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ON A LOCALIZATION PROPERTY
OF WAVELET COEFFICIENTS FOR
PROCESSES WITH STATIONARY
INCREMENTS, AND APPLICATIONS.
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Abstract

We formulate a localization property of wavelet coefficients for processes with stationary
increments, in the estimation problem associated with the processes. A general setting
for the estimation is adopted and examples that fit this setting are given. An evaluation
of wavelet coefficient decay with respect to shift k ∈ N is explicitly derived (only the
asymptotic behavior, for large k, was previously known). It is this evaluation that makes
it possible to establish the localization property of the wavelet coefficients. In doing
so, it turns out that the theory of positive-definite functions plays an important role. As
applications, we show that, in the wavelet coefficient domain, estimators that use a simple
moment method are nearly as good as maximum likelihood estimators. Moreover, even
though the underlying process is long-range dependent and process domain estimates
imply the validity of a noncentral limit theorem, for the wavelet coefficient domain
estimates we always obtain a central limit theorem with a small prescribed error.
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1. Introduction

Let us observe a process XT = {Xt, 0 ≤ t ≤ T } with stationary increments, and pose
the problem of estimating a parameter associated with the process. In this paper, we study the
estimation in the wavelet coefficient domain and show a regularization of limit theorems through
a localization property of wavelet coefficients, in a sense to be explained below. Therefore,
we consider those cases in which the original problems of process domain estimation are well
translated into the corresponding problems of wavelet coefficient domain estimation.

Throughout the paper, we assume that XT is a real-valued process with mean 0 and finite
variance, as well as stationary increments. Let ψ be a real-valued wavelet on R+ satisfying the
following assumptions:

(ψ1) ψ has compact support on W = [0, w], for some real w ≥ 1, and is bounded;
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Localization of wavelet coefficients 939

(ψ2) ψ has γ th-order vanishing moment for some γ ∈ N, i.e.∫
R+
t rψ(t) dt = 0, r = 0, 1, . . . , γ − 1.

For each observation length T > 0 of sample paths, let ST = {sTj , j = J0 + 1, . . . , J } with
sTj = {sj (k), k = 1, . . . , NT,j } be the wavelet coefficient of XT , defined by

sj (k) =
∫ 2j (w+k)

2j k
ψj,k(t)Xt dt,

where ψj,k(t) = 2−j/2ψ(2−j t − k) and J0 and J are integers such that J0 + 1 ≤ J . Here,
NT,j = max{k : 2j (w+ k) ≤ T } = �2−j T −w� is the maximum number of available wavelet
coefficients at scale j up to t = T . We remark that ifXT is a process with stationary increments
and mean 0, then, for each j , {sj (k), k ∈ N} is stationary with respect to k and has mean 0.
We also remark that the class of stationary-increment processes contains the class of stationary
processes.

The setting of the problem in this paper is as follows. Let a parameter (or statistic)
ξ ∈ R that we desire to estimate be written as a functional expectation ξ = E[f̃ (Xt )] or
ξ = limt→∞ E[f̃ (Xt )], for some function f̃ : R → R. A basic estimator for ξ may be
T −1

∫ T
0 f̃ (Xt ) dt , which is considered to be a functional f̃ (XT ) of XT . We then assume

that ξ can also be written as ξ = f (θ) for a given f : R
J → R, J = J − J0, and is estimated

consistently by ξ̂T = f (θ̂T ):

f (θ̂T ) → f (θ) almost surely (a.s.) as T → ∞.

Here θ̂T = (θ̂T ,J0+1, . . . , θ̂T ,J ) ∈ R
J converges to θ = (θJ0+1, . . . , θJ ) ∈ R

J:

θ̂T → θ a.s. as T → ∞.

Here θj ∈ R, j = J0 + 1, . . . , J , is assumed to be a functional expectation of the wavelet
coefficient at scale j , meaning that θj = E[g(sj (1))] for some g : R → R. As its estimator
θ̂T ,j , j = J0 +1, . . . , J , we take in particular the one given by the method of moments, namely

θ̂T ,j = 1

NT,j

NT,j∑
k=1

g(sj (k)), (1)

which can be considered a functional g(sTj ) of sTj . Thus, θ̂T = {g(sTj ), j = J0 + 1, . . . , J }.
Each θj is considered to be a scale component of the desired statistic, and f sums up to produce
the desired statistic.

In this setting, we use the terminology process domain estimator f̃ (XT ) and wavelet
coefficient domain estimator f ({g(sTj )}) = f ◦ g(ST ); we do so throughout the paper.

The following examples give cases in which we have this form of estimate.

Example 1. (Estimation of variance and covariance.) For a stationary process XT , let us
consider the problem of estimating the variance σ 2 = E[X2

0] and covariance r(τ ) = E[XτX0],
τ ∈ [0, T ]. From the Fourier representation of Xt and resolution of unity [17, Theorem 1.1,
p. 332], i.e.

∑
j∈Z

|ψ̂(2j λ)|2 := 1, where ψ is the Fourier transform of ψ , we have

σ 2 =
∑
j∈Z

2−j θj = f (θ), θj = σ 2
j := E[s2

j (0)].
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In this case, g(x) = x2, x ∈ R. On the other hand, from Lemma 1, below, we have

r(τ ) = lim
T→∞

1

T

∫ T

0
XtXt+τ dt = lim

T→∞

JT∑
j=−∞

2−j

NT,j

NT,j∑
k=1

s
(X)
j (k)s

(X̃)
j (k)

= lim
T→∞

JT∑
j=−∞

2−j θ̂T ,j (τ ) = lim
T→∞ f (θ̂T (τ )) with g(x, y) = xy, x, y ∈ R,

where X̃t = Xt+τ , s(X)j (k) is the wavelet coefficient of Xt , and JT = max{j ∈ Z : NT,j ≥ 1}.
In this case,

θj = θj (τ ) = E[s(X)j (0)s(X̃)j (0)] = lim
T→∞N

−1
T ,j

NT,j∑
k=1

g(s
(X)
j (k), s

(X̃)
j (k)) a.s.

and r(τ ) = f (θ(τ )) = ∑
j∈Z

2−j θj (τ ).

Lemma 1. Let XT and YT be ergodic stationary processes with finite variances and let

s
(XT )
j (k) and s

(Y T )
j (k)

be their wavelet coefficients. Then

lim
T→∞

1

T

∫ T

0
XtYt dt = lim

T→∞

JT∑
j=−∞

2−j

NT,j

NT,j∑
k=1

s
(XT )
j (k)s

(Y T )
j (k).

Example 2. (Estimation of power spectrum.) A way of estimating the power spectrum h(λ) of
a stationary process XT , for some λ0 ∈ R, is by using the smoothed periodogram. Then, as is
well known (see, e.g. [21, pp. 432–449]), the smoothed periodogram, written in the equivalent
form

IT (λ0) =
∫ T

−T
eiλ0τ r̂T (τ ) dτ, r̂T (τ ) = KT (τ)r̂

0
T (τ ),

consistently estimates h(λ0) as T → ∞. HereKT is an appropriate δ-approximating sequence
in the frequency domain and r̂0

T (τ ) = T −1
∫ T

0 XtXt+τ dt . Let

θ̂0
T ,j (τ ) = N−1

T ,j

NT,j∑
k=1

s
(X)
j (k)s

(X̃)
j (k) and θ0

j (τ ) = E[s(X)j (0)s(X̃)j (0)].

Since

θ̂T ,j (λ) =
∫ T

−T
eiλτKT (τ)θ̂

0
T ,j (τ ) dτ →

∫
R

eiτλθ0
j (τ ) dτ = θj (λ) a.s. as T → ∞,

we may take

f (θ̂T (λ0)) =
JT∑

j=−∞
2−j θ̂T ,j (λ0) → h(λ0) =

∑
j∈Z

2−j θj (λ0) = f (θ(λ0)) a.s.,

according to the arguments of Example 1.
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Example 3. (Estimation of Hermite expansion coefficients.) When two stationary Gaussian
processes XT and YT are observed, let us consider the problem of estimating a functional
f : R → R in the model Yt = f (Xt ) by estimating the Hermite expansion coefficients {cl} of
f , which are such that

f (x) =
∑
l∈N

clHl(x) in L2
(

R, e−x2/2 dx√
2π

)
.

Let v2
l = E[H 2

l (X0)] and v2
l,j = E[(s(Hl(X))j (0))2]. Since E[Hl(Xt )Yt ] = clv

2
l , we have

cl =
∑
j∈Z

2−j E[s(Hl(X))j (0)s(Y )j (0)]∑
j∈Z

2−j v2
l,j

=
∑
j∈Z

2−j θ(1)j (l)∑
j∈Z

2−j θ(2)j (l)
= f (θ(l)),

according to the arguments of Example 1. Here θ(l) = (θ
(1)
j (l), θ

(2)
j (l)),

θ
(1)
j (l) = E[s(Hl(X))j (0)s(Y )j (0)],

and θ(2)j (l) = v2
l,j , with g(x, y) = (xy, x2).

Example 4. (Estimation of Hurst index of fractional Brownian motion.) Let us consider
estimating the Hurst index H , 0 < H < 1, of fractional Brownian motion. A wavelet-based
method for the estimation was proposed in [2] and [1]. The estimator, denoted by ĤT , is given
by

ĤT =
J∑

j=J0+1

aJ,J0(j)

[
log2 θ̂T ,j − J−1

J∑
j=J0+1

log2 θ̂T ,j

]
− 1

2
= f (θ̂T ),

where aJ,J0(j), j = J0 + 1, . . . , J , are the linear least-squares regression coefficients given by

aJ,J0(j) = xj − x̄J,J0

2
∑J
j=J0+1(xj − x̄J,J0)

2

with xj = j and x̄J,J0 = J−1 ∑J
j=J0+1 xj , and g(x) = x2, x ∈ R. In this case, θj = σ 2

j and
the trueH satisfies the above equation with θ̂T ,j replaced by θj . The numbers J0 and J can be
finite in this example.

Example 5. (Estimation of invariant distributions.) For a given stationary ergodic process
XT , let us consider the problem of estimating the invariant distribution F on R. Let 1S(x)
be the indicator function: 1S(x) = 1 if x ∈ S and 1S(x) = 0 otherwise. For a ≤ b, let
c = {cj,k, k ∈ N, j ∈ Z} ⊂ R be a sequence such that 1[a,b](x) = ∑

j∈Z

∑
k∈N

cj,kψj,k(x) in

L2(R). Then we can write

f (θ̂T (c)) =
∑
j≤JT

NT,j∑
k=1

cj,kθ̂T ,j,k → F({a ≤ x ≤ b}) :=
∑
j∈Z

∑
k∈Z

cj,kθj,k = f (θ(c)),

where

θ̂T ,j,k = 1

T

∫ T

0
ψj,k(t) 1[a,b](Xt ) dt →

∫ b

a

ψj,k(x) dF(x) = θj,k as T → ∞.
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In this and a companion paper (to appear), we formulate localization properties of the wavelet
coefficient ST with respect to k and j and then propose several applications. In particular, the
localization properties provide us with the regularization of certain irregularities (like noncentral
limit theorems) in limit theorems. Even if the underlying process is long-range dependent, its
wavelet coefficient becomes short-range dependent. As a result, wavelet coefficient domain
estimates always satisfy a central limit theorem (CLT). We describe this circumstance below.

In studying the asymptotics of estimates associated with processes having stationary incre-
ments, sometimes the limit theorem one obtains is not a CLT but a noncentral limit theorem
(NCLT), according to the strength of the long-range dependence. Let {Xt } be a stationary-
increment Gaussian process with mean increment 0, and let {Yt } be the increment process
Yt = Xt+1 − Xt . We assume ergodicity, with rτ = E[Ys+τ Ys] = O(τ−D) as τ → ∞, for
some 0 < D < 1. Let the parameter to be estimated have the form A−1

N

∑N
n=1 h(Yn), for

some function h of Hermite rank p ≥ 1. Here AN ↑ ∞ is an appropriate normalization. It
is well known (see, e.g. [4], [9], [11], and [23]) that limit theorems hold, with a CLT or an
NCLT according to whether pD ≥ 1 or pD < 1, respectively. For example, for estimates of
the Hurst index of fractional Brownian motion by variance-type estimators (p = 2), we have
D = 2(H − 1), meaning that pD = 4(H − 1). Thus, if 3

4 < H < 1 then the variance-type
estimators result in an NCLT.

However, in wavelet coefficient domain estimates,

rj (l) = E[sj (l)sj (0)] = O(l−2(H−γ ))

for each j ; hence, the estimator f (θ̂T ), with j appropriately truncated to satisfy J0+1 ≤ j ≤ J ,
obeys the CLT with normalization AN = √

N only if the vanishing moment γ is sufficiently
large. The truncation involves a certain error in estimation, but this error can be made as small
as desired by letting J0 be smaller and J larger. If the error is sufficiently small, we can consider
only j , J0 +1 ≤ j ≤ J , with a CLT as limit theorem and with scale components of short-range
dependence and faster convergence (the larger j is, the slower the convergence becomes, since
the number of summands in (1) decreases as NT,j ∼ 2−j T ).

The paper is organized as follows. In Sections 2 and 3 all results are presented. The proofs
of all our propositions and theorems are given in Section 4, and Section 5 contains the proofs
of all our lemmas. Throughout, N = 1, 2, . . . and N0 = {0} ∪ N, while ∂λ denotes ordinary or
distributional derivative with respect to λ.

2. Localization with respect to shifts, and applications

Before stating our theorems, we put forward the following proposition, which gives a general
criterion concerning a ‘localization property’ of stationary sequences. This proposition is used
to show the localization property of sTj with respect to k, for each j .

Proposition 1. Let YN = {Yk, k = 1, . . . , N} be a real-valued stationary sequence and �N
its covariance matrix, i.e. (�N)k,k′ = r|k−k′| := cov[Yk, Yk′ ], 1 ≤ k, k′ ≤ N . If there exists a
real ζ > 1 such that ∑

k∈N
r2
k

r2
0

≤ 1

ζ 2 (2)

then the following inequality holds in the sense of positive definiteness:

C∗�N ≤ �N ≤ C∗�N for all N ∈ N. (3)
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Here C∗ = (ζ − 1)/ζ , C∗ = (ζ + 1)/ζ , and �N is the N ×N matrix diag(�N), i.e.

(�N)k,k′ =
{
r0 if k = k′,
0 if k �= k′.

We are interested in the situation where ζ is much larger than 1, in which case the bound
in (3) is tighter and �N is considered to be ‘close’ to the diagonal matrix �N , or, equivalently,
YN is ‘close’ to an independent sequence.

We will say that a stationary sequence YN of the type described in Proposition 1 satisfies the
localization property.

Now let XT be a real-valued stationary-increment process with mean 0 and let

sTj = {sj (k), k = 1, . . . , NT,j }
be the set of its wavelet coefficients at scale j . Let rj (k) := cov[sj (k), sj (0)]. Proposition 1
can be applied to sTj as follows. We first state the result simply for the case in which {Xt } is
self-similar as well, in order to make the essence clear, and then for the case in which XT is
not necessarily self-similar but has a regularly varying covariance function. Let var[X1] = 1
for the sake of simplicity. In the following theorem about self-similar stationary-increment
processes, the covariance ofXT is then cov[Xs,Xt ] = 1

2 [s2H + t2H − |s − t |2H ] for someH ,
0 < H < 1 (see, e.g. [12, Theorems 1.3.1 and 3.1.1]).

Theorem 1. Let XT be a stationary-increment process with H -self-similarity. If γ ≥ 2 then,
for each j , rj (k) satisfies

rj (k)

rj (0)
≤ (1 + k2)−(γ−1) for all k ∈ N (4)

and thus satisfies (2) with rk replaced by rj (k).

If we use the fact that (1 + k2)−2(γ−1) ≤ k−4(γ−1) for k ≥ 4, then
∑
k∈N

r2
j (k)/r

2
j (0)

satisfies ∑
k∈N

r2
j (k)

r2
j (0)

≤
(

1

3

)2γ−3(4

5

)2(γ−1)

+ 1

4γ − 5

(
1

3

)4γ−5

.

If we denote the right-hand side by ζ−2, we have values of ζ for γ = 2, 3, 4, namely
2.11, 8.10, and 30.4, respectively. Accordingly, (C∗, C∗) takes the values (0.525, 1.48),
(0.877, 1.12), and (0.967, 1.03), respectively. Therefore, from the localization point of view,
ψ may be hoped to have γ ≥ 3.

We say that ST has the localization property with respect to shift k if (3) holds for each j
(ζ does not depend on j for those XT with self-similarity as in Theorem 1, but it depends on j
in general). We call the property k-localization for brevity.

Remark 1. In [10], [14], and [24], the asymptotic decay of the wavelet coefficients of fractional
Brownian motion, for 0 < H < 1, was evaluated and found to obey

rj (k) = O(k−2(γ−H)) as k → ∞. (5)

For γ ≥ 1, this decay is faster than that in (4). However, this is just an asymptotic evaluation
and does not imply the satisfaction of (2).
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Now consider the case in whichXT is a process with a regularly varying covariance function.
A function u : R+ → (0,∞) is said to be ρ-regularly varying [8, p. 18], ρ ∈ R, if

u(ax)

u(a)
→ xρ, x ∈ R+, as a → ∞.

If u is regularly varying then it must be of the form u(x) = xρ
(x), where 
 : R+ → (0,∞)

is a slowly varying function, i.e. one that satisfies 
(ax)/
(a) → 1 as a → ∞. Examples of
regularly varying functions include the fractional powers and rational functions. Also, a typical
example of a slowly varying function is given by the logarithm.

In the next theorem, we assume that the covariance rXτ = E[XsXs+τ ] is 2H -regularly
varying, in the sense that

rXaτ

rXa
→ τ 2H as a → ∞ or rXτ = τ 2H
(τ).

This condition is often used by authors in relation to limit theorems of stochastic processes
[3], [18], [20], [23]. Here, the choice ρ = 2H , 0 < H < 1, is suggested by the form of the
variances of self-similar processes. It will turn out that this form is well suited for the argument
below.

Theorem 2. Let XT be a stationary-increment process with a regularly varying covariance
function. Assume that there exists an absolutely continuous Radon measure µ ≡ µH,
,
µ : B((0,∞)) → R+, where B denotes a Borel σ -algebra, such that

E[(X(τ)−X(0))2] =
∫
(0,∞)

(1 − e−λτ 2
) dµ(λ). (6)

Let us denote the density of µ by h, i.e. dµ(λ) = h(λ) dλ, where dλ is the Lebesgue measure
on (0,∞), and let h satisfy the growth condition

h(λ) =
⎧⎨
⎩
O(λ−β) as λ → ∞, with β > 1,

O(λ−β0) as λ ↓ 0, with β0 < 2,
(7)

and the differential relation

3h′(λ)+ 2h′′(λ) ≥ 0, λ ∈ (0,∞). (8)

If γ ≥ 2 then the same assertion holds as in Theorem 1.

Remark 2. Since E[XsXt ] = 1
2 {E[X2

s ] + E[X2
t ] − E[(X|s−t | − X0)

2]} and E[XsXt ] is a
positive-definite kernel, we find that E[(X|s−t | −X0)

2] is a negative-definite kernel (see [6] for
the definition of a negative-definite kernel). On the other hand,�(s, t) = (s− t)2 is a negative-
definite kernel [6, Section 3.1.22]. Hence, (6) is equivalent to V (s, t) := E[(X|s−t | − X0)

2]
being of the form V = ϕ ◦�, with ϕ(z) = ∫ ∞

0 (1 − e−λz)h(λ) dλ. We remark that a large class
of negative-definite kernels can be obtained using ϕ [6, p. 77] and, thus, that (6) is not too
restrictive.
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Next, as an application of k-localization, we point out that, in the wavelet coefficient domain,
the maximum likelihood estimator (MLE) of θ is ‘close’ to the estimator given by the simple
moment method. Logically, this is a formulation of the localization for a functional h(YN)
through the localization for YN itself. Here the specific functional h(y) is the score function

̇(θ, y) = ∂θ
(θ, y) for y ∈ R

N , where 
 is the log-likelihood.
In the sequel, the stationary processes YN and stationary-increment processes XT are

assumed to be Gaussian. Thus, YN ∼ N (0,�N). We consider the estimator θ̂MM
N ≡ θ̂MM

N (YN)

of θ = E[g(Y0)] for a general measurable function g : R → R using the moment method, that
is

θ̂MM
N = 1

N

N∑
k=1

g(YN(k)),

as well as the MLE θ̂∗
�N

= θ̂∗
�N
(YN), and show that var[θ̂MM

N ] is asymptotically almost as small
as var[θ̂∗

�N
]. The log-likelihood function 
�N (θ) for YN is given by


�N (θ) = − 1
2N log 2π − 1

2 log |�N | − 1
2Y�

N�−1
N YN.

On the other hand, for the sake of comparison, let us consider the random vector

ỸN = {Ỹk, k = 1, . . . , N} ∼ N (0,�N)

and the MLE θ̂∗
�N

= θ̂�N
(ỸN) associated with the likelihood 
�N

(θ) given by


�N
(θ) = − 1

2N log 2π − 1
2 log |�N | − 1

2 Ỹ�
N�−1

N ỸN.

As is well known, the MLE θ̂∗
�N

is given by the moment method:

θ̂∗
�N

= 1

N

N∑
k=1

g(ỸN (k)).

Now consider the case in which the CLT holds for the first two estimators, θ̂MM
�N

and θ̂∗
�N

:
respectively,

√
N(θ̂MM

�N
− θ)

w−→ N (0, v2
�(θ)) and

√
N(θ̂∗

�N
− θ)

w−→ N (0,�−1
� (θ))

(in the sense of weak convergence) as N → ∞, where ��(θ) = limN→∞ var[
̇�N (θ)] and
v2
�(θ)) > 0. Since the components of ỸN are independent and identically distributed and have

finite variance, the CLT for θ̂∗
�N

follows automatically, meaning that

√
N(θ̂∗

�N
− θ)

w−→ N (0,�−1
� (θ)),

with ��(θ) = limN→∞ var[
̇�N
(θ)].

In Proposition 2, we give separate evaluations of v2
�(θ) using �−1

� (θ) and �−1
� (θ). Both

evaluations are of interest. The latter is done using the former, via

v2
�(θ)

�−1
� (θ)

= �−1
� (θ)

�−1
� (θ)

· v
2
�(θ)

�−1
� (θ)

. (9)
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By the Cramér–Rao lower bound (see, e.g. [13]), we have

�−1
� (θ) ≤ v2

�(θ) (10)

in general.
We recall that if var[g(Y0)] < ∞, theng admits the Hermite expansiong(x) = ∑

l≥pclHl(x)

in L2(R, e−x2/2dx/
√

2π), for some Hermite rank p ≥ 1. Let η be the power spectral density
of YN , meaning that, for rk = cov[YN(k), YN(0)], we have

rk = 1

2π

∫ π

−π
eikξ η(ξ) dξ.

Proposition 2. Assume that YN is Gaussian and that var[g(Y0)] < ∞ for a g with Hermite
rank p ≥ 1.

(i) If there exists a real ζp > 1 such that∑
k∈N

r
2p
k

r
2p
0

≤ 1

ζ 2
p

(11)

and if rk = O(k−D) as k → ∞ for a realD > 2/p, then the following inequality holds, where
Cp∗ = (ζp − 1)/ζp and C∗

p = (ζp + 1)/ζp:

Cp∗�−1
� (θ) ≤ v2

�(θ) ≤ C∗
p�−1

� (θ). (12)

(ii) If (11) holds with p = 1 then the following inequality holds:

v2
�(θ) ≤ C�/�C

∗
p�−1

� (θ). (13)

Here C�/� , given by

C�/� = �−1
� (θ)

�−1
� (θ)

=
{

1

2π

∫ π

−π
η(ξ) dξ

}{
1

2π

∫ π

−π
1

η(ξ)
dξ

}
,

satisfies 1 ≤ C�/� ≤ C−2∗ , assuming that 1/η(ξ) is integrable on [−π, π ].
Thus, as (12) and (13) show, if the parameter ζp > 1 can be made sufficiently large then the

estimators given by the moment method perform nearly as well as the MLE. This is remarkable,
since MLEs require theoretical and computational hardness in solving likelihood equations
exactly or even approximately, whereas the moment method does not.

For the lower bound of v2
�(θ) corresponding to (13), we remark that ifCp∗C�/� ≥ 1 then we

have v2
�(θ) ≥ C�/�Cp∗� −1

� (θ) as well. However, the case of Cp∗C�/� ≤ 1 is void because
of (10). The criterion for Cp∗C�/� ≥ 1 is not clear.

Proposition 2 immediately applies to the wavelet coefficients sTj . As is well known, the
MLE for f (θ) is given by f (θ̂∗

N) (see, e.g. [19]); in particular, θ̂∗
N = (θ̂∗

N,J0+1, . . . , θ̂
∗
N,J ), with

θ̂∗
N,j an MLE for each j = J0 + 1, . . . , J . Thus, we have only to consider the MLE for an

arbitrarily fixed j below.
By setting YN = sTj , rk = rj (k), and N = NT,j , we have the following corollary, which is

an easy consequence of Theorem 2 and Proposition 2 except for the relation of p, H , and γ .
We remark that the spectral density ηj of sj is such that

rj (k) = 2j

2π

∫ 2−j π

−2−j π
ei2j kξ ηj (ξ) dξ.
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Corollary 1. Let XT be Gaussian, have stationary increments, and have a 2H -regularly
varying covariance function. Suppose that var[g(X0)] < ∞ for a g with Hermite rank p ≥ 1,
and thatXT satisfies the assumptions of Theorem 2. If γ ≥ 2, then we have the same conclusion
as in Proposition 2, with YN and η(ξ) replaced by sTj and ηj (2j ξ), respectively.

3. Central limit theorem for θ̂T and f (θ̂T )

Now let us consider the central limit theorem for θ̂T and f (θ̂T ) using multiple scales j =
J0 + 1, . . . , J simultaneously for integers J0 + 1 ≤ J . Let us assume that {Xt } is Gaussian
and that E[g(X0)] = 0 and var[g(X0)] < ∞. Thus, g has Hermite rank p for some p ≥ 1 and
a Hermite expansion of the form g(x) = ∑

n≥p clHl(x) in L2(R, e−x2/2dx/
√

2π). Here, we
assume the covariance function rXτ := cov[X0, Xτ ] to be smoothly varying, which property
is a little stronger than the regular variation one. A function ϕ : R+ → (0,∞) of ρ-regular
variation is said to be smoothly varying (or ρ-smoothly varying) [8, Section 1.8.1] if

xi∂iϕ(x)

ϕ(x)
→

i∏
ν=0

(ρ − ν) as x → ∞, i ∈ N.

Theorem 3. LetXT be a stationary-increment process with a 2H -smoothly varying covariance
function. If γ ≥ 2 then √

NT,J (θ̂T − θ)
w−→ N (0,�J ). (14)

The (j, j ′)th component of �J , with j ≤ j ′, is given by

(�J )j,j ′ = 1

dj

∑
ν∈Z

rj,j ′(ν), rj,j ′(ν) = cov[g(sj (k)), g(sj ′(k′))]
∣∣∣
k−2j ′−j k′=ν, (15)

or

(�J )j,j ′ =
∑
ν∈Z

r
(Y )

j,j ′(ν), r
(Y )

j,j ′(ν) = cov[Yj (n), Yj ′(n′)]
∣∣∣
n−n′=ν, (16)

where dj = 2J−j and Yj (n) = d−1
j

∑dj
k=1 g(sj (djn+ k)). Moreover, if

∂f := (∂f/∂xJ0+1, . . . , ∂f/∂xJ )
�

is continuous in a neighborhood of θ , then
√
T (f (θ̂T )− f (θ))

w−→ N (0, v2(θ)) as T → ∞, (17)

with v2(θ) = 2J ∂f (θ)��J ∂f (θ).

In order to understand the implications of this CLT in the wavelet coefficient domain, let
us recall the NCLT obtained in the process domain limit theorem and compare them. In
these respective domains, let {Xt } and {Xn} be stationary Gaussian processes with long-range
dependence such that their covariance is regularly varying when the time lag is large. Let AN
be an appropriate normalization, with AN → ∞ as x → ∞. Then the nonlinear functional of
the form

1

AN

∫ Nt

0
f (Xs) ds or

1

AN

�Nt�∑
n=0

f (Xn)
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converges weakly with Skorokhod’s topology in D[0, 1] (the metric space of right-continuous
paths with left limits) to the Hermite processes given by the multiple Wiener–Itô integrals

Zt = Cq

∫ ′

Rp

∫ t

0

p∏
l=1

(s − yj )
−(1+q)/2 1({yj ≤ s}) ds dB(y1) · · · dB(yp),

for some q such that 0 < q < 1/p, where B is the standard Brownian motion,
∫ ′
Rp stands for

the integral over R
p that avoids {yi = yj }, i �= j , 1 is the indicator function, and Cq > 0 is a

constant depending only on q (see [11], [12], [20], and [23]). Thus, the parameter estimation
in the above CLT corresponds to weak convergence of the marginal distribution for t = 1. We
remark that Hermite processes have finite variances.

When we wish to use a statistical procedure like hypothesis testing, an evaluation of per-
centiles of the limit distribution associated with the interval estimation is necessary. In the case
of process domain estimations, we must evaluate the percentile of Zt (or Z1), which might be
difficult.

On the other hand, in the case of a wavelet-based estimation, we can perform the interval
estimation using the above CLT as follows. Let za/2 > 0 be the percentile corresponding to
100a% confidence, for some a, 0 < a < 1, and let us write f ≡ fJ0,J and v2(θ) ≡ v2

J0,J
(θ)

to make the dependence on J and J0 clear. Note that f−∞,∞ corresponds to exact estimation.
Then, according to the CLT,

lim
T→∞ Pr({|fJ0,J (θ̂T )− fJ0,J (θ)| ≤ za/2vJ,J0(θ)T

−1/2}) = 1 − a.

For an arbitrarily small ε > 0, we can choose largeJ and |J0| such that |fJ0,J (θ)−f−∞,∞(θ)| ≤
ε. It then turns out that the truncated estimation satisfies

lim
T→∞ Pr({|fJ0,J (θ̂T )− f−∞,∞(θ)| ≤ ε + za/2vJ,J0(θ)T

−1/2}) ≥ 1 − a. (18)

For a fixed a, if we would like to make ε smaller we have to make J and |J0| larger, but
this makes vJ,J0(θ) larger. Thus, given this trade-off, an appropriate criterion for choosing J
and J0 given ε may be of future interest. We note, however, that if ε is large compared with
za/2vJ,J0(θ)T

−1/2, then taking T larger in (18) is meaningless. Thus, ε should be kept smaller
than the latter term, which means that ε is to be determined as a function of T .

By truncating the scales with J < ∞, we can exclude the lower-frequency components
contained in the original process, which cause long-range dependence and imply an NCLT. As
a result, by allowing a small error ε, we can perform the estimation with only the short-range-
dependent components, and obtain a CLT.

The CLT (14) itself is obtained as a result of a variant of k-localization. Here we use an
asymptotic estimate rather than the evaluation of the form (4); see Remark 3, below.

Lemma 2. For each pair (k, k′), 1 ≤ k ≤ dj , 1 ≤ k′ ≤ dj ′ , we have

E[sj (djn+ k)sj ′(k′)] = O(n−2(γ−H)
(n)) as n → ∞.

There are many known results about limit theorems for functionals of general stationary
Gaussian vectors (see [3], [4], [18], and [20], for example). However, the important point here
is how to adapt the wavelet coefficients to those general results, because (sJ0+1(k), . . . , sJ (k)) is
not a stationary vector sequence with respect to k. See [5] for the case of Hurst index estimation,
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which shows how complicated it is to show the validity of the CLT. We can overcome this
difficulty by reconstructing the wavelet coefficients ST in such a way that the resulting sequence
is a stationary vector and the asymptotic covariance matrix �J is unchanged.

Remark 3. In the case that j ′ > j , it might be possible to consider an expression similar
to (4) as the sufficient condition for Theorem 3, instead of Lemma 2. In the CLT, however, it
is better to have a more precise asymptotic evaluation, as given in Lemma 2. In fact, to obtain
the CLT, it turns out that 2p(γ −H) > 1, i.e. γ > H + 1/2p, is a sufficient condition. Thus,
according to the value of (p, H ), there are cases in which the minimum γ needed for the CLT
to hold is γ = 1. On the other hand, by the evaluation for integer arguments, 2p(γ − 1) > 1,
i.e. γ > 1 + 1/2p, is a sufficient condition irrespective of the value ofH . Thus, with the latter
evaluation we can conclude only that γ = 2 is sufficient for the CLT for all H , 0 < H < 1.

We also note that a covariance of the reduced form (15) or (16) is obtained if γ > H + 1/p.
There are indeed cases in which γ = 1 is sufficient for the CLT to hold but γ = 2 is sufficient
to have a covariance of reduced form. The condition γ ≥ 2 is sufficient for both to hold.

4. Proofs of propositions and theorems

In this section, we give proofs of the propositions and theorems presented above. Proofs of
the lemmas are all given in the next section.

4.1. Proof of Proposition 1

To prove (3), we verify that the determinant of each principal minor of C∗�N − �N and
�N − C∗�N is nonnegative, which is a necessary and sufficient condition for the square
matrices to be nonnegative definite [6, Theorem 3.1.16]. To this end, we follow the induction
procedure. Let gn, n = 1, 2, . . . , N denote the determinant of the n × n principal minor:
gn = |C∗�n − �n|. The elements of C∗�n − �n are

(C∗�n − �n)i,j =
{
r0/ζ if i = j,

−r|i−j | if i �= j.

First, we have g2 = (r0/ζ )
2 − r2

1 . The condition in Proposition 1 implies that g2 ≥ 0. Next,
let us assume that gn ≥ 0 for some n, 2 ≤ n ≤ N − 1. Then C∗�n+1 − �n+1 is of the form

C∗�n+1 − �n+1 =
[
r0/ζ −r�

n

−rn C∗�n − �n

]
,

where rN = (r1, r2, . . . , rN )
�. Let xn ∈ R

n be the solution of the linear equation

(C∗�n − �n)xn = rn.

Since sweeping out does not change the value of the determinant, we have

gn+1 =
∣∣∣∣∣
An −r�

n

0n C∗�n − �n

∣∣∣∣∣ ,
where the scalar An is given by

An = r0/ζ − r�
n xn = r0/ζ − r�

n (C
∗�n − �n)

−1rn (19)
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and 0n is the n-dimensional zero vector. Hence, we have gn+1 = Angn and it is enough to
show that An ≥ 0.

Since �n�
−1
n is positive definite, it can be diagonalized by an orthogonal matrix Bn, so that

�n�
−1
n = B�

n VnBn for a diagonal matrix Vn = diag(vn,1, . . . , vn,n) with vn,i ∈ R+. Then,
on the right-hand side of (19), (C∗�n − �n)

−1 can be written as

(C∗�n − �n)
−1 = 1

C∗ �
−1/2
n

(
I − �n�

−1
N

C∗

)−1

�
−1/2
n

= 1

C∗ �
−1/2
n

∞∑
l=0

1

(C∗)l
B�
n V l

nBn�
−1/2
n .

Therefore, An becomes

An = r0

ζ
− 1

C∗
∞∑
l=0

(
1

C∗

)l
r�
n �

−1/2
n B�

n V l
nBn�

−1/2
n rn

= r0

ζ
− 1

C∗
∞∑
l=0

(
1

C∗

)l
‖V l/2

n Bn�
−1/2
n rn‖2,

where ‖xn‖2 = ∑n
i=1 x

2
i for a vector xn = (x1, . . . , xn). Let v∗

n = max1≤i≤n vn,i and v∗ =
supn∈N v

∗
n; then v∗

n ≤ 1. In fact, v∗
n ↑ v∗ by [16, p. 65, Equations (9) and (10)], while in

the present case v∗ = max−π≤ξ≤π η(ξ)/r0 = η(0)/r0 = 1 by [15, Theorem 4.2.1, p. 154].
Therefore, C∗ − v∗

n ≥ (1 + ζ )/ζ − 1 = ζ−1. Since ‖V l/2
n Bn�

−1/2
n rn‖2 ≤ ((v∗

n)
l/σ 2)‖rn‖2,

we have

An ≥ r0

[
1

ζ
− ‖rn‖2

C∗r2
0

∞∑
l=0

(
v∗
n

C∗

)l]
= r0

[
1

ζ
− ‖rn‖2

r2
0

1

C∗ − v∗
n

]
≥ r0

[
1

ζ
− ζ‖rn‖2

r2
0

]
.

Thus, we obtain

An ≥ r0ζ

[
1

ζ 2 − 1

r2
0

∑
i∈N

r2
i

]
≥ 0

by condition (2).

4.2. Proof of Theorem 1

Since rj (k), k ∈ N0, can be written as

rj (k) = 2(2H+1)j
(

−1

2

) ∫∫
W 2
ψ(s)ψ(t)|s − t + k|2H ds dt = 2(2H+1)j r0(k), (20)

as is well known (see, e.g. [14]), to prove (4) it is enough to consider r0(k), i.e. we will show
that

∑
k∈N

r2
0 (k)/r

2
0 (0) ≤ ζ−2. By a formula given in [6, Corollary 3.2.10], the term

|s − t + k|2H = {(s − t + k)2}H

can be written as

|s − t + k|2H = cH

∫
(0,∞)

(1 − e−λ(s−t+k)2) dµ̃H (λ), (21)
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where dµ̃H (λ) = λ−(1+H) dλ and cH is an appropriate positive constant. By changing variable
to ξ = √

λ and substituting the Fourier integral

e−ξ2(s−t+k)2 =
∫

R

1√
2π(s − t + k)2

exp

{
− x2

2(s − t + k)2

}
eiξx dx

into (21), we have

|s − t + k|2H = CH

∫
(0,∞)

(1 − eiλ(s−t+k)) dµH(λ),

where

CH = cH

2

∫
R

|x|2H e−x2/2 dx√
2π

and dµH(λ) = λ−(1+2H) dλ.

We note the identity [22, p. 232]

eiλk = (I − ∂2
λ)

m

(1 + k2)m
eiλk, m ∈ N,

where I is the identity operator. Let us first consider the case m = 1. By Lemma 3, in (20)
r0(k) ≥ 0 for all k ∈ N0. Hence, by integration by parts, we have

0 ≤ r0(k) = CH

∫
(0,∞)

eiλk
[∫∫

W 2
ψ(s)ψ(t)eiλ(s−t) ds dt

]
dµH(λ)

= CH

1 + k2

∫
(0,∞)

eiλk
[∫∫

W 2
ψ(s)ψ(t)(I − ∂2

λ)e
iλ(s−t)λ−(1+2H) ds dt

]
dλ (22)

if γ > H + 1. We can write

(I − ∂2
λ)[eiλ(s−t)λ−(1+2H)] = (1 − ϕ(s, t))eiλ(s−t)λ−(3+2H),

where
ϕ(s, t) = −λ2(s − t)2 − 2(1 + 2H)iλ(s − t)+ (1 + 2H)(2 + 2H).

We then have∫∫
W 2
ψ(s)ψ(t)(I − ∂2

λ)e
iλ(s−t)λ−(1+2H) ds dt ≤ |ψ̂(λ)|2λ−(1+2H),

since ϕ(s, t) is a positive-definite kernel (see [6, Sections 3.1.9 and 3.1.10]) and so is eiλ(s−t);
hence, ϕ(s, t)eiλ(s−t) is positive definite, by the fact that the product of two positive-definite
kernels is again positive definite [6, Section 3.1.12]. Therefore, we have

r0(k) ≤ CH

1 + k2

∫
(0,∞)

|ψ̂(λ)|2 dµH(λ) = r0(0)

1 + k2

(see the expression for r0(0) in (22)).
For the case m ≥ 2, we have

0 ≤ r0(k) = CH

(1 + k2)m

∫
(0,∞)

{(I − ∂2
λ)

meiλk}
[∫∫

W 2
ψ(s)ψ(t)eiλ(s−t)λ−(1+2H) ds dt

]
dλ,
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where

(I − ∂2
λ)

meiλk =
{
I − (1 + k2)m − 1

k2 ∂2
λ

}
eiλk. (23)

Hence, we obtain

r0(k) = CH

(1 + k2)m

×
∫
(0,∞)

eiλk
[∫∫

W 2
ψ(s)ψ(t)

{
I − (1 + k2)m − 1

k2 ∂2
λ

}
eiλ(s−t)λ−(1+2H) ds dt

]
dλ

(24)

if γ > H + m, and, thus, r0(k) ≤ r0(0)/(1 + k2)m by the same reason as in the m = 1 case.
Finally we claim that the largest possible value of m is γ − 1. This follows from an

integrability argument for (24) with respect to λ. Assumption (ψ1) implies that ψ̂ is an entire
function, meaning that it has a Taylor expansion for all λ ∈ R+. Also, assumption (ψ2)
implies that ∂nλ ψ̂(0) = 0, n = 0, . . . , γ − 1. Thus, the Taylor expansion is of the form
ψ̂(λ) = ∑∞

n=γ anλn for some {an} ⊂ C. Among the terms contained in

(I − ∂2
λ)

m|ψ̂(λ)|2λ−(1+2H) =
m∑
i=0

(−1)i
(

m
i

) 2i∑
l=0

(
2i

l

){ l−1∏
ν=0

1 + 2H + ν

}

×
∞∑
n=0

bn+2γ

{2i−l−1∏
ν=0

n+ 2γ − ν

}
λn+2γ−(2i+1+2H),

the one with the ‘worst’ singularity as λ ↓ 0 has n = 0 and i = m. Hence, the assertion holds
if 2γ − (1 + 2H + 2m) > −1, i.e. γ > m + H . Since m ≥ 1 and 0 < H < 1, we conclude
that if γ ≥ 2 then (4) holds with m = �γ −H� = γ − 1.

Lemma 3. If {Xt } has stationary increments and a regularly varying covariance function, then
rj (k) ≥ 0 for all k ∈ N.

Remark 4. A more precise evaluation of rj (k)/rj (0) may be possible if we evaluate the term
associated with ∂2

λ in (23) rather than neglecting it. Also, in order to have the decay rate given
in (5), certain additional steps, like taking fractional derivatives of the Fourier transform ψ̂ ,
might be necessary.

4.3. Proof of Theorem 2

Since

E[XsXt ] = 1
2 {E[X2

s ] + E[X2
t ] − E[(X|s−t | −X0)

2]},
that E[XsXt ] has regular variation as a function of |s − t | implies that E[(X|s−t | −X0)

2] has
regular variation. Also, that E[XsXt ] is a positive-definite kernel implies that E[(X|s−t | −X0)

2]
is a negative-definite kernel. It is clear that if 
̃ is a slowly varying function then 
(τ ) = 
̃(τ 1/2)

is slowly varying as well. Hence, as a function of (s − t)2, we can write

E[(X|s−t | −X0)
2] = �((s − t)2), �(x) = xH
(x) for x ∈ R+,
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where 0 < H < 1 and 
 is a slowly varying function. From the assumption of the theorem, the
negative-definite kernel E[(X|s−t | −X0)

2] has the representation

E[(X|s−t | −X0)
2] =

∫
(0,∞)

(1 − e−λ(s−t)2)hH,
(λ) dλ.

By a calculation similar to that in the proof of Theorem 1 (cf. (20)), the covariance rj (k) can
be written as

rj (k) = 2j
(

−1

2

) ∫∫
W 2
ψ(s)ψ(t)|2j (s − t + k)|2H
(22j (s − t + k)2) ds dt

=
∫
(0,∞)

eiλk
[∫∫

W 2
ψ(s)ψ(t)eiλ(s−t) ds dt

]
ηj (λ) dλ,

where ηj ≡ ηH,
,j is defined by

ηj (λ) = 2j λ
∫

R+

1√
2π

x−2 exp{−2−(2j+1)x2}hH,

((

λ

x

)2)
dx, λ ∈ (0,∞),

which exists for each λ ∈ (0,∞) by assumption (7) and Lemma 4, below. For the same reason
as in the proof of Theorem 1, we have only to consider the case m = 1. We have

rj (k) = 2j

1 + k2

∫
(0,∞)

eiλk
[∫∫

W 2
ψ(s)ψ(t)(I − ∂2

λ)e
iλ(s−t)ηj (λ) ds dt

]
dλ, (25)

where (I − ∂2
λ)e

iλ(s−t)ηj (λ) = (ηj (λ)− ϕ(s, t))eiλ(s−t) with

ϕ(s, t) = −(s − t)2ηj (λ)+ i(s − t)∂ληj (λ)+ ∂2
ληj (λ).

In order to neglect the term associated with ∂2
λ in (25), so that we can evaluate rj (k) using only

terms associated with I , it is sufficient that ϕ(s, t) is a positive-definite kernel, for which in
turn ∂2

ληj (λ) ≥ 0 is a sufficient condition. It follows that this is satisfied if

∂2
λ

[
λhH,


((
λ

x

)2)]
= 2λ

x2

{
3h′

((
λ

x

)2)
+ 2λ2

x2 h
′′
((

λ

x

)2)}
≥ 0,

i.e. if 3h′(λ)+ 2λh′′(λ) ≥ 0.
To determine the largest possible value of m, we consider

∂iληj (λ) =
∫

R+

1√
2π

x−2 exp{−2−(2j+1)x2}
{
∂i−1
λ hj

((
λ

x

)2)
+ λ∂iλhj

((
λ

x

)2)}
dx.

Since ∂iλhj ((λ/x)
2) = O(x2β−2) for all i as x ↓ 0, it turns out that the growth assumption (7)

implies that this integral is finite for all i. Also, by Lemma 4, below, we have

∂iλhj ((λ/x)
2) = O(λ−2(1+H)−i ) as λ ↓ 0,

which leads to the sufficient condition for the finiteness of the integral in (25) with respect to λ,
namely

2γ − 2(1 +H)− 2m + 1 > −1 ⇔ m < γ −H

⇔ m = �γ −H� = γ − 1.
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Lemma 4. Under condition (7), β0 is equal to 1 +H .

Remark 5. It is easily seen that the function λ−(1+2H) in Theorem 1, as a special case of ηj (λ),
satisfies condition (8).

4.4. Proof of Proposition 2

(i) Let v2
�N
(θ) = var[√N(θ̂MM

�N
− θ)]. We then have

v2
�N
(θ) =

∑
l≥p

c2
l

(
var[Hl(Y0)] + 2

N

N−1∑
k=1

(N − k) cov[Hl(Yk),Hl(Y0)]
)

→
∑
l≥p

c2
l

(
var[Hl(Y0)] + 2

∑
k∈N

cov[Hl(Yk),Hl(Y0)]
)

= v2
�(θ) as N → ∞, (26)

by the decay condition rk = O(k−D), D > 2/p. By applying Proposition 1 to {Hl(Yk)}
instead of {Yk}, for each l ≥ p, we obtain the following statement, where (�(l)

N )k,k′ =
cov[Hl(Yk),Hl(Yk′)], Cl∗ = (ζl − 1)/ζl , and C∗

l = (ζl + 1)/ζl :

if

∑
k∈N

r2l
k

r2l
0

≤ 1

ζ 2
l

for some ζl > 1, then Cl∗�l
N ≤ �

(l)
N ≤ C∗

l �
l
N for all N ∈ N.

Since
∑
k∈N

r2l
k /r

2l
0 ≤ ∑

k∈N
r

2p
k /r

2p
0 implies that Cp∗ ≤ Cl∗ and C∗

l ≤ C∗
p for l ≥ p, and

since
v2
�N
(θ) = x�

N�
(l)
N xN with xN = (N−1/2, . . . , N−1/2) ∈ R

N,

for (26) condition (11) implies that

Cp∗
∑
l≥p

c2
l var[Hl(Y0)] ≤ v2

�(θ) ≤ C∗
p

∑
l≥p

c2
l var[Hl(Y0)].

Assertion (12) then follows from �−1
� (θ) = var[g(Y0)] = ∑

l≥p c
2
l var[Hl(Y0)].

(ii) In view of (9), it remains to evaluate C�/� . We evaluate it separately in Proposition 3,
below.

Let us symbolically denote ��N (θ) = var[
̇�N (θ)] and �−1
�N
(θ) = var[
̇�N

(θ)] (although
��N (θ) → ��(θ) as N → ∞, we have �−1

�N
(θ) �= var[√N(θ̂∗

�N
− θ)] for finite N ).

Proposition 3. Under the same assumptions as in Proposition 2 and condition (2), the following
inequalities hold, where C∗ and C∗ are as given in (3):

(C∗)−2�−1
�N
(θ) ≤ �−1

�N
(θ) ≤ C−2∗ �−1

�N
(θ) for all N ∈ N.

Moreover, if 1/η(ξ) is integrable on [−π, π ] then

lim
N→∞

�−1
�N
(θ)

�−1
�N
(θ)

=
{

1

2π

∫ π

−π
η(ξ) dξ

}{
1

2π

∫ π

−π
1

η(ξ)
dξ

}
≥ 1. (27)
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4.5. Proof of Proposition 3

First we prove that C�/� ≤ C−2∗ . By Lemma 5, θ is a smooth function of r0. Hence, we
can write

d
�N (θ)

dθ
= dr0

dθ
· d
�N (θ)

dr0
and

d
�N
(θ)

dθ
= dr0

dθ
· d
�N

(θ)

dr0
.

Therefore, we will show that

d
�N
(θ)

dr0

(
d
�N (θ)

dr0

)−1

≤ C−2∗ ,

which can be calculated in general no matter what dr0/dθ is.
To this end, it suffices to show that

0 ≤ (C∗)−1 d

dr0
log |�N | ≤ d

dr0
log |�N | ≤ C−1∗

d

dr0
log |�N |, (28)

(C∗)−2y�
N

d

dr0
�−1
N yN ≤ y�

N

d

dr0
�−1
N yN ≤ C−2∗ y�

N

d

dr0
�−1
N yN ≤ 0, yN ∈ R

N. (29)

In fact, from (28) and (29) we have

C∗
∣∣∣∣ d

dr0

�N

∣∣∣∣ ≤
∣∣∣∣ d

dr0

�N

∣∣∣∣ a.s. (30)

and, hence,

�−1
�N
(θ) ≤ C−2∗ (θ)�−1

� (θ).

From (30), we separate cases to obtain |(d/dr0)
�N | ≤ (C∗)−1|(d/dr0)
�N
| if (d/dr0)
�N ≥ 0

and |(d/dr0)
�N | ≤ C−1∗ |(d/dr0)
�N
| if (d/dr0)
�N ≤ 0.

To show (28), we write

d

dr0
log |�N | = (d/dr0)|�N |

|�N | = (d/dr0)|�N�−1
N �N |

|�N�−1
N �N |

= |�N |(d/dr0)|�N�−1
N | + |�N�−1

N |(d/dr0)|�N |
|�N�−1

N ||�N | .

Since |�N | = (r0/N)(d/dr0)|�N |, we have

d

dr0
log |�N | =

[
1 + r0

N

d

dr0
log |�N�−1

N |
]

d

dr0
log |�N |.

Define the matrices QN , RN , and UN by

(QN)i,j = (RN − r0IN)i,j =
{

0 if i = j,

r|i−j | if i �= j,
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and UN = diag(uN,1, . . . , uN,N), where {uN,i, 1 ≤ i ≤ N} are the eigenvalues of QN ,
meaning that QN = T �

N UNTN for some orthogonal matrix TN . Then |�N�−1
N | is given by

|�N�−1
N | = |(�N�−1

N )−1|−1 =
∣∣∣∣
(

IN + QN

r0

)−1∣∣∣∣
−1

=
∣∣∣∣T �
N

∑
i∈N0

(
−UN

r0

)i
TN

∣∣∣∣
−1

=
∣∣∣∣diag

(
r0

r0 + uN,l

)
1≤l≤N

∣∣∣∣
−1

=
N∏
l=1

r0 + uN,l

r0
.

Hence,

d

dr0
log |�N�−1

N | = −
N∑
l=1

uN,l

r0(r0 + uN,l)

and we have
d

dr0
log |�N | =

[
1

N

N∑
i=1

r0

r0 + uN,i

]
d

dr0
log |�N |. (31)

Let {ρN,i, 1 ≤ i ≤ N} be the eigenvalues of RN . From the eigenequation

0 = |uN,iIN − QN | = |(r0 + uN,i)IN − RN |,
it follows that r0 + uN,i = ρN,i ≥ 0.

For the right-hand side of (28), i.e. |(d/dr0)
�N | ≤ C−1∗ |(d/dr0)
�N
|, by setting ρ∗N =

min1≤i≤N ρN,i we have
d

dr0
log |�N | ≤ r0

ρ∗N
d

dr0
log |�N |.

Here, the lower bound in (3),

�N − C∗�N = �N − C∗r0IN ≥ 0,

implies that C∗r0 ≤ ρ∗N , i.e. r0/ρ∗N ≤ C−1∗ . The converse inequality in (28) is obtained
similarly (using (C∗)−1 ≤ r0/ρ

∗
N in (31), with ρ∗

N = max1≤i≤N ρN,i). The positiveness
in (28) follows from (d/dr0) log |�N | = N/r0 ≥ 0. Hence, the proof of (28) is complete.

We next show (29). Since �−1
N = (�N�−1

N �N)
−1 and �−1

N = −r0(d/dr0)�−1
N , by using

(�N�−1
N )−1 = T �

N diag(r0/(r0 + uN,i))1≤i≤NTN we have

d

dr0
�−1
N =

(
d

dr0
�−1
N

)[
(�n�

−1
N )−1 − r0

d

dr0
(�N�−1

N )−1
]

=
(

d

dr0
�−1
N

)
T �
N diag

((
r0

r0 + uN,i

)2)
1≤i≤n

TN.

By the same arguments as in the proof of (28), we recover (29).
Finally, for (27), by using the theorem of [16, p. 64] we obtain

lim
n→∞

1

N

N∑
l=1

r0

ρN,l
= r0

2π

∫ π

−π
1

η(ξ)
dξ. (32)

Since r0 = (2π)−1
∫ π
−π η(ξ) dξ , by Jensen’s inequality the right-hand side of (32) is larger than

or equal to 1. This proves that C�/� ≥ 1.

Lemma 5. If var[g(sj (0))] < ∞ then θj is a smooth function of σ 2
j .
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4.6. Proof of Corollary 1

By considering Lemma 2 in light of Theorem 3, in particular with 2J n = l, k = 0, and
k′ = 0, we obtain rj (l) = Cl−2(γ−H)
(l)(1 +O(l−1)), as l → ∞, in (36). Therefore, for an
arbitrarily small ε > 0, 2p(γ − H − ε) > 1 holds by the condition of Corollary 1. Thus, we
have part (i) of Proposition 2. On the other hand, as in the case of Theorem 2, γ ≥ 2 implies
(2), which leads to part (ii) of Proposition 2.

4.7. Proof of Theorem 3

For the wavelet coefficient ST , let us consider a sequence of random vectors

s = {s(n) ∈ R
d , n ∈ N0}, d =

J∑
j=J0+1

dj , dj = 2J−j ,

defined by
s(n) = (sJ0+1(n), . . . , sJ (n)),

where each sj , j = J0 + 1, . . . , J , denotes the following subvector in R
dj :

sj (n) = (sj (djn+ 1), . . . , sj (djn+ k), . . . , sj (dj (n+ 1))).

It is easily seen that {sn} is a stationary random vector in the usual sense, i.e. the covariance
matrix E[s�

j (m+ n)sj ′(m)] does not depend on m ∈ N0 for each pair (j, j ′).
Now let us take the sequence {Y (n), n = 1, . . . , NT,J } of vectors

Y (n) = (YJ0+1(n), . . . , YJ (n)),

where

Yj (n) = 1

dj

dj∑
k=1

g(sj (djn+ k)).

Then {Y (n)} is vector stationary, i.e. cov[Yj (m), Yj ′(m+ n)] does not depend on m ∈ N0 for
each pair (j, j ′). Let θ̂ Y

T = (θ̂Y
T ,J0+1, . . . , θ̂

Y
T ,J ) be defined by

θ̂Y
T ,j = 1

NT,J

NT,J∑
n=1

Yj (n), j = J0 + 1, . . . , J.

As is easily seen, θ̂Y
T → θ a.s. and E[θ̂ Y

T ] = θ . Also,

Pr({|√NT,J (θ̂Y
T − θ)− √

NT,J (θ̂T − θ)| > ε}) → 0 as T → ∞,

for all ε > 0. Thus, by [7, Theorem 3.1, p. 27], to show that the desired CLT (14) holds it is
equivalent to show that the alternative CLT√

NT,J (θ̂
Y
T − θ)

w−→ N (0,�J ) (33)

holds.
By [3, Theorem 4], to prove (33) it is sufficient to show that∑

n∈N

| cov[Yj (n)Yj ′(0)]|p < ∞ and
∑
n∈N

| cov[Yj (0)Yj ′(n)]|p < ∞.
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For the first condition, it then suffices to show that∑
n∈N

| E[sj (djn+ k)sj ′(dj ′ · 0 + k′)]|p < ∞

for each k and k′ and, for the second condition, that the same inequality holds with j and j ′
exchanged. From Lemma 2 these convergence statements hold if 2(γ − H)p > 1, i.e. γ >
H + 1/2p.

Equation (15) is obtained from

cov[√NT,J θ̂T ,j ,√NT,J θ̂T ,j ′ ]

= rj,j ′(0)

dj
+ 1

djNT,j ′

NT,j ′−1∑
k=1

{(NT,j ′ − �2−(j ′−j)k�)rj,j ′(k)

+ (NT,j ′ − �2−(j ′−j)k�)rj,j ′(−k)}

and Lemma 2. In fact, the terms N−1
T ,j

∑NT,j−1
k=1 krj,j ′(±k) tend to 0 as T → ∞ since they are

O((NT,j )
−2(γ−H)p+1), whereas γ ≥ 2 implies that −2(γ −H)p + 1 < −1. Equation (16) is

obtained similarly. Finally, (17) follows from Slutsky’s theorem [13].

5. Proofs of lemmas

5.1. Proof of Lemma 1

Let the wavelet expansions of Xt 1[0,T ](t) and Yt 1[0,T ](t) be∑
j∈Z

∑
k

c
(XT )
j,k ψj,k(t) and

∑
j∈Z

∑
k

c
(Y T )
j,k ψj,k(t),

respectively. Since supp(ψj,k) = [2j k, 2j (k + w)], c(XT )j,k and c(Y
T )

j,k all vanish for 2j k ≥ T ,
i.e. k ≥ �2−j T �, or for 2j (k + w) ≤ 0, i.e. k ≤ −w. From Parseval’s equality forL2-functions
and their wavelet coefficients, it follows that

lim
T→∞

1

T

∫ T

0
XtYt dt = lim

T→∞
1

T

∑
j∈Z

�2−j T �∑
k=−�w�

c
(XT )
j,k c

(Y T )
j,k

= lim
T→∞

1

T

∑
j∈Z

�2−j T �∑
k=1

c
(XT )
j,k c

(Y T )
j,k + lim

T→∞
1

T

∑
j∈Z

0∑
k=−�w�

c
(XT )
j,k c

(Y T )
j,k .

Since 2−j T /NT,j → 1 as T → ∞, the first term on the right-hand side is the same as

∑
j∈Z

lim
T→∞

1

T

�2−j T �∑
k=1

c
(XT )
j,k c

(Y T )
j,k =

∑
j∈Z

lim
T→∞

2−j

NT,j

NT,j∑
k=1

c
(XT )
j,k c

(Y T )
j,k

= lim
T→∞

∑
j∈Z

2−j

NT,j

NT,j∑
k=1

c
(XT )
j,k c

(Y T )
j,k .
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Here, the change of

lim
T→∞

∑
j∈Z

1

T

�2−j T �∑
k=1

c
(XT )
j,k c

(Y T )
j,k into

∑
j∈Z

lim
T→∞

1

T

�2−j T �∑
k=1

c
(XT )
j,k c

(Y T )
j,k

is allowed by dominated convergence.
Hence, it suffices to show that the second term tends to 0. Since the second term tends to a

finite limit by Schwarz’s inequality, for all ε > 0 there exists a j0 such that

1

T

∑
|j |>j0

0∑
k=−�w�

c
(XT )
j,k c

(Y T )
j,k ≤ ε.

Thus,
1

T

∑
j∈Z

0∑
k=−�w�

c
(XT )
j,k c

(Y T )
j,k ≤ 1

T

∑
|j |≤j0

0∑
k=−�w�

c
(XT )
j,k c

(Y T )
j,k + ε

= 1

T

∑
|j |≤j0

0∑
k=−�w�

c
(XT )
j,k c

(Y T )
j,k + ε.

The first term on the right-hand side of this tends to 0 as T → ∞, which completes the proof.

5.2. Proof of Lemma 2

We have

E[sj (djn+ k)sj ′(k′)]

= 2(j+j ′)/2
(

−1

2

) ∫∫
W 2
ψ(s)ψ(t)E[{X(2j (s + k + djn))−X(2j

′
(t + k′))}2] ds dt.

(34)

From the general form of regularly varying functions, we can write

E[{X(2j (s + k + djn))−X(2j
′
(t + k′))}2]

= (2J n)2H
(2J n)

∣∣∣∣1 + 2j (s + k)− 2j
′
(t + k′)

2J n

∣∣∣∣
2H

× 


(
2J n

∣∣∣∣1 + 2j (s + k)− 2j
′
(t + k′)

2J n

∣∣∣∣
)

1


(2J n)
. (35)

Taylor expansions of the last two factors on the right-hand side of (35) yield∣∣∣∣1 + 2j (s + k)− 2j
′
(t + k′)

2J n

∣∣∣∣
2H

=
∑
l∈N0

(
2H

l

)(
2j (s + k)− 2j

′
(t + k′)

2J n

)l

and




(
2J n

∣∣∣∣1 + 2j (s + k)− 2j
′
(t + k′)

2J n

∣∣∣∣
)

1


(2J n)

= 1 +
∑
i∈N

1

i!
(2J n)i
(i)(2J n)


(2J n)

(
2j (s + k)− 2j

′
(t + k′)

2J n

)i
.
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We observe that a slowly varying function is 0-regularly varying and that the smooth variation
property of 
 implies that [8, Equation 1.8.1, p. 44], for i ≥ 1,

(2J n)i
(i)(2J n)


(2J n)
→

i−1∏
ν=0

(0 − ν) = 0 as n → ∞.

Since those terms with 0 ≤ l ≤ 2γ − 1 in the product of the two terms in the integral (34)
vanish by assumption (ψ2), we have

E[sj (djn+ k)sj ′(k′)] = C(2J n)−2(γ−H)
(2J n)(1 +O(n−1)) as n → ∞, (36)

where

C = 23(j+j ′)/2 (−1)γ+1

2

(∫
W

ψ(t)tγ dt

)2{ 2γ∑
i=0

(
2H

2γ − i

)
1

i!
(2J n)i
(i)(2J n)


(2J n)

}
.

5.3. Proof of Lemma 3

It is enough to prove that the kernel�(s, t) = |s− t+k|2H is a negative-definite-type kernel
for k ∈ N. The kernel �0(s, t) = (s − t + k)2 is of negative-definite type [6, Section 3.1.22]
(but is not a true negative-definite kernel). In general, for a negative-definite kernel �̃, its power
�̃H is also negative definite for 0 < H < 1 [6, Section 3.2.10]. We show that this claim is also
true for a negative-definite-type kernel.

To this end, we must verify that [6, Theorem 3.2.9, p. 77] holds not only for negative-definite
kernels, but also for negative-definite-type kernels. Following the proof of [6, Theorem 3.2.9],
it turns out that we are done if e−λ�̃(s,t) is positive definite. For this, we check the ‘only if’ part
of [6, Theorem 3.2.2, p. 74] and we have to prove, in particular, that �̃ is of negative-definite
type only if e−λ�̃ is of positive-definite type.

Following the proof of [6, Theorem 3.2.2], we take the parameters � and x0 there to be
�(s, t) = (s − t + k)2 and x0 = k. Then �(s, x0) = s2, �(t, x0) = t2, �(x0, x0) = k2, and

ϕ(s, t) = �(s, x0)+�(t, x0)−�(s, t)−�(x0, x0) = 2st − 2k(s − t)− 2k2,

which is of positive-definite type in the following sense: for all {ci, i = 1, . . . , n} ⊂ C with∑n
i=1 ci = 0,

n∑
i=1

n∑
j=1

ci c̄j ϕ(si, sj ) = 2

∣∣∣∣
n∑
i=1

cisi

∣∣∣∣
2

≥ 0.

Therefore, e−�(s,x0)e−�(t,x0) is positive definite (see [6, Section 3.1.9]), eϕ(s,t) is of positive-
definite type (see [6, Section 3.1.14]), and

e−�(s,t) = eϕ(s,t)e−�(s,x0)e−�(t,x0)e−�(x0,x0)

is of positive-definite type (see [6, Section 3.1.12]). It is clear that, for claims 3.1.9, 3.1.14,
and 3.1.12 of [6], the positive definiteness property can be replaced by the positive definiteness-
type property.
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5.4. Proof of Lemma 4

By the argument for the slowly varying part 
 in the proof of Theorem 2, we have

|ax|2H
((ax)2) =
∫ ∞

0
(1 − e−λ(ax)2)h(λ) dλ =

∫ ∞

0
(1 − e−λ)h

(
λ

(ax)2

)
dλ

(ax)2
.

For an arbitrary ε > 0, we can take a large z ≡ zε > 0 such that∫ ∞

0
(1 − e−λ)h

(
λ

(ax)2

)
dλ

(ax)2
=

∫ z

0
(1 − e−λa2

)h

(
λ

x2

)
dλ

x2 + ε.

Thus, if we let x become larger, we can write

|ax|2H
((ax)2)
|x|2H
(x2)

=
∫ z

0 (1 − e−λ)(λ/(ax)2)−β0 dλ/a2 + ε′∫ z
0 (1 − e−λ)(λ/x2)−β0 dλ+ ε′′

,

which approaches a2H as x → ∞. Letting ε > 0 become smaller and, thus, z and then x
become larger, we conclude that β0 = 1 +H .

5.5. Proof of Lemma 5

The assumption of this lemma implies that g can be expanded in Hermite polynomials as
follows (the series converges in L2(R, e−x2/2dx/

√
2π)):

g(x) =
∑
l∈N

clHl(x).

Here, without loss of generality, we assume that c0 = 0. Then, since sj (k) ∼ N (0, σ 2
j ), by

writing H2l (x) = ∑l
m=0 hl,mx

2m we have

E[H2l (sj (0))] =
l∑

m=0

(2m− 1)!!hl,mσ 2m
j

and, hence,
θj =

∑
l∈N

c2l E[H2l (sj (0))] =
∑
m∈N

amσ
2m
j

with am = (2m− 1)!! ∑∞
l=m c2lhl,m. Therefore, θj is a smooth function of σ 2

j .
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