 1.

The “endoscopic fundamental lemma’” asserts that Ag i (t)®7, (t) = ¢§‘KH (t), where
in this case the transfer factor A (t) (defined by Langlands [L], p. 51, and in gen-
eral by Langlands and Shelstad [LS]) is (—g) ™M™z, Here g = #(R/#R) is the residual
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cardinality of F (R: ring of integersin F, 17: generator of the maximal ideal in R), and
a—b e wMR%, ¢ — b € wRX, define the non-negative integers Ny, N, (Re: ring of
integersin E).

The other “endoscopic fundamental lemma’ concerns the anisotropic F-torus T, in
H and G whose splitting field is a biquadratic extension EL of F. ThusL is aramified
quadratic extension of F. Then T, ~ (EL)* x E! consists of scalar multiples (in E*)
of t = (t1,1), and tis regular if t; (€ (EL)! = {x € (EL)* ; Nx = 1}, N=norm
from EL to the quadratic extension of F other than E, L) does not lie in EX. Define n by
ti — 1 € wg RE . Thetransfer factor Ag (1) is(—g)™". Once againthe “lemma’ asserts
Agn()®; (1) = d)fKH (t) for aregular t.

Langlands—who stated the fundamental lemma and explained its importance to the
study of automorphic forms by means of the trace formula—suggested a proof based
on counting vertices of the Bruhat-Tits building of G. Such a proof ([LR], p. 360 [by
Kottwitz, in the EL—or ramified—case], and p. 388 [by Blasius-Rogawski, in the E—or
unramified—case]; both casesare attributed by [L], p. 52, to thelast author [who claimed
them in the last page of his thesis]) presumes building expertise, which | do not have.
Thistechnique has not yet been applied in rank > 1 unstable cases.

Sincethe orbital integrals are just integrals, our ideais simply to perform the integra-
tioninanaivefashion, usingthefactthat T C H, and using adouble coset decomposition
H\G/K, which we easily establish here. We then obtain a direct and elementary proof,
using no extraneous notions. The integrals which we compute are neverthel ess non triv-
ial, and thisisreflected in our computations. We have used this direct approachto give a
simple proof of the fundamental lemmafor the symmetric squarelifting [F1] from SL(2)
to PGL (3) (in the stable and unstable cases), and a proof [F5] of thislemmafor thelifting
from GSp(2) to GL (4), arank two case, by devel oping and combining twisted analogues
of ideas of Kazhdan [K] and Weissauer [W], who had dealt with endoscopy for GSp(2)
(an alternative approach—using lattices—has recently been found by J. G. M. Mars).
Theimportance of the fundamental lemmaled usto test thistechniquein our case. Thus
here we apply our direct approach to give an elementary and self contained proof in the
unitary case.

The problem of studying the endoscopic lifting from U(2) to U(3) was raised by R.
Langlands[L]. An attempt at this problem—based on stabilizing the trace formula for
U(3) alone—wasmadein reference[25] of [L] (= [Rogawski] in [GP]), but as explained
in[F2], Section 4.6, pp. 562-563, this attempt was conceptually insufficient for that pur-
pose. The preprint “L-packets and liftings for U(3)” (reference [Flicker] in [GF], [2]
of [A], and p. —2 in [L]) proposed studying the endoscopic lifting from U(2) to U(3)
simultaneously with base-change from U(3) to GL(3, E) by means of the twisted trace
formula. It introduced a definition of packets, and reduced a complete description of
these packets—as well as the lifting from U(2) to U(3) and U(3) to GL(3, E)}—to im-
portant technical assumptions, proven later (twisted trace formula, transfer of orbital
integrals). Moreover, rigidity and multiplicity one theorem for U(3) were reduced to the
assertionsof [GP], which waswritten later than our preprint. The papers[F2, F3] contain
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amuch improved exposition of the preliminary preprint. The paper [F4] contains a new
technique, based on the usage of Iwahori-regular functions. It affords a proof of atrace
formulaidentity for all test functions—thus extending the results of [F2, F3] to al repre-
sentationsof U(3)—by simplemeans. L ater, an exposition of thesetechniquesand results
—but not of [F4]—was published by Rogawski (Ann. of Math. Studies(1990)), who sub-
sequently ([LR], p. 395) corrected an error in the computation of the multiplicities of the
non-tempered discrete series representations. Finally, we note that Waldspurger [Wa] has
recently shown that the fundamental lemma implies the existence of smooth compactly
supported functions with matching orbital integrals.

| lusted for an elementary proof asin this paper for along time, but it was a conver-
sation with T. Oda and A. Murase following my talk at the conference “ Automorphic
forms and algebraic groups’ at RIMS, Kyoto 1995, organized by them, which helped
me decompose H\G/K and initiated the present work. D. Zinoviev suggested treating
H”\G/K, H"” the anisotropicinner form of H, asin histhesis[Z]; this| need for theram-
ified case. They, the referees, and the support of the Humboldt Stiftung, are here warmly
thanked.

2. Classes. Let usreview the structure of the set of (F-rational) conjugacy classes
within the stable (IE—) conjugacy class of aregular element t in G. Being regular means
that the centralizer Zg(t) of t in G is amaximal F-torus T. The elementst, t’ of G are
conjugate if there is g in G witht' = g~'tg. They are stably conjugate if there is such
agin G = G(F) (F is a separable closure of F). In this case g, = go(g™?) lies in
T = T(F) for every o in the Galois group I' = Gal(F /F), and g — {0 — g,} defines
an isomorphism from the set of conjugacy classes within the stable conjugacy class of
the regular element t of G, to the pointed set D(T /F) = ker[HY(F, T) — H(F, G)]. This
set is contained in the image E(T /F) = Im[H(F, T%) — H(F, T)], where G= denotes
the simply connected covering group of the derived group of G, and T is the preimage
in G of the image of T in the derived group. When F is local and nonarchimedean,
H(F, G%) istrivia. When H(F, G%) = {0}, D(T/F) = E(T/F). In this case D(T /F)
isagroup. Fix an F-torus T* in G. Put N = Norm(T*, G), the normalizer of T* in G, and
W = N/T* for the Weyl group of T* in G. The stable conjugacy classes are determined
by means of the following.

ProPOSITION 1.  The set of stable conjugacy classes of F-tori of G injects naturally
in the image in HX(F, W) of ker[H'(F,N) — H(F, G)]. The map is bijective when G is
quasi-split.

ProOF. Thetori T and T* are conjugate in G, thus T = g~1T*g for some g in G.
For any t in T there is t* in T* with t = g~'t*g. For t in T, we have g *otog =
ot =t = g-lt*g, hence ot* = g;t*g, € T*, and g, € N. Taking regular t (and
t*), 9, is uniquely determined modulo T namely in W. For any t* in T* we then have
o(g7*t"g) = g~ *(go(g™))o(t")(a(g)g )9, hence the induced action on T* isgiven by
() = g,0(t)g; L. The cocycle p = p(T):T — W, given by p(c) = g, mod T,
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determines T up to stable conjugacy. Conversely, a {g,} in ker[H!(F,N) — H(F, G)]
determines an action o*(t*) = g,o(t*)g;* on T*. A well known theorem of Steinberg
asserts that when G is quasi split over F, a conjugacy classover F in G of aregular t*

contains arational element g~t*g (in G); its centralizer is an F-torus which definesg,. =

0 1
Let us now specializeto our situation. Put J = ( -1 ) , and introduce an action
1 0

of the Galois group Gal(F /F) on GL(3) by 7((g)) = (rg;) if the restriction of 7 to
E is trivial, and T((gij))_: J(rgij)1J if 7|E is the generator o of Gal(E/F). Then G
is GL(3) with this Gal(F /F)-action, and its group G of F-rational pointsis G = {g €
GL(3,E) ; gJ'g = J}. Here(gjj) = (g;), and a = cafor a € E. Fix T* to beits diagonal
subgroup. The Weyl group W is the symmetric group S; on 3 variables, and GaI(IE/ F)
acts on W via Gal(E/F), ¢ mapping the reflection (12) to (23), and (23) to (12), thus
fixing only 1 and (13). It is easy to classify the stable conjugacy classes of F-tori in G,
but we consider only those which split over E, resp. the biquadratic extension EL of F;
in the other cases the stable conjugacy class consists of a single conjugacy class. The
stable classes are determined by H*(Gal(E/F), W), resp. H(Gal(EL /F), W). Put NE*
for {xo(x) ; x € EX}.

PROPOSITION 2. There are two stable conjugacy classes of F-tori in G which split
over E. One consists of a single conjugacy class, represented by the torus T* (T* =
{diag(a,b,ca™®) ; a € EX,b € E' = {x € EX ; xox = 1}}). The other consists of tori
T with T = (EY)3, and D(T/F) = (F* /NE*)2.

The stable conjugacy classes of F-tori in G whose splitting fields are quadratic ex-
tensions of E, are parametrized by the (ramified) quadratic extensions L of F which are
not isomorphic to E. Each stable class consists of tori T with T = (EL)! x E, and
D(T/F)=1z/2.

PROOF. A cocyclein H*(Gal(E/F), W) is determined by w, in W, with 1 = w,. =

W, (W,), thus w, is 1 or (13), or (12)(23) or (23)(12). As 0((23))(12)(23)(23) = 1 =
((12))(23)(12)(12), the last two are cohomologous to 1. The cocycle w, = 1 de-
fines the action o*(t*) = o(t*) on T*. To determine D(T* /F), note that H(F, T*) =
Hl(Gal(E/F),T*(E)) is the quotient of the cocyclest, = diag(a,b, c) € T*(E) = E*3,
t,o(t,) = t. = 1, thust, = diag(a,b,ca), a € EX, b € F*, by the coboundaries
t,o(t-1) = diag(asc, bob, coa). Since G= is the subgroup of G of elements of determi-
nant 1, the cocycleswhich comefrom HY(F, T*%) havetheformt, = diag(a, 1/asa, o).
These are coboundaries (u,a(u; 1), with u, = (a,1/a, 1)), hence D(T* /F) istrivial.
_ Thecocyclew, = (13) definesthe action o*(diag(a, b, ¢)) = (sa*,0b™,0¢™*) on
T*. Then T = g~ 1T*gfor somegin G withgo(g™) = J (mod T*),and T = T(F) =
(EN3. A cocyclet, = diag(a,b,c) € (EX)® of Gal(E/F) in T(E) satisfies1 = t,. =
t,o(t,) = diag(a/oa,b/ob, c/oc), thusa,b,c € F* and it comes from T<(E) if abc =
1. The coboundaries take the form t,o(t,) ™ = diag(aca, bab, coc), hence D(T/F) =
(F* /NE*)2.
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Consider next an F-torus T in G which splits over a quadratic extension L; of E, but
not over E. Theinvolution ((x) = J'xJ stabilizesT = T(F), anditscentralizer L} x EX in
GL (3, E); it induces on L, an automorphism whose restriction to E generates Gal (E/ F).
Hence L1 /F is Galois. But it isnot Z /4. Indeed, if Gal(L1/F) = Z/4 were generated
by 7, then 72 be trivial on E, (w.2)> = 1 impliesw,. = 1 or (13) up to coboundaries,
but (13) = w2 = w,7(W,) = w,(13)w,(13) impliesw? = (13), which has no solutions,
andw,. = limpliesthat T splitsover E. Then Gal(L,/F) = Z/2 x Z /2, and L, isthe
compositum of E and a quadratic extension L of F, not isomorphic to E. Sincep > 2,
there are two such L (up to isomorphism), both ramified (since E/F is unramified). The
Galoisgroup Gal(LE /F) is generated by o whoserestriction to L istrivial, and 7 whose
restriction to E istrivial. Up to coboundaries, w; is 1 or (13). If w, = (13), thenw, # 1
is of order 2. Up to coboundary which does not change w,, we have w, = (13), and
replacing ¢ by or (thus changing L) we may assumew, = 1. If w, = 1, w,w, =
W = W,r = Woo(W,) = W,(13)w,(13) implies that w, (# 1) commutes with (13),
hencew, = (13). Up to isomorphism, T consistsof (a, b, ¢) € (LE)*3 which are fixed by
o(a,b,c) = (cct,0b7 1, 0at) and r(a, b, c) = (rc,7b,7a). Thusb = b = ob~ ! liesin
El,andc= ca ! =ra, namely T~ {(a,b,ca?) ; b € E',aora= 1,a € (EL)*}.

It is simplest to compute D(T / F) using Tate-Nakayamaduality. The image of

H(F X(T9)) = (X = (xY,2) € % ; x+y+2=0} /(X — 0X, X — 7X)

in
AR X(T)) = 2%/ (X — 0X = (2%, 2,22), X—7X=(x—20,2—X))
isZ/2. .
To compute our integrals we need explicit realizations of the tori T = (E')3 and
T=(EL)! x EL.

1 1
PROPOSITION 3. Put To = {to = diag(a,b,c) ; a,b,c € E}},h = ( . 1 1)’

r = diag(r,1,1), withr € F—NE, T = h™'Tohand T, = (hr)"'Tohr. Then T;
and T, aretori in G, and a complete set of representatives for the conjugacy classes
within the stable conjugacy class of a regular t; = h~tdiag(a,b,c)hin Ty (thus a #
b # ¢ # a), isgiven by t;, t, = r~th~tdiag(a, b, c)hr, t3 = r~th~1diag(a, c, b)hr, and
t, = r—th~Ldiag(b, a, c)hr.
A set of representativesfor the conjugacy classes of tori ~ (LE)! x E' is given by
_fe—1( a mB/VD). 1 .2 a2 _ 1
TH_{5 (ﬁﬁ . ),5eE,a - _1}><E
C H = Zs(diag(1, ~1,1)) = U (2 }J) x E' C G = U(QJ),
whereD € R* — R*?, and
Tw= {57 (§ )0 B a? —mp? = 1) x !

C H' = Zg(diag(1,1,~1)) = U (g f’l) x E' ¢ G = U@,
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) ' . e 1/2m 0 —1/2
where J = diag(wr, —1, —m ), and J = gJ''g, withg = g (1) 0 |, sothat
™

G =g Gg.

ProoF. AnF-torusT within the stable conjugacy classdefined by the cocycle {o —
(13)} in H*(Gal(E/F), W) takes the form h~T*h, with h in G(E) = GL (3, E) such that
h, = ho(h™1)is(13) inW. Thehof the proposition satisfiess(h™) = diag(1/2,1,1/2)h,

2_(2 0)(0 1) 3 /%(aﬂ:) %(a—c))
and h® = -1 -1 . Thent; = b .
0 -2 \1 0 \%(afc) i(a+o)

A stably conjugatet; = g; 192 = (hgz) tohg, is defined by g, € G(E) such that
O = Qoo(g2)~t = htay,h, where ay, = diag(r,1, r 1) (we take the elements of
D(T:/F) to be represented by g, = 1, a,, ag, = diag(r, v71, 1), a4, = diag(L, r, v 1),
r € F — NE). Thus we need to solve hg,J'(hgz) = hgo(hgz) 1J = ax,ho(h™1)J =
ay, diag(2, —1, —2) = diag(2r,—1,—2/r) (bar indicates componentwise action of o).
Clearly g, = r isasolution.

The next stably conjugate element ists = g3 tigs = (hgs) ~tohgs, where g satisfies
O3 = 030(g3t) = h7tag,h € Ty. Thuswe need to solve ghsJ'(hgs) = hgso(hgs) 1 =
a,ho(h) ™13 = diag(2r, -2/, —2). Since E /F isunramified, thereisx € Ewithxx = 2.
Definegs by hgs = ((1) xt 0) (1 (1J 1)gh2, for which

X

wdoa=(, ) ee)(5 L) (e e (o7 )
:(20r . —02)'

For the last case, replace the index 3 by 4, and note that a solution to hgsJi(hgs) =

diag(2, —r,—2/r) is given by g4 defined by hgs = (Z y1 :) (1 (1) 1) hg,, with
y € Esuchthatyy = —2.

To exhibit non conjugate (in G) tori ~ (LE)! x E' in G, we construct one (Ty) in the
quasi-split subgroup H = U(1, 1) x U(1) of G, and ancther (Ty-) in the anisotropic sub-
group H = U(2) x U(1) of G. To simplify the notations, we omit the factor E* from the
notations. To describe T, consider the ramified torus Ty = {(g '@; ) € GL(2, F)}. Put
GL(2,E/F) = {x € GL(2,F) ; detx € NE* = R*w?}. Then TN GL(2,E/F) =
ZTo, where Ty = T1 N SL(2,F), and Z = F* is the center of GL(2, F). We have
E*GL(2,E/F) = E*U,, whereU, = (_01 é) hence the corresponding torusin U; is
E1To. ButH = u((l’ (1)) = D;!U,Dy, whereD; = diag(v/D, 1). Then T}, isasasserted.

To describe Ty and H’, note that there is only one form of the unitary group in 3
variables associated with a quadratic extension E/ F of p-adic fields. We then work with
G’ = U(J'), which is g~1Gg as stated in the proposition, as the anisotropic H’ is easily
specified as the centralizer Zg (diag(1, 1, —1)). Note that we could work with H” =
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0 1/2w

gH'g™! = ZG(2 1 /0 ) Now H’ consists of diag(A, €), e € EY, and A € GL(2,E)
™

with Adiag(rr, —1)'A = diag(sr, —1). Clearly det A = u/ufor someu € E*, and solving

the equation we seethat A = u*( & ‘g’) with aa — 1rcC = uu, or alternatively A =
(% “lfe—‘;') with aa—1rcc = 1, u € EL A maximal torus splitting over EL, in H’, isgiven
by {571(2 5;) 60 =a? —mP o BEF;6E EX}.Sinceozz—Trﬁz — 66 € NEX =
R*7r?, we have that both sides are squares, say r?, r € F*, and dividing o, 3,6 by r we
concludethat a® — 7132 = 1 = 66. Then T}y is as asserted. .

REMARK. The Weyl group W(T) of T = T; in G is S; for example,

y 0 1

h‘1< y 1 ( 10 ) hliesin G (yy = —2) and represents the reflection (12). The
0 1 1

Weyl group W(T*) of T* in G consists of 1 and (13) only.

3. Decompositions. Let K bethe maximal compact subgroup G(R) of G (itsentries
arein the ring Re of integers of E). Denote by 1k the characteristic function of K in G,
and fix the Haar measure on G which assignsK the volume 1. Our aim is to compute the
orbital integrals

atc a—C_C

/' L dx,  t, = ( z b TP) ,

J\G %: ase
wherepislorar,thusT, = Tyif p = 1and T, = T, if p = 1. Weshall also computethe
integrals Jr,\g 1k (x_'t) dx and Jr, g 1 (X "'t'X) dx. The measure on each compact torus
is chosen to assign it the volume 1, and we define p by p = 7 (p = O or 1). Put H for
the centralizer of diag(1, —1,1) in G; it contains T, and Tw. Let N denote the unipotent
upper triangular subgroup of G; it contains

1 x 1 X 0 X o\1
w=|0 1 X|= 1 Uy 1 XX =2).
001 0 x1 0 x 1t

Our computation of the orbital integral is based on the following decomposition.
PropPosITION 4. Wehave G = |J HumK, where un = Ugdm, dm = diag(t, 1,t1),

m>0
. ay—b+tap, 0 b—tap+ths+ 2a3t2
t = ™. Further, HX = HNumKu;! consstsof( 0 a 0 )
_ _ b 0  a—b—th

with ap, ap, az, b, bz in Re.

Also G = UmsoH"dywK, and H,, = H N gld.Kd g consists of
diag (u*l(% Cg),e), ec El,ue EX,a,cc Ewithaa—mcc = uuand |a/u— ¢ <
|7 1*2™, |c/u| < |7|™, or equivalently of scalar multiples by E? of diag (e(% “lfe—‘;'), 1),
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g u € EY ac e Rewithl=aa— mce, [a— 1| < |w|*2™ |c| < |w|™. Both decompo-
sitions are disjoint.
PrROOF.  For the decomposition:

/1 st* Seet™
G=T'NK = HNK = 5 K
m>0 seRE \ 0 1

et1 0 et 0
UH ( 1 ) u{,( 1 ) K
me 0 et 0 a1

U HupK, u, = ugtm.

m>0

It is disjoint since (by matrix multiplication) u{,flhu(n liesin K for somehinH only if
n=m.
Theintersection HX = HN U, I Kum ! consists of (a;, by, G in Re):

é(%) %)( Ol)(ci ci Eg)( )(2 _Oli>
i) (o4
1

/ ) x taz ta3>/1 71 _%)
\ \tzgi 12(:2 b \0 0 1

inH, thusc; = —tby and ¢; = tc,, and we defineb € E by by = —2bt. Thusc; = 2bt?,
¢z = 2bt, and we continue with

t

1
1
0

[cNah o

111 a ta, tlag 1 -1 3
== 011 (—Zb b2 tb3 ) 0 1 -1
001 2b 2b c3 0O 0 1
/ 11 % tap — a1 %al —tay +t2a3
= 1 2b bp+2b —b—by+ths
\o 0 2b 0 cs—b
/a]_— X %b— %ta2+%tb3+t2a3
= a; —tay Y
\ 2o To ay — b ta — th

X 0y Llra—b 0 b — tap +thg + 2agt?\ /X 0
:( 1_7) (0 a —ta 0 )( 1_7).
0 x 1t b 0 a;—b—tay —ths 0 x1
Sincethishasto bein H, we obtained therelation X = 0, thusa; — ta, = by + 2b, which
impliesthatb € Rg,and Y = 0, thuscz—b = b+b2—tb3 = ay —b—tay —ths. Replacing
ashy ay + tay, and noting that HX = diag(x, 1, X )Hp diag(x, 1, X 1)~2, the first part of
the proposition follows.
Recall that G’ = g~*Gg, and notethat H' = Z (diag(l, 1, —1)) is Stabe (vp) = {X €
G’ ; vpX' = Mvp, A € EY}, where v = (0,0, 1). Put v = vgg~t = (—1,0,1/2). Then

0 1/2w
" = gH'gt = ZG(2 1 o ) is Stabg(vo) = {X € G ; voX = Avg, A € E}.
iy

Embed H'\G — S = {v € B3 ; vJ'0 = vod'vg = —m 1} by X — v = vox. We
have a digioint decomposition S = Um>ouodmK, as votm = (—7™,0,1/27™?), and
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vodmK = {v € S |u]| = |w|™™*}. Here ||(x,y,2)| = max{|x], |yl |z|}, and the
union ranges only over m > 0 since {m,—m— 1} = {n,—n—1}if n+ m= —1. The
decomposition G = Upy>oH"”dmK follows.

To describe H,,, consider the elements of d;*gH’g~tdm in K. Thus

1/t 0\ /1/2m —1/2\ ra/u cmw/u 0 ™ 1/2 t 0
o O )@ a0 )G
0 t 1 w 0 0 e/\-1 1/2a)\0 1t

/(a/u+e)/2 c/2ut (a/u/e)/4m-t2>

wtc/u a/u
\(a/ufe)ﬂ-t2 mwic/u  (a/u+e)/2
liesin K precisely when [c/u| < |&|™, |a/u — €] < |w|t2m. .
Notethat theintegrals fg,« dxand J «+ dg are independent of the choice of the Haar
measuresdx on G and dhon H. Also, fy; xu dh = [K™ : K] Sy /k dh for acompact open
subgroup K of KH. It is convenient to normalize the measures dx and dh to assign K
and K" the volume one. Then [KH : KH] = |KH |72

ProposITION 5. Theorbital integral of 1x ataregulart € T C H (T = T, or Ty)
can be expressed as

—1 _ —1—1
_/G/KlK(x tx) dx = Z _//HK T (U=~ thuy,) dh

=3 /H Ly (h~2th) dh,

m>0"
Ataregulart = gt’g™! € G, wheret’ € Ty € H' € G’ = g~1Gg, we have
—1 _ 14/
/G/ T (x1tx) dx = Z / , L, (hthydh,

PrROOF.  For the last equality of thefirst assertion, note that u,*h~—thu,, € K implies
that h=2th € H N upKut = HK.
For the last claim, the left side equals

—1p—1
ngo/'*“/H”mded;llK(dm h™"thdy,) dh

- 1¢(d-2gh g~ dm) dh ;

M0 /H’/H’ﬂg*lded,;lg

the displayed equality follows on writing h = gh'g™* and t’ = g~'tg. Theright side is
equal to the right side of the equality of the proposition. ]
We then need a decomposition for T,\H/K N H and Ty\H/K N H. Notethat H =

U ( (1) é) x E*, wherethe first factor is the unitary group in two variables which consists
01

of theginGL(2,E) Withg((l) é) lg= ( ) Correspondingly wewrite T, = Ty, x E
and KN H = Ky x EL Putr! = diag(s=0-7/2,70="/2) forj > 0,j = p (mod 2). In
the following statement thefactors E! and R*—whose volumeis 1—can be ignored for
our purposes. Write [X] for the largest integer < x.
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PROPOSITION 6. We haveH = U Th, - I - Ky x E! (j = p(2),j > 0), and
j>0
()Tt N Ky = (R+wIRe)* /R* x EL Further wehave H = U Th - 1j - Ky,
i>0
and r;1Tury N Ky is RG) = E'NR(), R() = R+ ymwR wherer; =

0 =\i"28 w1 o\l
(135) =6 %)

ProoF. Note that E = F(v/D), D € R— R2. Put D; = diag(v/D,1). Then
U((l) é) = D;!U;D4, where U, is the unitary group U(_Ol (1)) Sincediag(a, a!) =
adiag(1, 1/aa), wehaveE*U, = E* GL(2,E/F), whereGL(2,E/F) = {g € GL(2,F) ;
detg € NE*}; note that NEX = m?/R*. Note that Ty, = {(LL/’p “Bf’) €GLE, F)}
liesin GL(2,E/F), asu? — v?’D = aa € NEX (for « = u+ vy/D in EX). The cor-

responding torus in U, is T, = {%(bl/’p ”ﬂD) 1B € El}, and Ty, = Dy!T,,Dyis

3 u VDY i = 01
the torus {5<u¢5/p Wu )} in D11U_2D1 = U(1 o)' Thus the map_Tl,, — Th,
takes an element with eigenvalues {«, o} to one with eigenvalues {3, S/ a}. From
the well known (see the Remark following the present proof) decomposition GL(2, F) =
U Ty, diag(1, 7)) GL(2, R) weobtain GL(2,E/F) = UTy,I” GL(2,R) (j > 0,j = p(2)).
i=0 j

Hence U, = UTZ,,rj”Kz, where K, = U, N GL(2, Rg). Conjugating by D, we get the de-
composition of the proposition. Finally,

-1 _ ﬁ u UTI'J\/B . _
(I'Jﬂ) 'THp-rmeH_{a(UTF—j\/ﬁ u EKH,OZ—U+U\/5 .
The last matrix has eigenvalues 3 € E* and Ba/ . Since E/F is unramified, E* /F* =
RZ /R*, we may assume that € RX and concludethat u € R, v € /R Thus our
intersection isisomorphic to (R+7Re)* /R* x EL, as asserted.

For the last claim, in the notation of Proposition 3 in the ramified case (T =
(LE)* x EY), we have that GL(2,F) = UjseTydiag(1, (—m) )K = UsoTarK, 1 =
t diag(L, (—)!), where t; is 7/2 if | is even, and Tr—0+l>/2((1’ ’5) if j is odd. Then
GLQ,E/F) = UsoZTorK, and U = u(_ol (1)) = UsoE'TorKuy, and H =

U(? é) = D;'UD; with D; = diag(+/D,1) hasH = Ui>oTHrKn, where Ty is as
described in Proposition 3. _

Now rl-—lTHr,-mKH consistsof 5—1(’3\57(_11)] 51-;(_121/\5) € Ky inthecasewhere
j iseven (replace D by 1/D when j is odd), namely |3| < |=m|. Thus rj‘lTHrj UKy is
R.() = E'NR.(), R.(j)) = R+ /IR, up to factors of the form E*, whose volume
is1andisignored here. ]

REMARK. A proof of the well-known decomposition

GL(2,F) = |J Tdiag(1,7') GL(2,R)
i>0
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—extracted from a letter of J. G. M. Mars—is as follows. For another proof see [F5],
Lemmal.l.1. Let E/F beaseparable quadratic extension of non archimedeanlocal fields.
LetV beE considered asatwo dimensional vector spaceover F. Multiplication in E gives
an embedding E C Endg(V) and EX C GL(V). Thering of integers Re isalatticein V
and K = Stab(Rg) is amaximal compact subgroup of GL(V).

Let A bealatticein V. Then RA) = {x € E ; XA C A} isan order. The orders
inE are Re(j) = R+ mRg, j > 0 (w = ). Note that Re()/Re(j + 1) is a one di-
mensional vector space over R/r. If R(A) = Re(j), then A = zRg(j) for somez € E*.
Choose a basis 1, w of E such that Re = R+ Rw. Define d; in GL(V) by dj(1) = 1,
di(w) = mlw. Then Re(j) = diRe. It follows immediately that GL(V) = Uj>oE*diK,
or, in coordinates with respect to 1, w: GL(2,F) = |J Tdiag(1,7/) GL(2,R), with T =

j>0

{(ﬁ aj’_‘%b) ;a,beF, notbothO},whereva: a+pw, a, B ER

PROPOSITION 7. If Re(j) = R+ 7Re, j > O, then [RX : Re(j)*] is1ifj = 0, and
(1+qg7Yd ifj > 1. Further, [R+ &R : R+ /miw'R)Y = (.

PROOF. The first index is the quotient of [RX : 1+ mRe] = (¢ — 1)g?0=? by
[R* : 1+ 7R = (@—1)g~*whenj > 1. Whenj = 0, Re(j) = Re. The last claim
follows from the fact that u? — 7v? = 1impliesu = 1+v?/2+---, uptoasign. =

PROPOSITION 8. We have Ky x E! = P4HK, where

pH:{( )((1) CZB>;UER.§,WEE1,UGR},

and [Py : Py NHK]islifm= 0and (1 — g ?)g*ifm> 1.

PROOF. Defineu € R, v € R, by the equation (2 g) = (o4 (‘C’ CdD) in
GL(2,R). Hence Ky consists of (0 = )((1) “F) (c\% C‘éﬁ) uUeRLVER

a = d+cy/D € RY), andKy x E* = PyHK. Theintersection Py N HX is Py when
m= 0, but whenm > 1 andt = 5™, it consists of

a +tap —tap + thg + 2a,t? 1+ta) —ta), + th} + 2a4t?
a =a 1 ,
0 a — thg 0 1— thy
where &, = ay/a;, by = bs/a;, & = ag/ai, mas = 1. These satisfy 1

= (1+ta))(1—tby), namely b = &/ (1+tay). Thust(b; —ah) = t(a,/(1+ta) —a)) =
t(a, — a, — tayay) /(1 +1ta,). Erasing the prime from a,, and the middle entry 1, Py NHK
consists of the product of E* = {a; } and the matrices

( l+tay t(@ — a2 — tapap)(1+tay) L +122a) )

0 — tgg(l + t52)71
(1+ta2 t(azfaz)/(1+ta2)) (1 t2al ”«/_)
0 taz/(l +1ap)

then [Py : Py N HK] isthe product of [RX : 1+ ™Re] = (g7 — 1)g?™? (for ap) and
[R:7?"R] = ¢? (for a). .
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DEerINITION.  Put 5(X) = 1if “X" holds, and 6(X) = 0 if “X” does not hold.
Note that ij/pHnka(p) dp = [Pu : Pu N HK] Jp, f(p) dp, if the measure dp assigns
the compact Py the volume one.

COROLLARY 9. Theorbital integral f7 \g 1 (x"1t,X) dx isequal to

Y [(=0+@+ads(>D]> [ Luyg(pTD i) dp.

i>0i=5(2) M0p b

For aregular t € Ty, the orbital integral fr, \c 1k (X tx) dx is equal to

K1 ~Lp=1tr.
G EDS /ij,lm\KH 14 (K2 trjK) ok

m>0 j>0

=>dy [

i>0 m>0 H/Hrlv({TPH

Ly (0~ Hrp) dp. .

4. Computations: j > 1. In computing theintegrals Jp, 1H§(p*1(rj”)*1tﬂr-”p) dp at
t, = r,th~*diag(a, b,c)hr,, weputa’ = 2 —1,¢' = £ —1,defineN, by & € " Rg, N
by ¢’ € mV*R:,Nby & — ¢’ € wVRX andN* by & +¢’ € wN'RX. Since",, isregular, N,
N; and N, are finite non-negative integers. Put M = max (N, Ny). We shall distinguish
betweentwo cases. If |a —¢/| < |&], then|a| = |c/| = |a'+C/|,thusN* = Ny = Np < N.
If || <|a —c'|, theneither |a/| < |a —c| (= |c/| = |& +C/|,thusN* = N, = N < Ny),
or|@| = |a@—c| (= |a+c/|,|c|, thusN*, N, > N; = N), namely N < N*. Put y = N—j,
and denote—as usual—by [X] the maximal integer < X.

PROPOSITION 10. If j > 1, then o /p, e L (PH(r) ", 1 p) dp is L if m = O,
A—qg?dgmif1 <m < min([4],[%]), and @ — g g™ (g — g2 =
(1 +g Hg*2Mif u = N* < 2m < 2u. For all other m > O theintegral is zero.

For a regular t = diag(éfl(ﬁf/‘B ﬂ"é‘/a),u) in Ty C H, the integral
Jou/purrs L PTMP)dp is Lif m = 0, (1 — g A)gMif 1 < m <
min([p/Z], [(1+N2)/2]), and (1 + g Hg2™if p = 1+ N, < 2m < 2+ 2N,, and
N, < N. For all other m > 0 the integral is zero. Here 3 = Bm" (B € R), and
5 = b1 +1i62 € EL with §, = Domt™2, 61, D, € RX.

Proor. AsPy C Hr'% when m = 0, we assume m > 1. We need to compute the
volume of solutionsinu € RX /(1 +tRe) and v € R/t?R (t = &™), of the equation

(1 —uﬁ> ut - B/uy [ ja+o a— oyl
1 ( 1 ) b

0 1 0 u \ l@a-com ia+c)
u (U* U)/U 1 L‘\/B a; — by +ta, b, —tay +tb3+2&3t2
(T O !
0 ul 0 1 by a; — by —ths

fora; € EY; by, ap, a3, bz € Re. Tohaveasolution, a; must beequal to b. Wethenreplace
aby a/b, cby c/bontheleft, and by, ay, bs, az by their quotients by a; on theright, to
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assumethat a; = b = 1. Put w = v4/D + (U — u)/uu, erase second row and column of
our matrices, write b for by, defineB € RX by 2(@a—c)m ) = Bw" (u=N—j <N), to
express our identity as the equality of

(6 ) (e *sarg ™) (5°9)

_ ( i(@+0) —wutBr"  Brul(m? /(ui)? — wP) )

B/ ull 1(a+c)+wBn!ul
and 1—b+tay b— tay+ths + 2a5t?
( b 1-b— th ) :
Since b € R, to have solutions we must have that 1 > 0 (consider the entry (row,

column) = (2, 1) in our identity). Thisis congruent to ( 1 b b 1E p ) modulo 7™ Con-

sidering the entries (1, 1) and (2, 2), we deduce that wit* = 0 (mod 7t™). If m > u,
considering the entries (1, 2) and (2, 1) we concludethat j = 0.

Sincej > 1, wemay now assumethat 1 < m < p. Thenb = 7* = 0 (w™), and from
the equality of the entries (1, 1) or (2, 2), we obtain %(a +¢) = 1UmwM). Puta = a—1,
¢ =c—1.Thena +c = 0(m™). Sincealso & — ¢’ = O(w™), we have @, ¢’ = O(m™),
andwehavea” = anw ™™, ¢’ =cdm ™ b =bm MinRe. Put '’ = p —m> 0. The
matrix identity translates to four equations, the first three define b, a, bz and hence are
always solvable:

r_ 1 o 1 o
Br' uu= b, 5(a”+c”)+(l—w)uuBa-r" = ay, 5(a”+c”)+(1+w)uuBa-r“ = —bg,
B"w"" + B ut(1 — Dv? + 72 / (uU)?) = 2agm™
(where B"mr"" = @’ +¢”,v1 = w/+/D € R).

If m< ', p”, namely 2m < u, N¥, any u € R, v1 € R, make asolution (as is defined
by the fourth equation). This provesthe proposition for m (1 < m< min([4],[% ).
If u” < 1/, m, there are no solutionsin u, v;.
If u < p”, m sincej > 1and 1— Dv? € R, there are no solutions either.
It remains to consider the case where 1/ = " < m (< p). Write e =

—uu(1 — Dv?)B/B”. Then our equation can be written in the form
1—2agm™ " /B = —utB/B"(1— Dv? + wA () 2) = e H(L +(mAcD),
where¢ = (B/B")?(1 — Dv?), namely

e=1+ Qijsz
=1+miL+2mA? + pPrmiet) = 1+ (w2 + 23w Ye? + Cm9e* (mod 11'”“’"),
sothat  isuniquely determined modulov™ . Thusachoiceof v; in Rdetermines¢, and
£ iNR*/1+w™ R, henceul € R*/1+m™ "R Thevolume of one coset modw™#'
iNR¥iS[R* : 1+a™# R~ = 1/[(q— 1)g?™*~1]. Multiplying by [P : Py N HK] =
(1—g 2" weget (1+q 1)g™*.
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In the ramified case, the case m = 0 is again trivial, so we assume m > 1. Putting
B; = BSvD(—1) € RZ, in analogy with the previous case we are led to solvein u and
v1 = w/+/D the equation

( @b — WUiBym!  UUByw (w3*1/D(ul)? — DV2) )

uuB, ab + uuByrrt
_ (1—Db+ta bfta2+tb3+2a3t2 _(1-b b m
—( b 1-b-— th =("p 1-p)(mod=").

Asb € Rg, using (2,1) we have 0 < g < N. From (1, 1) and (2, 2), wit* = O(7™).
If u < mthen |w| < 1, but this contradicts (1,2) and (2,1). Hencel < m < p <
N.Puth’ = bw™, ' = p — m Then Biutm* = b/, o’ + (1 — WuiBym"' = ay,

o + (1 +wuuBim* = —bg, defineb, a,, bs. Here o/ = o — 1 = O(m™) is used to
define o’ = o’m~™. Theremaining equation (add all four entriesin the matrix equality)
is

B'w"" +utBym (1— Dud +w'*? /D(ul)?) = 2agm™,

where 2o” = B'w"’, B” € RZ.If 2o = B"@wN', N* = 4/ + m, then N* =
min(1 + Ny, 1+ 2N), since

Y s BzTr1+2N/2+ L DD%TFZ+2N2/2+ e — \/5D21'r1+N2) -1

Of course o = 6(7v™) impliesd, = 0(7w™), and m < 1+ No.

Returning to the remaining equation, if 1 <m < ¢/, u”, thus2m < p,N*,and p < N
implies1 < m< min([1/2],[(1+N2)/2]), any u € R and v; € Rmakeasolution, ag
is defined by the equation, and the number of solutionsis as stated in the proposition.

If u” < p/,m, or ' < u”, m, there are no solutions, as 1 — Dv? € R*.

If ' = p” <m< p,namely p = min(1+Ny, 1+2N) < 2m < 2y, but ¢ < Nimplies
i = 1+ Ny, soN,; < N, and the number of solutions is computed as in the unramified
case to be as asserted in the proposition. ]

ProPOSITION 11. When p = 1 the orbital integral frae 1 (x"1t,X) dx is equal to
JL@F] - 1)iftN < Ny, andto

N+2N;

q(1+_11(1+ g2 N2y 4 (—qq)_NlN1 .5, gillq
if N> Nj. Hered =6(2 | N—1—N;) (is1if N— Ny — Liseven, 0if N — Ny is even).
Theorbital integral fr,\¢ 1k (x1tx) dx is equal to:
D if N < Np it is (™2 — 1)/((q2 + (@ — 1)) if N is odd, and
(@ — 1)/ ((? + 1)(q — 1)) — g™ if Niis even, and
(2) if Nz <N, itisqV2%*3 /(g — 1) — (®*2 + 1) /((o? + 1)(q — 1)) if Nz iseven,
and — (02" + 1) /(@ + 1)(q — 1)) + g"*2*3 /(g — 1) if Ny is odd.
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PrOOF. It sufficesto provethe first statement with N; replaced by N¥, sinceN > N;
if and only if N > N*, in which case N; = N*. The contribution from thetermsj > 1is
> @+ad(1+ > @-gddm ¥ @rg ).

155=N ) _NF
i=n2) 1§m§mm<[%],{%D s=8<m<u

If p = 1, thisis the entire orbital integral. In this case we replace j by 2j + 1, and let |
rangeover 0 <j < (N—1)/2.1f N < N*, u = N—1—2j issmaller than N*, and we

get
@+) > @1+ ¥ 1-g ")
0<j<[(N-1)/2] 1<m<[(N-1)/2]—]j
=(q+1) Z P (1+@— g™ D39 —1) /(" — 1))
q+

= g s
q+1 <q wD/A g a1 AN/
P +1 P —1 1-qg2 ’
which is equal to the asserted expression.

If(p=1and)N > N, thenp = N—1—2j, and4 = 82 —j > X precisely
when (N — 1 — N*) > j (samewith < or =). Note that §(N* = p) isé. Put min =
min([4],[% ]). Our integral is then

(q + 1) Z 2] / 1 2+4miﬂ) +6 qN++l (qZN+ _ qZ[N+/2])
0<j<[(N-1)/2] \q2+1 g?+1 q—1

q +1 q2[(N+1)/2 -1 qZ(q + 1)

T @+l -1 +1
. ( ) qIN/A g2 + > q4[(N71>/21q—21) + 5%
0<j<[(N-1-N")/2] [(N-1-N")/21<j<[(N-1)/2]
_ Ll(qzuw/z] 1)+ F@+1)
qt—1 g?+1
2[(N+1—N*) /2 —2([(N—1—N*)/2]+1 —2([(N-1)/2]+1
' /q4[N*/2]q [(N+1-N")/2] _ 1 N EL: (I( )/2+) _ qr2AN-1)/21+1) s
_ q‘1+ 1 (—1— q2+4[N+/2] + q2+4[N+/2]+2[(N+17N*)/2] + q4[(N+1)/2]72[(N+17N*)/2])
a+1  neont N+2[N* /2]
+6 :
q- g—19 — —d )

If 6 = 0, then N iseveniff N* iseven, and [3(N +1—N*)| = 2(N—N*) = [N/2] —
[N*/2]. Hence we obtain

1 AN +1 . +1) /2
q‘i (1 + AN /2y qq - 1q2[N J242N/2) (2 4 LN+ /21—4N /21
__9q+1 2+4[N* /2] gV
= —q4_1(1+q )+q_1,
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If 6 = 1, then N iseveniff N* isodd, and [3(N —1—N*)| = (N — 1) — JN* =
[3(N—1)] — [3N*]. We get

+1 " +1 + "
q (1+ q2+4[N /2]) + q‘j — l(q2+2[N /2+2[(N+1)/2] q2[(N+1)/2]+2[N /2])

g -1
9+l oty + q+1qN+2N*
q—1 q—1
q+1 srant 2y L PN ez Ny, AT ot
:_q4—1(1+q [ /])"‘ﬁ(q[( )/]—(Q*‘l)Q)"‘ﬁq :

The middieterm is —gqV*N" /(g — 1) sinceN + 1is eveniff N* iseven.
In the ramified case we compute as follows. Supposethat N < N,. Then the integral
is

> odvr(ir Y @ - e )

0<i<N 1<m<[u/2
= ¥ q/@+)+gN ¥ gtI /(@ + 1)
0<p<N 0<p<N
qN+1 -1
C(+1)(g—-1)

g2 ( 5 @ + 3 q2,ul—1)

0<p1 <[N/2],u=2u1 0<p<[(N-1)/2],u=2p1+1
AN/ +4 4 NRAN-D)/2143 _ g q

qt—1

+q2+1

as asserted.
Supposethat N, < N. Thentheintegral is

Z quu (1 + Z (1 _ q72)q4m>
0<u<1+N 1<m<[u/2]
+ qN—Nz—l Z (1 + q—l)qzﬂ’ﬁ'l‘FNz

[(14Ny)/ Z<m<1+N,

o qr(ir Y @a—ae).

14N <p<N 1<m<[(1+Nz) /2]

Thisis the sum of

N+2 N+1 N —No—2 _
(2 q2[l,1 + 2 q2/11 + 2q . q _21 1
U+ Loy <D /2 0=210 9+ L ocp <Ny /2 =201 ¢+l g'-1
and 2(No+2) 2[(1+N,) /2]+2 4[(1+Ny) /2] +2 N—No—1
Sy AT — AR R L gt -1
1+qghHa" > + > :
-1 g°+1 q-—1
Adding, we get the expression of the proposition. ]
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ProPOSITION 12, When p = 0, the contribution to the orbital integral of 1« at t,
fromthetermsindexedbyj > Ois

q J—
if N < N*; whenN > N*, if N— N*isodd (6 = §(n | N— N* > 0) is 0) we obtain

+1
(Q4 )1q(q4[N/2] — 1)

~(g+1)q (1+ AN /2y 4 gV
g -1 g-1
whileif 6 = 1 (N — N* > Oiseven) we obtain
_(g+ 1)q(1 + RHIN/2) 4 e LA+l nen A+l g2 /2
-1 q-1 q-1 q-1 '

ProOF. Putp =N-—2j,1<j<[N/2]. Thesumoverjis

2+4min
q

(1
—1 2) —1\~ut+2m
(1+q ) Z q (q2+1+q2+1+5 Z (1+q )q )

1<j<IN/2) f= <m<u
If N <N* thenmin=[p/2] =[N/2] —jandé = 0, sowe get

_a+1 % 4 (2HIN/2-2
q(g? +1) 1§j§z[;\l/2](q f )

@D (1 gt
g?+1 \ ?—-1 1—q2 '

which is the asserted expression.

If N > N*, then /2 = N/2 —j > N*/2iff (N — N*) > j, in which case
min([x/2],[N*/2]) is[N* /2] (itis[N/2] —j when > isreplaced by <). Thuswe obtain
the sum of

(q+1)qg g2N/2 —1

q2 + 1 q2 —_ 1
(q+1)g? 4N /2] 2 . AN/2] i
g~ +q q
q(e? + 1) ( 1§j§[(§N*)/2} (N—N*)/22<j§[N/2] )
_(@+)g VA -1
- q2 +1 q2 -1
@+ DG (g PONVEZ G gy CANVA 4 N2
a(e? +1) \ -1 1-q2
+1 +AN* / 21+ NG +AIN* _ _N*
_ (34 _)f(_1+q2 AN 2HANN) /2 2HIN/2] 4 N/ 22NN /2]
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and
B+ Y = s g - V)
N* /2<m<N* q-1
Whené = 0, 2[(N — N*)/2] = N — N* — 1, and noting that N is even iff N* is
odd, the asserted expression is obtained. When § = 1, N is even iff so is N*, hence
2[(N—N"/2] = N—N*" = 2[N/2] — 2[N*/2], and again we obtain the asserted
expression. ]

5. Computations: j = 0. To complete the computation of the orbital integral of 1«
att,, it remainsto computethe contribution from the term indexed by j = 0, which exists
only when p = 0.

ProPOSITION 13. When p = 0 = |j, the non zero values of the integral
JPu/PunHK 1Kr*§1(p_ltﬂp) dpare: 1ifm=0,

(@ (1—qg3g*™if 1 <m<min(N/2],[N*/2]),

(b) (L+qgHP™AN/Aif [N/2]+1 < m < min(N,[M/2]) (thusN < N*; recall:

M = max(Nz, N2)),

(© @+gH2gP™Nif[M/2]+1<m<N(thusN < N*)andM — N is even,

d 1+gHP™AN/ZAifN+1<m<[M/2], and

(® (1+gH2g?™Nif max(N+1,[M/2]+1) <m< [(M+N)/2] andM— N iseven.

PROOF. Asin Proposition 10, we may assumethat m > 1, and compute the volume
of solutionsinu € R /1+@™Re and v € R/m?™R, w = vy/D, of the equation (for
some ap, az, b € Rg):

< 1(a+0)— wuiBnN  utBmM ((um*2 - Drz) ) _ ( 1—b+tay b—tay+thg+ 2a3t2)
utBrN 1(a+ ) +wuiBmN b 1-b-th

Consider first the case where m > N. Since the matrix on the right is congruent

mod 7™ to ( 1 b b 1E b), considering the entries (1, 1) and (2, 2) of the equality, we

getthat w = vv/D, v = vym™ N, v3 € R The identities of the entries (1,2) and
(2,1) imply that ut = +1(@™N). If uu = 1(@™N), put ud = 1+ ¢/mw™N. The ma-
trix identity becomes four equations: b = (&' — ¢’)/2 + ¢/Bm™ (always solvable, de-
finesbh), a, = &’ + ¢'B — Bv/Dusul (is solvable precisely when @’ = aw™ € R,
namely m < N,), —bs = @’ + ¢'B + Bv/Dusuu (solvable when m < N;), and 2a’ +
BrrNut(1 + (ut)~2 — 2(ut)* — Dvm?™ ) = 2agm?™. Thus the second and third
equationsaresolvablewhenN < m < Ny ifuu= 1,andwhenN < m< N ifuu= —1.
Hence we are led to consider mintherange N = N* = min(N;,N;) < m < M =
max(Ny, N2). Defining e; € Rby (uu)™t = 1+ 1™ N, the remaining, fourth equa-
tion, takes the form 2a” /B + (2a” /B)e;m™ N + ™ N(e2 — Du?) € wRe, or 28" /B +
" N((e1+a” /By’ —(a” /B’ —Dv?) € w™Re, andfinally (28" /B)(1—(a" /2Byw™N)+
w™N(e2 — Dv?) € w"Re, where e = ¢1 + &’ /B. Note that when uu = —1, a hasto be
replaced by c in these equations.
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We claim that to have a solution, we must have 2m < N + M. Indeed, e2 — Dv? € R
Put Imx = x — X for x € Re. Recall thataa = 1 = cc. ThenIm(a— 1)/(a—c) =
—a'c /(@ —c) € wMRX, hencelm(a’ /B) = mwN-m Im(a’/(a’—c’)) € aV*N-MRX and
our equation will have no solution unlessM + N — m > m. For such mwe may regard
a’/Baslyingin R, rather then Re. There are two subcases.

If N<m<M/2 thusm< M — m, our equation reducesto 2 — Dv? € wNR. Then
g, v1 € W D/AR thus (ul) ™t = 1+(c —a" /Bym™ N € 1+amM N+ M NN+D/2AR
L et us compute the number of solutions u, v. First, note that for 0 < k < mwe have

_[RE 1 1+7"Re]
T [R<:1+m"R]
=@1+qHg"- g™k

#Huec RS /1+m"Re ; ul € 1+ R} [7*R: "R

Hence
#{U c RE/]."‘TFmRE : (UG)71 c 1+aﬂMfN+,n.rrkN+[(N+1)/2] R} — (1+q71)qm+Nf[(N+1)/2].
Further,

#{v e R/T('sz; v=um"™N v € 7dlN/AR thusy € M NHND/2 R}

is g™N-IN+1)/2 Hence the number of solutionsis (1 + q~1)P™N-2AMN+D/2] | a5 asserted
in case (d) of the proposition.

If M—m< m, thus2N, M < 2m < M + N, we need to solve the equation £> — Dv? €
amMiN=2m 4 gNR = ogM™N-2(1 + x2™MR). Since F(v/D) /F is unramified, there is
asolution precisely when M + N is even. Put ¢ = r2M*N-Mzy ) = qpzMN-my,, 5o
we need to solve £3 — Dv3 € 1+ 2™ MR, Namely we count the pairs

{UeR/1+m™Re ; v =vym™ N = M=N/2y, € R/TZ"R)}

suchthat (UU) ™ = 1+ ;@™ N = 1+ (e — a’/Bym™ N + 7M=N/2¢, and £ — Do3 €
1+m2™MR Therelation £3 — Dv3 € 1+w*™ MR can be replaced by £3 — Dv3 € R*
if we multiply the cardinality by [R* : 1+ 7™ MR]~1, and it can bereplaced by e, € R
and vy € Rif we further multiply by the quotient [Re : RX] of the volume of Re by that
of RX. Then the number of uis ([RZ : 1+w™Re] /[R* : 1+ w"R])[wM-N/2R : ™R,
and the number of v is [T™~N/?R : 7t2MR]. The product is

(Rg : 1+m"Re] /[R* : 1+ w™R])[m™N/2R: m"R]
[mMN/2R: @2 R][Re : RE[R* : 1+ w2 MR
= (L +qhgn- g M2 N2 (1 g2y (1 g ™)
= (1+q Y22V,
This completes case (e) of the proposition.

It remains to consider 1 < m < N. ThenwN = O(@™), thusa — ¢’ = O(m™M).
Considering the entries (1, 1) and (2, 2) of our matrix identity, we get (a+c)/2 = 1(w™)
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(sinceb = O(w™). Thena + ¢’ = O(@™), anda” = amw ™, ¢’ = ™™ € Re.
Denoting b’ = bmr™™, N’ = N — m, we see that the first three equations are always
solvable: b’ = utBmN', &, = (@ +¢”)/2+ uBaN (1 —w), —bg = (@’ +c")/2+
uuBsrY (1+w) (these equationssimply defineb, ay, bs). Theremaining equationisa’+¢’+
3(a/—c)ut(1+(ut)2—Duv?) = 2agm?™. When2m < N, N* every u, v makesasolution.
This completes case (a) of the proposition. If N* < N, 2m, then there are no solutions.

It remains to deal with the casewhere N < N* and N < 2m. Put ¢ = (uu)~* € R,
x = (@ +c)/(@ — c). We have to solve the equation €2 + 1 — Dv? + 2ex € 2™ NRe.
Note that Im(x) € mN*™M2"NRX. Since N < N*, we have N = min(Ny, Np), and 2m <
2N < N; +N, = N+ M. Hencelm(x) € 7™ NRg, and we may assumethat x € R. Thus
we need to solve (¢ +x)2 — Dv? € X2 — 1+m?™ R, for afixedx € wN""NR* C R. Once
we find asolution, in ¢ € R, thene € R*; otherwise ¢ € mR, hence Dv? € 1+ R, but
D ¢ R*2. Notethat x+ 1is2a’ /(& —c’)or2c’ /(@ — ), sox? — 1 =4a'c’ /(@ —¢/)? €
atN2NRx — zM-NRx  We distinguish between two cases.

IfN/2<m<min(N,[M/2]) andN < N*,thenM —N > 2m—N > 0, and we must
have N = N* (thus |x| = 1). Thus we need to count thee = (u)* € —x + ™ [N/AR
andv € w™NIR/m?™R Then #{u € R /1+@™Re ; uu € 1+w™NAR} is
(1 + g Hg™IN/4, while the number of the v is ™[N/, This completes case (b) of the
proposition.

IfM/2 < m<N(L N, thusM — N < 2m— N, we need to solve (¢ +x)?> — Dv? €
amM N + 72NR = amgM-N(1 + 72™MR) (for some o € RX). Thereis a solution
precisely when M — N iseven (asNRE = R*). As noted above, given asolution, ¢ must
bein R*. To compute the volume of solutions, fix measureswith Jre d*“u = Jr« d*eand
d*e = (1 — g H)~1de (thus Sz« d*e = Jgde). Then the volumeis
1 —q g™ /eR; ‘/U€R5<{(UU+ x)? — D12 € amMN(L + ﬁZWMR)D d*udv

u

(1 — o2\ 11 2_ 2 M—N 2m—M

—1—q "1 —qh /56R /ﬂﬁ({s Dv? € T No(L + 7 R)})dedv

M1 2\ _ 1\ —14m —(M—N) 2m—M

=1-qg9)1-ghHtg*q /ZeREé({Nzelﬂ-rW R}) dz.

The last integral ranges only over RX, and there dz/|zZl = (1 — g ?)d*z. Now
Jrx6({z € 1+ w?™MR}) d*zisthe inverse of

[RX : 1+1T2m_MR] — (1_ q—l)qu—M.
Altogether we get (1 — q2)%(1 — g~ 1)~2g*™N-M—2mM — (1 + q~1)22™N, completing
case (c), and the proposition.

An dternative volume computation is as follows. The cardinality of
{(u€e RE/1+m"Re,v € R/m?™R) ; (uu+Xx)? — Dv? € amM N1 + 2™ MR)} is
@+ghHgntimes#{(c € R/1+m"Rv € --) ; (¢ +X)? — Dv? € ---}, and since
e must be in R* to have a solution, this # is equal to #{(¢ € R/mw™R,v € R/m?"R) ;
2 —Dv? € amM N1+ )} Ase = eymMN/2 ¢ = v eM-N/2 thisproduct is

(1+q71)qm'qu(MfN)/Z.qZW(MfN)/Z'VOI{Z c RE ’ NZ c 1+W2WMR} — (1+q71)2q2m+N,
asrequired. -
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PrOPOSITION 14. When p = 0 the orbital integral Jre 1k (97t,g)dgisequal to

q (1+ 2+4[N1/2) ( q)N+N +6(2| N+ N ) 2Nl"'N if N <N
q4 q— 1 1 ' ! ’

in which case N* = N; = N, and to

M+N
q‘r_ll (qq) +6(2 | M — N) 12N+M, ifN < Ny

ProoOF. It sufficesto prove thiswith Ny replaced by N*, asN; < N precisely when
N* < N, inwhich case N* = Ny. If N* < N, j = 0 contributes

2
1+ Y a-adgn- T e,
1<m<min((N/2][N*/2]) g -1

Thej > 0 contributes, whené = 0, thus N + N* is odd, the expression:

_ o’ +q 2+4]N* /2] o
q4_1(1+q )+q_11

whilewhené = 1, thusN + N* is even, the j > 0 contribute to the orbital integral:

Z+ AN 1 qeont/2s N oI
—34_(1(l+q2 4N /2])+ = 1(q1 2IN* /2]+2[N/2] +(q+ DA — (q+ Dg¥AN /2])_
The sum is as stated in the proposition.

If N < N*, thesumis (whenM /2 < N and also whenM /2 > N)

o’ +q 4N/ 202 4m
—— (@ D+1+g°(@ -1 > q
-1 0<m<IN/2]
+@+ghHvA oy g
[N/2]+1§m§[M/2]
+5(2 | M—N)(L+q g > g
[M/2]+1<m<[(M+N)/2]

Gt @A qavan, S0 E
-1 ot — -1
a+ M+N _ 2[M/2]
i 1q NN — g?™/3),

whichis easily seen to bethe expression of the proposition (consider separately the cases
of even (6 = 1) and odd (6 = 0) valuesof M — N). ]
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6. Conclusion. Put ®(t) = )\ 1k(g~tg) dg. In the notations of Proposition 3
for anisotropic tori which split over E, the x-orbital integral is @], (to) = ®(t1) + P(t2) —
D(t3) — D(ty). Thetori Ty = Z(t;) and T, = Z(t2) (Z(t) is the centralizer of t in G)
embed as tori in H. Denote by Ky the maximal compact subgroup H N K of H, by 1k,
its characteristic function in H, choose on H the Haar measure which assigns Ky the
volume 1, introducethe stable orbital integral GD?KH (to) = DM (t)+P"(t,), wheredH(t) =
Jza0\H 1k (h~1th) dh and Z(t) isthe centralizer in H of aregular tin H. It iswell known
(see, e.g., [F1], Proposition 5) that @ (to) = (M@+1)—2)/(@— 1) (whereE/F is
unramified).

REMARK. A proof of the last equality—extracted from Mars' letter mentioned in
the Remark following the proof of Proposition 6—is asfollows. ThusG = GL(V) and
K = Stab(Re), dg on G assignsK thevolume 1, dt on E* assigns RE the volumes 1, and
v € EX —F*. Then fe g Ik(97179) dg/dtis Y« k [K|/IE*NgKg 1k (g 17g). But
E*\G/K isthe set of E*-orbits on the set of all lattices in E. Representativesare the lat-
ticesRe(j), j > 0. Soour sumisthesumof |RZ|/|Re(i)*| = [RE : Re(j)*] overthej >0
such that ¥ € Re(j)*. As[RE : Re(j)*]is1ifj = Oand g™ (qf — 1)/(q — 1)
if j > 0, putting N for the maximum of the j with v € Rg(j)*, the integral equals
(Ma+1)—-2)/(q-Dife=1and (@ -1)/(@-1ife=2(@f = 2. Of
course, theintegral vanishesfor v notin RE. If v = a+ bw € RZ, then N is the order of
b. Note that the stable orbital integral on the unitary group H in two variablesis just the
orbital integral on GL(2).

Put Ag (o) = (—q)~"™ ™. The fundamental lemmais the following.

THEOREM 15.  For aregular to we have Ag y(to) P4, (to) = CD?KH (to).

PrOOF. Note that ®(t;) depends only on Ni, Np, N, so we write ®(t;)) =
©(Ng, N2, N), and so @(t3) = (N, Nz, N3) and ®(ts) = ©(Ng,N,Np). If N = Np < Ny,
D(ty) = D(ts), hence PK(to) = P(ty) — P(tz), and this differenceis

2 No+Ny a+1 npeon
—m(—cﬂ 2N+ (82| No—Ng) — 6(2 | Nl—l—Nz))mq ?,
asrequired.
If N = N; <Ny, D(t2) = P(t3), hence D" (tp) = P(t1) — P(4), and this differenceis
2 Ny+N A+l Npean,
—m(—cﬂ 2+ (5(2 | Nz — Np) — 62 | Nz—l—Nl))mq S
asrequired.

If N1 = Np < N, @%(tp) isthe sum of

AN+N
q+1 (1+q2+4[N1/2])_ ( q) ! +5(2| N+N1)q+1 N+2N;

¢(t1):—q4_1 q—1 quq ,

__qt1 orany /2y , (DN g+l neon,
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and
+1
—dO(t3) — DP(ty) = _Zh(qA[Nlﬁ) /2 _ ),
Thissumis-i?é”l1 + 22 as reqired.
Since the two minimal numbersamong Ny, Np, N are equal, we are done. .

We now turn to the ramified case. It remainsto deal with regular t’ in the torus Ty, C
H’ ¢ G’ of Proposition 3.

PROPOSITION 16. The integral iy /iy, 1, (h*t’h) dh of Proposition 5 is equal to
@+ 1g*if 0 < m < min([N/2],[N2/2]), and to (q + )g"*™ if N < N, and
[N/2] < m< N. Heret’ = diag(zs—l(g ﬁ;‘),l),&?: o —m@ =1,3 = Br" and
6 = 61+ 62¢/D, 6 = Doym™™2, and B, Dy, 61, @ € R*.

PROOF.  Weneed to computethe number of ¢ € Re /m™Re, anda € RE /1+m1*2"Re,

for which

(5 B0 )@ B (R D)
— 8 a)\C ua a2fu—wpcdu o +mpB(ac — ac)

liesin Hy,. Using the description of H/,, in Proposition 4, thisis equivalent to solving two
equations: |f(@® — mc?)| < |m|™, whichmeans0 < m < N sincea € R, ¢ € Re,
B € wNR* (note that there is no constraint on u € E?, and the volume of E* is 1),
and |a + m3(a — ac) — 6| < |=['*2™. Replacing ¢ by c/a, the equations simplify to
aa—mcc/aa= 1, and|a+m3(C—c)—6| < |w[l*2™. Thelast equationimplies—é1 €
2R Sincea? = 1+B2wH* N, and 1 = 66 = 62— D63, we concludethat 62 € T1*2"R,
hence§, = Domrt*™ € " ™R and m < N,. Putc = ¢; + Goi, i = v/D,C— ¢ = —2icy,
c; = Coym™ (C, € RX). Then our equation becomes —2BC,mtN*™ — Dot € 12™R.

We shall now determine the number of c. If 0 < m < [N/2], then 2m < N, hence
2m < N (if there are solutions to our equation), namely m < [N/2], and any (C;
and) c is a solution. The number of cis #Re/m™Re = g?™. If [N/2] < m < N, thus
m < N < 2m, we consider two subcases. If m < [N,/2], or 2m < Ny, then N < N,
and there are solutions C, precisely whenn, > 2m — N, and any C; isasolution. Then
c2 = Com™ € ™ NR/mMR ~ R/mN""R has g™ possibilities, ¢; € R/m™Rhasq™,
and#c = V. If m > [N2/2], or N, < 2m, there are solutions only when n, = N, — N
(n, > 0impliesN < Njy), and the solutions are given by C, € —D2/28+w2m‘N2R, and
again c, is determined modulo " ?™ MR /mt"R = R/mwN"R.

Givenc € Re/m"Re, weneedto solveina € RZ /1 +*2MRe the equation (ad)? —
aa+1/4 = 1/4 — acc, namely (aa— 1/2)2 = (1 — 2mcc+---)% /4, 0raa = 1/2
+ (1 — 2mcc + - --) /2. There are no solutions for the negative sign, and there exists a
solution for the positive sign. Thenumber of a € RX /1+7*2"Re with aa € v+m1*2"R
(U c Rx) iS#(RE /1 + Trl+2mRE)/#(RX/1 + 1Tl+2mR) — ((q2 _ 1)q2A2m/(q _ 1)q2m) —
(q+ 1)g°™, as asserted. .
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PrROPOSITION 17. Thelast orbital integral of Proposition 5, of 1x at aregular t =
gt'g~! € G, wheret’ € Ty CH' Cc G, is

(@™ — 1) /(0 + 1)(G — 1)) + (N < NP2 — g*V/A*2) /(g — 2).
Heremin = min([N/2],[N./2]), and N, N, are defined in Proposition 16.

ProOF. Theintegral isequal to

> @D HIN<N) > (q+ Dt

0<m<min [N/2]<m<N

which is equal to the asserted expressions. ]

Ther-orbital integral @7, (t) of 1« onthe stable conjugacy classof aregulart € Ty C
H C Gisthedifference of ®(t) = fr,\c 1k (x1tx) dx and @' (t) = Jzsn\6 1k (x1t"X) dx,
wheret” = gt'g™* € Gisstably conjugatetot (andt’ € Ty ¢ H c G' = g 'Gg).
The stable conjugacy class of t in H consists of a single conjugacy class, and it is well
known (see Remark before Theorem 15) that GD?KH t) = oM = @ -1)/(q- 1),
where N is defined in Proposition 16. The transfer factor Ag (t) is (—g)™", where if
t=(t,1) € (EL)* x E}, thenisdefined by t; — 1 € =l RX .

THEOREM 18. For aregular t we have Ag ()5, (1) = CD?KH (t).

PROOF. Sincet = (a + B4/a)(61 — i62) is (1 + B2 /2 + ... + By/armN) times
(1 + DDZw?N2 + ... — \/DD,m**™2), namely 1 + BaN*Y/2 — /DDm*™2 + ... we
have that n = min(1 + 2N, 2 + 2N). If N < N, we then need to show that @] (t) =
—g"* Nt — 1)/(@ — 1). When N < N, we have to show that @} (t) =
g?*N2(gN*1 — 1) /(g — 1). Proposition 11 gives an explicit expression for ®(t). Proposi-
tion 17 gives an explicit expression for @'(t). The difference, ®f (t), is easily seento be
equal to ®H(t). .

ReEMARK. Reference[FH] ismissingin [F1]; it is supplied below.
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