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Abstract

We consider the problem of deforming simultaneously a pair of given structures. We
show that such deformations are governed by an L∞-algebra, which we construct
explicitly. Our machinery is based on Voronov’s derived bracket construction. In this
paper we consider only geometric applications, including deformations of coisotropic
submanifolds in Poisson manifolds, of twisted Poisson structures, and of complex
structures within generalized complex geometry. These applications cannot be, to our
knowledge, obtained by other methods such as operad theory.
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Introduction

Deformation theory was developed in the 1950s by Kodaira–Kuranishi–Spencer for complex
structures [KS58a, KS58b, KS60, Kur65] and by Gerstenhaber for associative algebras [Ger64].
Nijenhuis and Richardson then gave an interpretation of deformations in terms of graded Lie
algebras [NR66, NR67], which was later promoted by Deligne: deformations of a given algebraic
or geometric structure ∆ are governed by a differential graded Lie algebra (DGLA) or, more
generally, by an L∞-algebra.

For example, given a vector space V , Gerstenhaber in [Ger64] introduced a graded Lie algebra
(L, [−,−]) such that an associative algebra structure on V is given by ∆ ∈ L1 such that [∆,∆] = 0.
A deformation of ∆ is an element ∆ + ∆̃ such that ∆̃ ∈ L1 and

0 = [∆ + ∆̃,∆ + ∆̃] = 2[∆, ∆̃] + [∆̃, ∆̃] = 2(d∆∆̃ + 1
2 [∆̃, ∆̃]). (1)

Therefore, the DGLA (L, d∆, [· , ·]) governs deformations of the associative algebra (V,∆).
It is usually a hard task to show that the deformations of a given structure are governed by an

L∞-algebra, and even harder to construct explicitly the L∞-algebra. When one succeeds in doing
so, as a reward one gets the cohomology theory, analogues of Massey products, and a natural
equivalence relation on the space of deformations. Moreover, quasi-isomorphic L∞-algebras
govern equivalent deformation problems, a result with non-trivial applications to quantization
(see [Kon03]).
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In this work we consider simultaneous deformations of two (interrelated) structures. A
typical example is given by the simultaneous deformations of (∆,Φ), where ∆ denotes a pair
of associative algebras and Φ is an algebra morphism between them. These deformations are
characterized by a cubic equation (unlike (1), which is quadratic) and are therefore governed by
an L∞-algebra with non-trivial l3-term.

Our main result, Theorem 3 in § 1.4, constructs explicitly L∞-algebras governing such
simultaneous deformation problems.

Outline of the paper. L∞-algebras, introduced by Lada and Stasheff [LS93], consist of collections
{li}i>1 of ‘multibrackets’ satisfying higher Jacobi identities. They can be built out of what we
call V-data (L,P, a,∆) via derived bracket constructions due to Voronov [Vor05a, Vor05b], which
extend those of Kosmann-Schwarzbach [Kos04] (see Theorems 1 and 2). Our main contribution
is to determine L∞-algebras governing simultaneous deformation problems (Theorem 3), by
recognizing that they arise as in Voronov’s Theorem 2. These results are collected in § 1.

In the companion paper [FZ13], we find algebraic applications to the study of simultaneous
deformations of algebras and morphisms in the following categories: Lie, L∞, Lie bi- and
associative algebras, and more generally in any category of algebras over Koszul operads. These
results can alternatively be obtained by operadic methods, see for example [FMY09, MV09], but
our techniques have the advantage of not assuming any knowledge of the operadic machinery
and of easily delivering explicit formulae. Recently, using our techniques, Ji studied simultaneous
deformations in the category of Lie algebroids [Ji14].

The main novelty concerning applications, and the focus of this paper, is in geometry. In § 2,
we determine L∞-algebras governing simultaneous deformations of:
• coisotropic submanifolds of Poisson manifolds;
• Dirac structures in Courant algebroids (with twisted Poisson structures as a special case);
• generalized complex structures in Courant algebroids (with complex structures as a special

case).
We also describe explicitly the equivalence relation on the space of twisted Poisson structures.

None of these examples, to our knowledge, falls under the scope of the operadic methods,
and one should have in mind that in this geometric setting, no tool such as Koszul duality gives
for nothing the graded Lie algebra L we need as part of the V-data.

Outlook: deformation quantization of symmetries. It is known from [BFFLS77] that the
quantization of a mechanical system (Poisson manifold) can be understood as a deformation
of the algebra of smooth functions ‘in the direction’ of the Poisson structure, the first-order term
of the Taylor expansion of this deformation.

One can associate to any Poisson structure such a quantization [Kon03]: Poisson structures
and their quantizations are Maurer–Cartan elements for suitable L∞-algebras (Schouten and
Gerstenhaber algebras, respectively), so it suffices to build a L∞-morphism between these two
L∞-algebras (formality theorem). This morphism sends Maurer–Cartan elements to Maurer–
Cartan elements, i.e. associates a quantization to any Poisson structure.

Our long term goal is to apply this approach to symmetries. The notion of symmetry of
a mechanical system (C∞(M), {−,−}) can be understood as a Lie algebra map (g, [−,−])
→ (C∞(M), {−,−}). This map can be extended, in the category of Poisson algebras, to
(Sg, {−,−}), the Poisson algebra of polynomial functions on g∗. Its graph is a coisotropic
submanifold of the Poisson manifold g∗ ×M . Therefore, our first step towards this long term
goal is to construct in § 2.1 an L∞-algebra governing simultaneous deformations of Poisson
tensors and their coisotropic submanifolds. This L∞-algebra plays the role of the Schouten
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algebra in the presence of symmetries. It extends the L∞-algebras governing deformations of
coisotropic submanifolds of Poisson manifolds considered by Oh and Park [OP05] and Cattaneo
and Felder [CF07], since, in their settings, the Poisson structure was kept fixed.

1. L∞-algebras via derived brackets and Maurer–Cartan elements

The purpose of this section is to establish Theorem 3, which produces the L∞-algebras appearing
in the rest of the paper. Therefore, we first review some basic material about L∞-algebras in
§ 1.1; then we recall in § 1.2 Voronov’s constructions, which will be used to establish Theorem 3
in § 1.4. Our proof is a direct computation, but we also provide a conceptual argument in terms
of tangent cohomology, building on § 1.3. We conclude by justifying in § 1.5 why no convergence
issues arise in our machinery, and discussing equivalences in § 1.6.

1.1 Background on L∞-algebras
We start defining (differential) graded Lie algebras, which are special cases of L∞-algebras.

Definition 1.1. A graded Lie algebra is a Z-graded vector space L =
⊕

n∈Z Ln equipped with
a degree-preserving bilinear bracket [· , ·] : L⊗ L −→ L which satisfies:

(1) graded antisymmetry: [a, b] = −(−1)|a||b|[b, a];

(2) graded Leibniz rule: [a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]].

Here a, b, c are homogeneous elements of L and the degree |x| of an homogeneous element x ∈ Ln
is by definition n.

Definition 1.2. A differential graded Lie algebra (DGLA for short) is a graded Lie algebra
(L, [· , ·]) equipped with a homological derivation d : L→ L of degree 1. In other words:

(1) |da| = |a|+ 1 (d of degree 1);

(2) d[a, b] = [da, b] + (−1)|a|[a, db] (derivation);

(3) d2 = 0 (homological).

In order to formulate the definition of an L∞-algebra, a notion due to Lada and
Stasheff [LS93], let us give two notations. Given two elements v1, v2 in a graded vector space V ,
let us define the Koszul sign of the transposition τ1,2 of these two elements by

ε(τ1,2, v1, v2) := (−1)|v1||v2|.

We then extend multiplicatively this definition to an arbitrary permutation using a decomposition
into transpositions. We will often abuse the notation ε(σ, v1, . . . , vn) by writing ε(σ), and we define
χ(σ) := ε(σ)(−1)σ.

We will also need unshuffles: σ ∈ Sn is called an (i, n− i)-unshuffle if it satisfies σ(1) < · · · <
σ(i) and σ(i+1) < · · · < σ(n). The set of (i, n− i)-unshuffles is denoted by S(i,n−i). After [LM95,
Definition 2.1], we have the following definition.

Definition 1.3. An L∞-algebra is a Z-graded vector space V equipped with a collection (k > 1)
of linear maps lk : ⊗kV −→ V of degree 2 − k satisfying, for every collection of homogeneous
elements v1, . . . , vn ∈ V :

(1) graded antisymmetry: for every σ ∈ Sn,

ln(vσ(1), . . . , vσ(n)) = χ(σ)ln(v1, . . . , vn);
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(2) relations: for all n > 1,∑
i+j=n+1
i,j>1

(−1)i(j−1)
∑

σ∈S(i,n−i)

χ(σ)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0.

In a curved L∞-algebra, one additionally allows for an element l0 ∈ V2, one allows i and j to be
zero in the relations (2), and one adds the relation corresponding to n = 0.

Notice that when all lk vanish except for k = 2, we obtain graded Lie algebras.
In Definition 1.3, the multibrackets are graded antisymmetric and lk has degree 2−k, whereas

in the next definition they are graded symmetric and all of degree 1.

Definition 1.4. An L∞[1]-algebra is a graded vector space W equipped with a collection (k > 1)
of linear maps mk : ⊗kW −→ W of degree 1 satisfying, for every collection of homogeneous
elements v1, . . . , vn ∈W :

(1) graded symmetry: for every σ ∈ Sn,

mn(vσ(1), . . . , vσ(n)) = ε(σ)mn(v1, . . . , vn);

(2) relations: for all n > 1,∑
i+j=n+1
i,j>1

∑
σ∈S(i,n−i)

ε(σ)mj(mi(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0.

In a curved L∞[1]-algebra, one additionally allows for an element m0 ∈ W1 (which can be
understood as a bracket with zero arguments), one allows i and j to be zero in the relations
(2), and one adds the relation corresponding to n = 0.

Remark 1.5. There is a bijection between L∞-algebra structures on a graded vector space V and
L∞[1]-algebra structures on V [1], the graded vector space defined by (V [1])i := Vi+1 [Vor05a,
Remark 2.1]. The multibrackets are related by applying the décalage isomorphisms

(⊗nV )[n] ∼= ⊗n(V [1]), v1 · · · vn 7→ v1 · · · vn · (−1)(n−1)|v1|+···+2|vn−2|+|vn−1|, (2)

where |vi| denotes the degree of vi ∈ V . The bijection extends to the curved case.

From now on, for any v ∈ V , we denote by v[1] the corresponding element in V [1] (which
has degree |v| − 1). Also, we denote the multibrackets in L∞[1]-algebras by {· · · }, we denote by
d := m1 the unary bracket, and in the curved case we denote {∅} := m0 (the bracket with zero
arguments).

Definition 1.6. Given an L∞[1]-algebra W , a Maurer–Cartan element is a degree-zero element
α satisfying the Maurer–Cartan equation

∞∑
n=1

1

n!
{α, . . . , α︸ ︷︷ ︸
n times

} = 0. (3)

One denotes by MC (W ) the set of its Maurer–Cartan elements.
If W is a curved L∞[1]-algebra, one defines Maurer–Cartan elements by adding m0 ∈W1 to

the left-hand side of (3) (i.e. by letting the sum in (3) start at n = 0).

There is an issue with the above definition: the left-hand side of (3) is generally an infinite
sum. In this paper, we solve this issue by considering filtered L∞[1]-algebras (see Definition 1.16),
for which the above infinite sum automatically converges.
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1.2 Voronov’s constructions of L∞-algebras as derived brackets
In this subsection, we introduce V-data and recall how Voronov associates L∞[1]-algebras to a
V-data.

Definition 1.7. A V-data consists of a quadruple (L, a, P,∆), where:
• L is a graded Lie algebra (we denote its bracket by [· , ·]);
• a is an abelian Lie subalgebra;
• P : L→ a is a projection whose kernel is a Lie subalgebra of L;
• ∆ ∈ Ker(P )1 is an element such that [∆,∆] = 0.
When ∆ is an arbitrary element of L1 instead of Ker(P )1, we refer to (L, a, P,∆) as a curved
V-data.

Theorem 1 [Vor05a, Theorem 1, Corollary 1]. Let (L, a, P,∆) be a curved V-data. Then a is a
curved L∞[1]-algebra for the multibrackets {∅} := P∆ and (n > 1)

{a1, . . . , an} = P [. . . [[∆, a1], a2], . . . , an]. (4)

We obtain a L∞[1]-algebra exactly when ∆ ∈ Ker(P ).

When ∆ ∈ Ker(P ), there is actually a larger L∞[1]-algebra, which contains a as in Theorem 1
as an L∞[1]-subalgebra.

Theorem 2 [Vor05b, Theorem 2]. Let V := (L, a, P,∆) be a V-data and denote D :=
[∆, ·] : L→ L. Then the space L[1]⊕ a is a L∞[1]-algebra for the differential

d(x[1], a) := (−(Dx)[1], P (x+Da)), (5)

the binary bracket

{x[1], y[1]} = [x, y][1](−1)|x| ∈ L[1], (6)

and, for n > 1,

{x[1], a1, . . . , an} = P [. . . [x, a1], . . . , an] ∈ a, (7)

{a1, . . . , an} = P [. . . [Da1, a2], . . . , an] ∈ a. (8)

Here x, y ∈ L and a1, . . . , an ∈ a. Up to permutation of the entries, all the remaining multibrackets
vanish.

Notation 1.8. We will denote by

aP∆

and by

(L[1]⊕ a)P∆ or sometimes g(V )

the L∞[1]-algebras produced by Theorems 1 and 2.

Given a curved V -data, assume that Φ ∈ a0 is such that e[·,Φ] is well defined (see
Proposition 1.18 for a sufficient condition), giving an automorphism of (L, [· , ·]). We will consider

PΦ := P ◦ e[·,Φ] : L→ a. (9)

Notice that PΦ is a projection, since e[·,Φ]|a = Ida by the abelianity of a.
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Remark 1.9. Let (L, a, P,∆) be a curved V-data and Φ ∈ a0 as above. Then Φ is a Maurer–Cartan
element of aP∆ if and only if

PΦ∆ = 0 (10)

or, equivalently ∆ ∈ ker(PΦ). This follows immediately from (4) and will be used repeatedly in
the proof of Theorem 3.

Remark 1.10. Let L′ be a graded Lie subalgebra of L preserved by D (for example, L′ = Ker(P )).
Then L′[1] ⊕ a is stable under the multibrackets of Theorem 2. We denote by (L′[1] ⊕ a)P∆ the
induced L∞[1]-structure.

Remark 1.11. Voronov’s Theorem 2 [Vor05b] is actually formulated for any degree 1 derivation
D of L preserving Ker(P ) and satisfying D ◦D = 0. We restrict ourselves to inner derivations
for the sake of simplicity and since all the derivations that appear in our examples are of this
kind.

A ‘semidirect product’ L∞[1]-algebra similar to the one in Theorem 2 appeared in [BFLS98,
FM07].

1.3 The tangent complex within Voronov’s theory
In this subsection we study how Voronov’s L∞[1]-algebras behave under twisting. We will use
this in § 1.4 to provide an alternative argument for Theorem 3.

It is well known [Get09, Proposition 4.4] that one can twist an L∞[1]-algebra g by one of its
Maurer–Cartan elements α. One obtains a new L∞[1]-algebra gα, sometimes called the tangent
complex at α. Its nth multibracket is

{· · · }αn = {· · · }n + {α, . . .}n+1 +
1

2!
{α, α, . . .}n+2 + · · · , (11)

where {· · · }j denotes the jth multibracket of g.
A property of the tangent complex gα is that its Maurer–Cartan elements are in one to one

correspondence with the deformations of α, i.e.

α+ α̃ ∈ MC (g)⇔ α̃ ∈ MC (gα) (12)

(by [LV12, Proposition 12.2.33] or direct computation). We express the notion of tangent complex
in the setting of Voronov’s theory (recall that the notation g(V ) was defined in § 1.2).

Lemma 1.12. Let V := (L, a, P,∆) be a filtered V-data and let α := (∆′[1],Φ′) be a Maurer–
Cartan element of g(V ). Then

g(V )α = g(Vα)

with Vα := (L, a, PΦ′ ,∆ + ∆′).

This lemma is a generalization of the remark by Domenico Fiorenza that ((L[1]⊕a)P0 )(∆[1],0) =

(L[1]⊕ a)P∆. We do not need to prove that Vα is a V-data since, as a twist of an L∞[1]-algebra,
g(Vα) is automatically an L∞[1] algebra.

Proof. Let n > 2 and α := (∆′[1],Φ′) ∈ L[1] ⊕ a. The kth summand (k > 0) of the right-hand
side of (11), applied to elements xi[1] + ai, can be rewritten as

1

k!
{α, . . . , α︸ ︷︷ ︸

k

, x1[1] + a1, . . . , xn[1] + an}n+k = Ak +Bk + Ck
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with

Ak =
1

(k − 1)!
P [. . . [. . . [∆′,Φ′], . . . ,Φ′︸ ︷︷ ︸

k−1

], a1, . . . , an], (13)

Bk =
1

k!

n∑
i=1

P [. . . [. . . [xi,Φ
′], . . . ,Φ′︸ ︷︷ ︸

k

], a1, . . . , âi, . . . , an], (14)

Ck =
1

k!
P [. . . [. . . [∆,Φ′], . . . ,Φ′︸ ︷︷ ︸

k

], a1, . . . , an], (15)

defining A0 := 0. Notice that (13) and (14) come from (7) (encoding the L[1]-components of α
and xi[1] + ai, respectively) and (15) comes from (8).

On the other hand, the brackets of (L[1]⊕ a)
PΦ′
∆+∆′ for n > 2 read

{x1[1] + a1, . . . , xn[1] + an}n = A+B + C,

where

A= PΦ′ [. . . [∆
′, a1], . . . , an],

B =
n∑
i=1

PΦ′ [. . . [xi, a1], . . . , âi, . . . , an],

C = PΦ′ [. . . [∆, a1], . . . , an].

Since e[·,Φ′] is a morphism of graded Lie algebras and e[·,Φ′]|a = Ida, we have

e[·,Φ′][. . . [x, a1], . . . , an] = [. . . [e[·,Φ′]x, a1], . . . , an]

for all x ∈ L. Expanding e[·,Φ′] as a series gives

A =
∑
k

Ak, B =
∑
k

Bk, C =
∑
k

Ck,

therefore showing that the nth multibrackets agree for n > 2. Similar computations give the
cases n = 1, 2. 2

1.4 The main tool
Given a V-data (L, a, P,∆), we fix a Maurer–Cartan Φ of aP∆ and study the deformations of ∆
and Φ.

In what follows, the assumption filtered is there to ensure the convergences of the infinite
sums appearing, and can be neglected on a first reading. We will address convergence issues in
§ 1.5.

Lemma 1.13. Let (L, a, P,∆) be a filtered V-data and let Φ ∈ MC (aP∆). Then (L, a, PΦ,∆) is
also a V-data.

Proof. The projection PΦ is well defined in Proposition 1.18 in § 1.5. The subspace Ker(PΦ) =
e[·,−Φ](Ker(P )) is a Lie subalgebra of L, since e[·,−Φ] is a Lie algebra automorphism of L and
ker(P ) is a Lie subalgebra. Further, ∆ ∈ ker(PΦ) by Remark 1.9. Hence, (L, a, PΦ,∆) is a
V-data. 2
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The following is the main tool used in the rest of the paper. It says that the deformations of
∆ and Φ are governed by (L[1]⊕ a)PΦ

∆ . In the applications, Φ will be the object of interest, as it
will correspond to morphisms, subalgebras, and so on.

Theorem 3. Let (L, a, P,∆) be a filtered V-data and let Φ ∈ MC (aP∆). Then, for all ∆̃ ∈ L1

and Φ̃ ∈ a0: {
[∆ + ∆̃,∆ + ∆̃] = 0

Φ + Φ̃ ∈ MC (aP
∆+∆̃

);
⇔ (∆̃[1], Φ̃) ∈ MC ((L[1]⊕ a)PΦ

∆ ). (16)

In this case, aP
∆+∆̃

is a curved L∞[1]-algebra. It is a L∞[1]-algebra exactly when ∆̃ ∈ Ker(P ).

Proof. By Lemma 1.13, we can apply Theorem 2 to obtain the L∞[1]-algebra (L[1]⊕a)PΦ
∆ , whose

multibrackets we denote by {· · · }. We compute each summand appearing in the left-hand side
of the Maurer–Cartan equation for (∆̃[1], Φ̃) in (L[1]⊕ a)PΦ

∆ , which reads

∞∑
n=1

1

n!
{(∆̃[1], Φ̃), . . . , (∆̃[1], Φ̃)}. (17)

We have

{(∆̃[1], Φ̃)} = (−[∆, ∆̃][1], PΦ∆̃ + PΦ[∆, Φ̃] ),

{(∆̃[1], Φ̃), (∆̃[1], Φ̃)} = (−[∆̃, ∆̃][1], 2 · PΦ[∆̃, Φ̃] + PΦ[[∆, Φ̃], Φ̃] ),

{(∆̃[1], Φ̃), . . . , (∆̃[1], Φ̃)︸ ︷︷ ︸
n times

} = ( 0 , n · PΦ[[[∆̃, Φ̃], . . .], Φ̃︸ ︷︷ ︸
n−1 times

] + PΦ[[[[∆, Φ̃], Φ̃], . . .], Φ̃︸ ︷︷ ︸
n times

]).

The last line refers to the nth term for n > 3, and holds since the higher brackets with two or
more entries in L[1]⊕ {0} vanish.

Hence, the L[1]-component of (17) is just −1
2 [∆ + ∆̃,∆ + ∆̃][1]. The a-component of (17) is

PΦ(e[·,Φ̃]∆̃ + (e[·,Φ̃] − 1)∆)

= PΦe
[·,Φ̃](∆ + ∆̃)

= Pe[·,Φ+Φ̃](∆ + ∆̃),

which, by Remark 1.9, is the left-hand side of the Maurer–Cartan equation in aP
∆+∆̃

for Φ + Φ̃.

Here in the first equation we used Remark 1.9.
The last two statements follow from Theorem 1. 2

We end this subsection by presenting an alternative, more conceptual proof of Theorem 3.
It is given by

(∆̃[1], Φ̃) ∈ MC ((L[1]⊕ a)PΦ
∆ )⇔ ((∆ + ∆̃)[1],Φ + Φ̃) ∈ MC ((L[1]⊕ a)P0 )

⇔
{

[∆ + ∆̃,∆ + ∆̃] = 0

Φ + Φ̃ ∈ MC (aP
∆+∆̃

).

The first equivalence is the conjunction of Lemma 1.12 (applied to V = (L, a, P, 0) and α = (∆[1],
Φ)) and of property (12). The second equivalence comes from the fact that the only non-vanishing
brackets of (L[1]⊕ a)P0 are given by d(x[1]) = Px for x ∈ L, by (6) and (7).
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1.5 Convergence issues
The left-hand side of the Maurer–Cartan equation (3) is generally an infinite sum. In this
subsection, we review Getzler’s notion of a filtered L∞-algebra [Get10a], which guarantees that
the above infinite sum converges. We show that simple assumptions on V-data ensure that the
Maurer–Cartan equations of the (curved) L∞[1]-algebras we construct in Theorem 3 (and
Lemma 1.12) do converge.

Definition 1.14. Let V be a graded vector space. A complete filtration is a descending filtration
by graded subspaces

V = F−1V ⊃ F0V ⊃ F1V ⊃ · · ·
such that the canonical projection V → lim

←
V/FnV is an isomorphism. Here

lim
←
V/FnV :={→x ∈ Πn>−1V/FnV : Pi,j(xj) = xi when i < j},

where Pi,j : V/F jV −→ V/F iV is the canonical projection induced by the inclusion F jV ⊂ F iV .

Remark 1.15. If V can be written as a direct product of subspaces V =
∏
k>−1 V

k, then

{FnV }n>−1 is a complete filtration of V , where FnV :=
∏
k>n V

k.

Definition 1.16. Let W be a curved L∞[1]-algebra. We say that W is filtered1 if there exists
a complete filtration on the vector space W such that all multibrackets {· · ·} have filtration
degree −1.

Notice that for an element Φ ∈ W of filtration degree 1, we have {Φ, . . . ,Φ}n ∈ Fn−1W for
all n, so the infinite sum

∞∑
n=0

1

n!
{Φ, . . . ,Φ}n (18)

converges in W by the completeness of the filtration. Indeed, setting wi :=
∑i

n=0 1/n!{Φ, . . . ,Φ}n
mod F iW for all i defines an element

→
w ∈ Πn>−1W/FnW , which turns out to belong to

lim
←
W/FnW ∼= W .

We define Maurer–Cartan elements to be Φ ∈ W0 ∩ F1W for which the infinite sum (18)
vanishes, and we write MC (W ) for the set of Maurer–Cartan elements.

Definition 1.17. Let (L, a, P,∆) be a curved V-data (Definition 1.7). We say that this curved
V-data is filtered if there exists a complete filtration on the graded vector space L such that:

(a) the Lie bracket has filtration degree zero, i.e. [F iL,F jL] ⊂ F i+jL for all i, j > −1;

(b) a0 ⊂ F1L;

(c) the projection P has filtration degree zero, i.e. P (F iL) ⊂ F iL for all i > −1.

Proposition 1.18. Let (L, a, P,∆) be a filtered, curved V-data. Then, for every Φ ∈MC (aP∆) ⊂
a0:

(1) the projection PΦ := P ◦ e[·,Φ] : L→ a is well defined and has filtration degree zero;

(2) the curved L∞[1]-algebra aPΦ
∆ given by Theorem 1 is filtered by Fna := FnL ∩ a. Further,

the sum (18) converges for any degree-zero element a of a;

1 Our definition differs from Getzler’s, which requires that W = F0W and that the multibrackets have filtration
degree zero except for the zeroth bracket, which has filtration degree 1.
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(3) if ∆ ∈ ker(P ), the L∞[1]-algebra (L[1]⊕a)PΦ
∆ given by Theorem 2 is filtered by Fn(L[1]⊕a)

:= (FnL)[1] ⊕ Fna. Further, the sum (18) converges for any degree-zero element element

(x[1], a) of L[1]⊕ a.

Proof. (1) For every x ∈ L, say x ∈ F iL, by Definition 1.17(a) and (b) we have

[[. . . [x,Φ], . . .],Φ︸ ︷︷ ︸
n times

] ∈ F i+nL.

Hence, the completeness of the filtration on L implies that e[·,Φ] is a well-defined endomorphism

of L. The above also shows that e[·,Φ] has filtration degree zero and, since P does by

Definition 1.17(c), we conclude that the projection PΦ has filtration degree zero.

(2) We first check that {Fna}n>−1 is a complete filtration of the vector space a.

The map a→ lim
←

a/Fna is surjective. Indeed, take an element of lim
←

a/Fna and consider its

image under the canonical embedding lim
←

a/Fna ↪→ lim
←
W/FnW . It is a sequence of elements

{ai mod F iW}i>−1, where ai ∈ a. The surjectivity of W → lim
←
W/FnW implies that there is

an element w ∈ W such that ai mod F iW = w mod F iW for all i, which implies that w ∈
F iW + a for all i and hence w ∈ ∩i(F iW + a). Since ∩i(F iW ) = {0} (by the injectivity of

W → lim
←
W/FnW ), this means that w ∈ a.

The map a → lim
←

a/Fna is injective. Indeed, an element a ∈ a is sent to 0 if and only if

a ∈ ∩i(F ia). But ∩i(F ia) ⊂ ∩i(F iW ), which is {0} as seen above.

The multibracket of aPΦ
∆ is given by PΦ[. . . [[∆, •], •], . . . , •] (see Theorem 1). Using (1) and

Definition 1.17(a), we see that this multibracket has filtration degree −1.

For the last statement, notice that a0 ⊂ F1a by Definition 1.17(b).

(3) {(FnL)[1] ⊕ Fna}n>−1 is a complete filtration of the vector space L[1] ⊕ a because the

two summands are complete filtrations of L[1] and a, respectively (by assumption and by (2),

respectively). The multibrackets of (L[1] ⊕ a)PΦ
∆ are given in Theorem 2, and all have filtration

degree −1 by (1) and Definition 1.17(a).

For the last statement, notice that the non-vanishing multibrackets of (L[1]⊕ a)PΦ
∆ accept at

most two entries from L[1], and use again a0 ⊂ F1a. 2

A version of Proposition 1.18 in which the curved V-data is not assumed to be filtered, and

working in the formal setting, is given in [FZ13].

1.6 Equivalences of Maurer–Cartan elements

Let W be an L∞[1]-algebra. On MC (W ), the set of Maurer–Cartan elements, there is a canonical

involutive (singular) distribution D which induces an equivalence relation on MC (W ) known as

gauge equivalence. More precisely, each z ∈W−1 defines a vector field Yz on W0, whose value at

m ∈W0 is2

Yz|m := dz + {z,m}+
1

2!
{z,m,m}+

1

3!
{z,m,m,m}+ · · · . (19)

This vector field is tangent to MC (W ). The distribution at the point m ∈ MC (W ) is defined as

D|m = {Yz|m : z ∈W−1}.
2 The infinite sum (19) is guaranteed to converge if W is filtered and W−1 ⊂ F1W ; see § 1.5. For the example we
consider in § 2.3, this sum is actually finite.
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Remark 1.19. We give a justification of the above statements; see also [KS, § 3.4.2], [Mer00, § 2.5],

and [Fuk03, § 2.2]. Suppose that W is finite dimensional, so that the L∞[1]-algebra structure is

encoded3 by a degree 1, self-commuting vector field Q on W [Vor05a, Example 4.1]. We recall

the following fact, which holds for any vector field X on W0 and any element m ∈ W0 (which

defines a constant vector field m on W0):

X|m = (e[m,·]X)|0. (20)

Indeed, both sides equal ((φ−1)∗X)|0, where φ denotes the time-one flow of m (translation by

m). Equation (20) applied to X = Q implies immediately that a point m ∈W0 is a zero of Q if

and only if −m satisfies the Maurer–Cartan equation (3).

View z ∈ W−1 as a constant (degree −1) vector field on W . Then [Q, z] is a degree-zero

vector field. As L[Q,z]Q = [[Q, z], Q] = 0, the flow of [Q, z] preserves the set of zeros of Q and

hence [Q, z] is tangent to this set. Equation (20) applied to X = [Q,Z] implies that [Q, z]|W0 is

the pushforward by − IdW0 of Yz; therefore, Yz is tangent to MC (W ).

A computation shows that D can also be described in terms of all degree −1 vector fields:

D|m = {[Q,Z]|m : Z ∈ χ−1(W )} for all m ∈ MC (W ). Since [[Q,Z], [Q,Z ′]] = [Q, [[Q,Z], Z ′]], it

follows that D is involutive.

We will display explicitly the equivalence relation induced on twisted Poisson structures in

§ 2.3 and show that in this case the equivalence classes coincide with the orbits of a group action.

2. Applications to Poisson geometry

In this section, we apply the machinery developed in § 1 to examples arising from Poisson

geometry. We study deformations of Poisson manifolds and coisotropic submanifolds in § 2.1. We

consider deformations of Courant algebroids and Dirac structures in § 2.2, focusing on the special

case of twisted Poisson structures (and discussing equivalences) in § 2.3. Finally, we consider

deformations of Courant algebroids and generalized complex structures in § 2.4, discussing the

case of complex structures in § 2.5.

2.1 Coisotropic submanifolds of Poisson manifolds

In this subsection, we consider deformations of Poisson structures on a manifold M and

deformations of coisotropic submanifolds. We build on work of Oh and Park [OP05], who realized

that deformations of a coisotropic submanifold of a fixed symplectic manifold are governed by

an L∞[1]-algebra, and on work of Cattaneo and Felder [CF07], who associated an L∞[1]-algebra

to any coisotropic submanifold of a Poisson manifold.

Our main reference for this deformation problem is [Sch09, § 3.2], which is based on [OP05,

CF07]. Recall that a Poisson structure on M is a bivector field π on M such that [π, π] = 0, where

the bracket denotes the Schouten bracket, and that a submanifold C ⊂ (M,π) is coisotropic if

π]TC ◦ ⊂ TC , where TC ◦ := {ξ ∈ T ∗M |C : ξ|TC = 0} and π] : T ∗M → TM is the contraction

with π [CW99].

Let M be a manifold. Let C ⊂M be a submanifold. Fix an embedding of the normal bundle

νC := TM |C/TC into a tubular neighborhood of C in M , such that the embedding and its

derivative are the identity on C. In the following, we will identify νC with its image in M .

3 The multibrackets on W are recovered from Q by applying Theorem 1 to the V-data (L = χ(W ), a =
{constant vector fields on W}, P (X) = X|0, Q).
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We say that a vector field on νC is fiberwise polynomial if it preserves the fiberwise polynomial
functions on the vector bundle νC. Such a vector field X has polynomial degree n (denoted
|X|pol = n) if its action on fiberwise polynomial functions raises their degree (as polynomials)
at most by n. Locally, choose local coordinates on C and linear coordinates along the fibers of
νC, which we denote collectively by x and p, respectively. Then the fiberwise polynomial vector
fields are exactly those which are sums of expressions f1(x)F1(p)(∂/∂x) and f2(x)F2(p)(∂/∂p),
where fi ∈ C∞(C) and the Fi are polynomials. The polynomial degrees of the two vector fields
exhibited here are deg(F1) and deg(F2)− 1, respectively.

Consider χ•(νC), the space of multivector fields on the total space νC, and denote by χ•fp(νC)
the sums of products of fiberwise polynomial vector fields. The space χ•(νC))[1] is a graded
Lie algebra when endowed with the Schouten bracket [· , ·], and χ•fp(νC)[1] is a graded Lie
subalgebra. The notion of polynomial degrees carries on to fiberwise polynomial multivector
fields, by |X1 ∧ · · · ∧Xk|pol =

∑
i |Xi|pol. The Schouten bracket preserves the polynomial degree

(this is clear if we think of multivector fields as acting on tuples of functions).
Sections in Γ(∧νC) can be regarded as elements of χ•fp(νC) which are vertical (tangent to

the fibers) and fiberwise constant. A fiberwise polynomial Poisson bivector field on νC is an
element π ∈ χ2

fp(νC) such that [π, π] = 0. Notice that the associated Poisson bracket raises the
degree of fiberwise polynomial functions on νC by at most |π|pol.

Remark 2.1. The condition that a Poisson structure be fiberwise polynomial is quite strong. The
results of this subsection are extended in [SZ13] to Poisson structures in a neighborhood U ⊂ νC
of the zero section which are ‘fiberwise entire’, in the following sense: the Poisson bracket of two
fiberwise polynomial functions, restricted to U ∩ νxC , is given by a converging power series (for
any x ∈ C).

Lemma 2.2. Let π be a fiberwise polynomial Poisson structure on νC. The following quadruple
forms a curved V-data:
• the graded Lie algebra L := χ•fp(νC)[1];
• its abelian subalgebra a := Γ(∧νC)[1];
• the natural projection P : L→ a given by restriction to C and projection along ∧T (νC)|C→

∧νC;
• ∆ := π;
hence, by Theorem 1, we obtain a curved L∞[1]-structure aP∆.

Its Maurer–Cartan equation reads

P

|π|pol+2∑
n=0

1

n!
[[. . . [π,Φ], . . .],Φ︸ ︷︷ ︸

n times

] = 0, (21)

where Φ ∈ Γ(νC)[1] is seen as a vertical vector field on νC. Here Φ ∈ Γ(νC)[1] is a Maurer–Cartan
element in aP∆ if and only if graph(−Φ) is a coisotropic submanifold of (νC, π).

Further, the above quadruple forms a V-data if and only if C is a coisotropic submanifold of
(νC, π).

Proof. The fact that the above quadruple forms a curved V-data is essentially the content
of [CF07, § 2.6]. For a more detailed proof, we refer to [Sch09, Lemma 3.3 in § 3.3], use that
χ•fp(νC) is a graded Lie subalgebra of χ•(νC), and use that [π, π] = 0 by the definition of
Poisson structure.

To prove (21), we argue as follows. Elements ai ∈ a0 = Γ(νC)[1], seen as vertical vector fields
on νC, have polynomial degree −1 (in coordinates they read f(x)(∂/∂p)). Since the Schouten
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bracket preserves the polynomial degree, [[. . . [π, a1], . . .], an] has polynomial degree |π|pol − n.
Since the polynomial degree of a non-vanishing bivector field is >−2, we conclude that the above
iterated brackets vanish for n > |π|pol + 2.

The equivalence4 between Φ ∈ Γ(νC)[1] being a Maurer–Cartan element and graph(−Φ)
being a coisotropic submanifold of (νC, π) is proven as follows. Denote by ψ : νC → νC the
time-one flow of the vector field Φ (so ψ is just translation by Φ). In particular, ψ(graph(−Φ)) =
C. The pushforward bivector field by ψ satisfies ψ∗(π) = e[·,Φ]π. Hence, graph(−Φ) is coisotropic
(with respect to π) if and only if C satisfies the coisotropicity condition with respect to e[·,Φ]π,
which is just (21). To show that ψ∗(π) = e[·,Φ]π, let f, g be fiberwise polynomial functions on
νC. We have ψ∗f = eΦf using the Taylor expansion of f on each fiber. Hence,

(ψ∗π)(f, g) = (ψ−1)∗(π(ψ∗f, ψ∗g)) = e−Φ(π(eΦf, eΦg))

= e[·,Φ][[π, e[Φ,·]f ], e[Φ,·]g] = [[e[·,Φ]π, f ], g] = (e[·,Φ]π)(f, g).

For the last statement, use Theorem 1 and notice that C is coisotropic if and only if we can
write π =

∑
j Xj ∧ Yj with Xj tangent to C, i.e. if and only if π ∈ ker(P ). 2

Hence, we can apply Theorem 3 (with ∆ = π = 0 and Φ = 0).

Corollary 2.3. Let C be a submanifold of a manifold and consider a tubular neighborhood
νC. For all π̃ ∈ χ2

fp(νC) and Φ̃ ∈ Γ(νC):{
π̃ is a Poisson structure

graph(−Φ̃) is a coisotropic submanifold of (νC, π̃);

⇔ (π̃[2], Φ̃[1]) is a Maurer–Cartan element of the L∞[1]-algebra χ•fp(νC)[2]⊕ Γ(∧νC)[1].

The above L∞[1]-algebra structure is given by the multibrackets (all others vanish)

d(X[1]) = PX,

{X[1], Y [1]}= [X,Y ][1](−1)|X|,

{X[1], a1, . . . , an}= P [. . . [X, a1], . . . , an] for all n > 1,

where X,Y ∈ χ•fp(νC)[1], a1, . . . , an ∈ Γ(∧νC)[1], and [· , ·] denotes the Schouten bracket on
χ•fp(νC)[1].

Remark 2.4. (1) The formulae for the multibrackets in Corollary 2.3 show that the Maurer–
Cartan equation for (π̃[2], Φ̃[1]) has at most |π̃|pol + 2 terms, by the same argument as in
Lemma 2.2.

(2) It is known that the deformation problem of coisotropic submanifolds in Poisson (even
symplectic) manifolds is formally obstructed [OP05]. Corollary 2.3 is used in [SZ13] to show
that the same applies to the simultaneous deformation problem of coisotropic submanifolds and
fiberwise entire Poisson structures.

We now display the L∞[1]-algebra governing the deformations of a Poisson structure π and
of a coisotropic submanifold C.

Corollary 2.5. Let (M,π) be a Poisson manifold and C a coisotropic submanifold. Identify
a tubular neighborhood of C in M with the normal bundle νC in such a way that π is
fiberwise polynomial. There is an L∞[1]-algebra structure on χ•fp(νC)[2] ⊕ Γ(∧νC)[1] whose

Maurer–Cartan elements are exactly pairs (π̃[2], Φ̃[1]), where π̃ ∈ χ2
fp(νC) and Φ̃ ∈ Γ(νC) are

4 See [Sch09, Example 3.2 in § 4.3] for an example where π is not fiberwise polynomial and the correspondence
fails.
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such that π + π̃ is a Poisson structure and graph(−Φ) is a coisotropic submanifold with respect
to π + π̃.

Its non-vanishing multibrackets {· · · }π are given as follows:

dπ(X[1]) = (−[π,X][1], P (X)),

dπ(a) = (0, P ([π, a])),

{X[1], Y [1]}π2 = (−1)|X|[X,Y ][1],

{a1, . . . , an}πn = P ([. . . [π, a1], . . . , an]) for all n > 1,

{X[1], a1, . . . , an}πn+1 = P ([. . . [X, a1], . . . , an]) for all n > 1,

where X,Y ∈ χ•fp(νC)[1] and a1, . . . , an ∈ Γ(∧νC)[1].

Proof. By (12), in order to obtain an L∞[1]-algebra whose Maurer–Cartan elements are those
specified in the statement of the present corollary, we can twist the L∞[1]-algebra of Corollary 2.3
using the Maurer–Cartan element (π[2], 0). Notice that (π[2], 0) is really a Maurer–Cartan
element, since π is a Poisson structure and C is coisotropic with respect to π.

The multibrackets {· · · }π are computed as in (11). Notice that the particular form of the
multibrackets appearing in Corollary 2.3 forces all terms on the right-hand side of (11) to be
zero, except possibly for the first two. 2

2.2 Dirac structures and Courant algebroids
In this subsection, we consider a Courant algebroid structure on a fixed vector bundle and a Dirac
subbundle A. We study deformations of the Courant algebroid structure (with the constraint
that the symmetric pairing remains unchanged) and of the Dirac subbundle A. Deformations of
Dirac subbundles within a fixed Courant algebroid were studied by Liu et al. [LWX97] and by
Bursztyn et al. [BCŠ05]. We will make use of facts from [BCŠ05, § 3] and Roytenberg [Roy02b,
§ 3, Roy99, § 3, Roy02a]. We refer to [Sch09, § 1.4] or [CS11] for some basic facts on graded
geometry.

Recall that a Courant algebroid consists of a vector bundle E → M with a non-degenerate
symmetric pairing on the fibers, a bilinear operation J· , ·K on Γ(E), and a bundle map ρ : E →
TM satisfying compatibility conditions; see for instance [Roy02a, Definition 4.2]. An example is
TM ⊕T ∗M with the natural pairing, JX + ξ, Y + ηK := [X,Y ] +LXη− ιY dξ, and ρ(X + ξ) = X
(this is sometimes called the standard Courant algebroid). A Dirac structure is a subbundle
L ⊂ E such that L equals its orthogonal with respect to the pairing, and so that Γ(L) is closed
under J· , ·K; see [Cou90]. Examples of Dirac structures for the standard Courant algebroid are
provided by graphs of closed 2-forms and of Poisson bivector fields.

Fix a Courant algebroid E→M and maximal isotropic subbundles A and K (not necessarily
involutive) so that E = A⊕K as a vector bundle. Identify K ∼= A∗ via the pairing on the fibers
of E. Consider the maps

Γ(∧2A∗)→ Γ(A), η1 ∧ η2 7→ prA(J(0, η1), (0, η2)K),
Γ(∧2A)→ Γ(A∗), a1 ∧ a2 7→ prA∗(J(a1, 0), (a2, 0)K),

and view them as elements ψ ∈ Γ(∧3A) and ϕ ∈ Γ(∧3A∗), respectively. Denote by dA the degree 1
derivation of Γ(∧A∗) given by the bracket [· , ·]A := prA(J· , ·K|A) on Γ(A) and the bundle map
ρ|A : A→ TM . Similarly, denote by dA∗ the degree 1 derivation of Γ(∧A) given by the bracket
[η1, η2]A∗ := prA∗(J(0, η1), (0, η2)K) on Γ(A∗) and the bundle map ρ|A∗ : A∗ → TM . The data
given by ψ, ϕ, (A, [· , ·]A, ρ|A), and (A∗, [· , ·]A∗ , ρ|A∗) forms a proto-bialgebroid . From these data,
one can reconstruct the Courant algebroid structure on E: the bilinear operation is recovered as
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J(a1, η1), (a2, η2)K
= ([a1, a2]A + Lη1a2 − ιη2dA∗a1 + ψ(η1, η2, ·),

[η1, η2]A∗ + La1η2 − ιa2dAη1+ϕ(a1, a2, ·)) (22)

and the anchor as ρA + ρA∗ : A⊕A∗→ TM [Roy99, § 3.8]; see also [Kos05, § 3.2].
Recall that Courant algebroids are in bijective correspondence with degree 2 symplectic

graded manifoldsM together with a degree 3 function ∆ ∈ C(M) satisfying {∆,∆} = 0 [Roy02a,
Theorem 4.5]. (Here {· , ·} denotes the degree −2 Poisson bracket on C(M) induced by the
symplectic structure.) The Courant algebroid E corresponds to

(M := T ∗[2]A[1],∆ = −ϕ+ hdA + F ∗(hdA∗ )− ψ)

with the canonical symplectic structure, by [Roy99, Theorem 3.8.2]. Here we view ψ ∈ Γ(∧3A)
and ϕ ∈ Γ(∧3A∗) as elements of C3(M). Further, hdA ∈ C3(M) is the fiberwise linear function
induced by dA, the function hdA∗ ∈ C3(T ∗[2]A∗[1]) is defined similarly, and F : T ∗[2]A[1] →
T ∗[2]A∗[1] is the canonical symplectomorphism known as Legendre transformation [Roy99, § 3.4].
We denote by pr the cotangent projection M→ A[1].

Lemma 2.6. Fix a Courant algebroid E → M and maximal isotropic subbundles A and K so
that E = A⊕K as a vector bundle. The following quadruple forms a curved V-data:
• the graded Lie algebra L := C(M)[2] with Lie bracket5 {· , ·};
• its abelian subalgebra a := pr∗(C(A[1]))[2] ∼= Γ(∧A∗)[2];
• the natural projection P : L→ a given by evaluation on the base A[1];
• ∆ = −ϕ+ hdA + F ∗(hdA∗ )− ψ;
hence, by Theorem 1, we obtain a curved L∞[1]-structure aP∆. For every Φ ∈ Γ(∧2A∗), we have
that Φ[2] is a Maurer–Cartan element of aP∆ if and only if

graph(−Φ) := {(X − ιXΦ) : X ∈ A} ⊂ A⊕A∗ = E

is a Dirac structure.
Further, the above quadruple forms a V-data if and only if A is a Dirac structure of E.

Proof. Since {· , ·} is the canonical Poisson bracket on the cotangent bundle, the cotangent fibers
and the base A[1] are Lagrangian submanifolds. Hence, a is an abelian Lie subalgebra of L and
ker(P ), which consists of a function on T ∗[2]A[1] vanishing on the base, is a Lie subalgebra. We
have {∆,∆} = 0 since ∆ induces a Courant algebroid structure on A ⊕ A∗. Hence, the above
quadruple is a curved V-data and, by Theorem 1, we obtain a curved L∞[1]-algebra structure
aP∆.

We compute the Maurer–Cartan equation of aP∆. Let Φ ∈ a0 = Γ(∧2A∗)[2]. We have {∅} =
P∆ = −ϕ. Notice that −ϕ does not appear in the remaining terms of the Maurer–Cartan
equation, since {−ϕ,Φ} = 0, for both entries belong to the abelian subalgebra a. From the
expression in coordinates for F ∗(hdA∗ ), it follows that {F ∗(hdA∗ ),Φ} and {−ψ,Φ} vanish on the
base A[1]. So,

P{∆,Φ} = {hdA ,Φ} = dAΦ ∈ Γ(∧3A∗),

where we used [Roy99, Lemma 3.3.1 1)]. Further, {{hdA ,Φ},Φ} = 0 since both {hdA ,Φ} and Φ
lie in the abelian Lie subalgebra pr∗(C(A[1])), and in coordinates it is clear that {{−ψ,Φ},Φ}
vanishes on the base A[1]. So,

P{{∆,Φ},Φ} = {{F ∗(hdA∗ ),Φ},Φ} = −[Φ,Φ]A∗ ,

5 {· , ·}, as a bracket on L, has degree zero. Hence, (L, {· , ·}) is a graded Lie algebra.
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where we used [Roy99, Lemma 3.6.2]. Further,

P{{{∆,Φ},Φ},Φ} = {{{−ψ,Φ},Φ},Φ} = (Φ] ∧ Φ] ∧ Φ])ψ ∈ Γ(∧3A∗),

where Φ] :A→A∗, v 7→ ιvΦ is the contraction in the first component (see [Kos05, § 4.1.2]). All the

other terms of the Maurer–Cartan equation vanish. Hence, we conclude that the Maurer–Cartan

equation is

−ϕ+ dAΦ− 1
2 [Φ,Φ]A∗+ ∧3 Φ̃(ψ) = 0, (23)

where ∧3Φ̃ is defined as in § 2.3.

We show that Φ satisfies (23) if and only if graph(−Φ) is a Dirac structure, using the results

of [Roy02b, § 4]. There, Roytenberg considered the time-one flow FΦ of the hamiltonian vector

field of Φ on M. As FΦ is a symplectomorphism of M, it corresponds to an isomorphism of

Courant algebroids between E′ and E, where E′ is the Courant algebroid6 corresponding to the

degree 3 function F ∗Φ(∆) on M. The pullback function F ∗Φ(∆) splits into a sum according to

bi-degree, and the component lying in Γ(∧3A∗) is

−ϕ− dAΦ− 1
2 [Φ,Φ]A∗ − ∧3Φ̃(ψ); (24)

see [Roy02b, (4.2)]. The subbundle A is a Dirac structure in E′ if its image under the isomorphism

E′ ∼= E, which is graph(Φ), is a Dirac structure in E. On the other hand, as one sees easily

from [Roy99, Theorem 3.8.2], A is a Dirac structure in E′ if and only if the component of

F ∗Φ(∆) lying in Γ(∧3A∗) (which is given by (24)) vanishes or, equivalently, if −Φ satisfies the

Maurer–Cartan equation (23). Putting together these two statements proves the claim.

Finally, notice that ∆ ∈ ker(P ) if and only if its component in the bi-degree corresponding to

Γ(∧3A∗), which is −ϕ, vanishes. Using again [Roy99, Theorem 3.8.2], we see that the quadruple

(L, a, P,∆) forms a V-data if and only if A is a Dirac structure of E. 2

Corollary 2.7. Fix a Courant algebroid E →M , a Dirac structure A, and a complementary

isotropic subbundle K. Let (L, a, P,∆) be as in Lemma 2.6 for all ∆̃ ∈ C(M)3 and Φ̃ ∈ Γ(∧2A∗):
∆ + ∆̃ defines a new Courant algebroid

structure on the vector bundle E;

graph(−Φ̃) is a Dirac structure there

⇔ (∆̃[3], Φ̃[2]) ∈ MC ((L[1]⊕ a)P∆).

Proof. The quadruple (L, a, P,∆) is a V-data by the last statement of Lemma 2.6; hence, we can

apply Theorem 3 with Φ = 0. Use again Lemma 2.6 to phrase the conclusions of Theorem 3 in

terms of Courant algebroids and Dirac structures. 2

Remark 2.8. We check that the V-data (L, a, P,∆) is filtered (Definition 1.17). The graded

manifold T ∗[2]A∗[1] is a vector bundle over A∗[1], so we can denote by Ck(T ∗[2]A∗[1]) the

functions which are polynomials of degree k on each fiber. Using the Legendre transformation

F to identify M = T ∗[2]A[1] with T ∗[2]A∗[1], we obtain a direct product decomposition

L =
∏
k>−1 L

k, where Lk := Ck+1(T ∗[2]A∗[1]). Notice that an element of pr∗(Ck+1(A[1]))[2] ∼=
Γ(∧k+1A∗)[2] lies in Lk. By Remark 1.15, FnL :=

∏
k>n L

k is a complete filtration of the vector

space L. The remaining items of Definition 1.17 are easily checked.

6 Both Courant algebroids have the same underlying vector bundle and the same symmetric pairing.

1778

https://doi.org/10.1112/S0010437X15007277 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007277


Simultaneous deformations and Poisson geometry

2.3 Twisted Poisson structures
In this subsection, we present a special case of the situation studied in § 2.2. We apply
Corollary 2.7 to the standard Courant algebroid over a manifold M and A = T ∗M . We obtain
an L∞[1]-algebra whose Maurer–Cartan elements consist of closed 3-forms and twisted Poisson
structures [ŠW01], recovering the L∞[1]-algebra recently displayed by Getzler [Get10b], and
study their equivalences. Further, given a closed 3-form H and an H-twisted Poisson structure,
we describe the L∞[1]-algebra governing the deformations of the pair (H,π). Twisted Poisson
structures appeared in relation to deformations also in [Par01, § 3].

We will need the following notation: for π ∈ ∧aTM and a > 1, we define

π] : T ∗M → ∧a−1TM , ξ→ ιξπ,

and we define π] ≡ 0 if a = 0. We also need an extension of the above to several multivectors:
for π1 ∈ ∧a1TM , . . . , πn ∈ ∧anTM (n > 1, ai > 1), we define

π]1 ∧ · · · ∧ π]n : ∧nT ∗M → ∧a1+···+an−nTM ,

ξ1 ∧ · · · ∧ ξn 7→
∑
σ∈Sn

(−1)σπ]1(ξσ(1)) ∧ · · · ∧ π]n(ξσ(n)),

where ξi ∈ T ∗M and (−1)σ is the sign of the permutation σ.
Recall that, given a bivector field π and a closed 3-form H, one says that π is an H-twisted

Poisson structure [ŠW01, (1)] if and only if

[π, π] = 2 ∧3 π̃(H),

where ∧3π̃ = 1
6(π] ∧ π] ∧ π]) and [· , ·] is the Schouten bracket of multivector fields.

Corollary 2.9. Let M be a manifold. There is an L∞[1]-algebra structure on

L := Ω•>1(M)[3]⊕ χ•(M)[2]

whose only non-vanishing multibrackets are:

(a) minus the de Rham differential on differential forms;

(b) {π1, π2} = [π1, π2](−1)a1+1, where πi ∈ χai(M);

(c) {H,π1, . . . , πn} = (−1)
∑n

i=1 ai(n−i)(π]1 ∧ · · · ∧ π]n)H for all n > 1, where H ∈ Ωn(M) and
π1 ∈ χa1(M), . . . , πn ∈ χan(M) with all ai > 1.

Its Maurer–Cartan elements are exactly pairs (H[3], π[2]), where H ∈ Ω3(M) and π ∈ χ2(M)
are such that dH = 0 and π is an H-twisted Poisson structure.

Remark 2.10. The graded vector space L = Ω•>1(M)[3] ⊕ χ•(M)[2] is concentrated in degrees
{−2, . . . ,dim(M)− 2}, and its degree i component is Ωi+3(M)⊕ χi+2(M).

Proof. We apply Corollary 2.7 to the standard Courant algebroid TM ⊕ T ∗M (defined at the
beginning of § 2.2), to A = T ∗M , and to K = TM . Notice that it corresponds to the Lie
bialgebroid (A,K), where A has the zero structure and K = TM has its canonical Lie algebroid
structure.

We use the following notation for the canonical local coordinates on M := T ∗[2]T ∗[1]M : we
denote by xj arbitrary local coordinates on M and by pj the canonical coordinates on the fibers
of T ∗[1]M (so the degrees are |xj | = 0, |pj | = 1, for j = 1, . . . ,dim(M)). By Pj , vj , we denote
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the conjugate coordinates on the fibers ofM→ T ∗[1]M with degrees |Pj | = 2, |vj | = 1. One has

{Pj , xk} = δjk and {pj , vk} = δjk. The element of C3(M) corresponding to the standard Courant

algebroid is S :=
∑

i Pivi.

The quadruple appearing in Lemma 2.6 reads:

• L := C(T ∗[2]T ∗[1]M)[2], whose Lie bracket we denote by {· , ·};
• a := C(T ∗[1]M))[2] ∼= χ•(M)[2];

• the natural projection P : L → a given by evaluation on the base T ∗[1]M , i.e. setting

Pj = 0, vj = 0 for all j;

• ∆ =
∑

i Pivi.

The multibrackets of the L∞[1]-algebra (L[1] ⊕ a)P∆ are given in Theorem 2. Notice that using

the Legendre transformation F , we have

Ω(M)[2] = C(T [1]M)[2] ⊂ C(T ∗[2]T [1]M)[2] ∼= L,

and Ω•>1(M)[2] ⊂ ker(P ) is a Lie subalgebra preserved by {∆, ·}. So, by Remark 1.10, it follows

that L = Ω•>1(M)[3] ⊕ χ•(M)[2] is an L∞[1]-subalgebra of (L[1] ⊕ a)P∆. We justify why the

restriction of the multibrackets to L is the one described in the statement of this corollary. Type

(a) follows from (5) and{∑
i

Pivi, F (x)vε(1) · · · vε(k)

}
=
∑
i

∂F

∂xi
vivε(1) · · · vε(k),

where ε(i) = 1, . . . ,dim(M). Type (b) follows from (8) and [Roy99, Lemma 3.6.2]. Type (c)

follows from (7) and a lengthy but straightforward computation in coordinates.

For the statement on Maurer–Cartan elements, we proceed as follows. Given H ∈ Ω3(M),

the degree 3 function
∑

i Pivi + H on M defines a Courant algebroid structure (i.e. is self-

commuting) if and only if H is closed, and in this case it induces the (−H)-twisted7 Courant

algebroid (TM ⊕ T ∗M)−H [Roy02a, § 4], [Zam12, § 8]. Hence, by Corollary 2.7, (H[3], π[2]) is

a Maurer–Cartan element of L if and only if H is closed and graph(−π) is a Dirac structure

in (TM ⊕ T ∗M)−H . The latter condition is equivalent to −π being a (−H)-twisted Poisson

structure [ŠW01, § 3], that is, to π being an H-twisted Poisson structure. 2

Given a closed 3-form H and an H-twisted Poisson structure π, we now describe the L∞[1]-

algebra governing deformations of the pair (H,π) to pairs consisting of a closed 3-form and a

correspondingly twisted Poisson structure.

Corollary 2.11. Let M be a manifold, H a closed 3-form, and π an H-twisted Poisson

structure. There is an L∞[1]-algebra structure on

Ω•>1(M)[3]⊕ χ•(M)[2]

whose Maurer–Cartan elements are exactly pairs (H̃[3], π̃[2]), where H̃ ∈ Ω3(M) and π̃ ∈ χ2(M)

are such that H̃ is closed and π + π̃ is an (H + H̃)-twisted Poisson structure.

Its nth multibracket is {· · · }n + {· · · }′n, where {· · · }n denotes the nth multibracket of the

L∞[1]-algebra described in Corollary 2.9 and {· · · }′n is defined as follows:

7 Recall that the K-twisted Courant algebroid is TM ⊕ T ∗M with bilinear operation JX + ξ, Y + ηKK :=
[X,Y ] + LXη − ιY dξ + ιY ιXK.
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(i) for n = 1:

{(H̃1, π̃1)}′1 = −[π, π̃1] +
1

2
{H,π, π, π̃1}4 +

1

ñ1!
{H̃1, π, . . . , π}ñ1+1;

(ii) for n = 2:

{(H̃1, π̃1), (H̃2, π̃2)}′2 = {H,π, π̃1, π̃2}4 + δñ1,>2{H̃1, π, . . . , π, π̃2}ñ1+1
1

(ñ1 − 1)!

+ δñ2,>2{H̃2, π, . . . , π, π̃1}ñ2+1
(−1)(ñ2−1)ã1

(ñ2 − 1)!
;

(iii) for n = 3:

{(H̃1, π̃1), (H̃2, π̃2), (H̃3, π̃3)}′3
= {H, π̃1, π̃2, π̃3}4 + δñ1,>3{H̃1, π, . . . , π, π̃2, π̃3}ñ1+1

1

(ñ1 − 2)!

+ δñ2,>3{H̃2, π, . . . , π, π̃1, π̃3}ñ2+1
(−1)(ñ2−1)ã1

(ñ2 − 2)!

+ δñ3,>3{H̃3, π, . . . , π, π̃1, π̃2}ñ3+1
(−1)(ñ3−1)(ã1+ã2)

(ñ3 − 2)!
;

(iv) for n > 4:

{(H̃1, π̃1), . . . , (H̃n, π̃n)}′n =
∑

16i6n
ñi>n

{H̃i, π, . . . , π, π̃1, . . . , ̂̃πi, . . . , π̃n}ñi+1
(−1)(ñi−1)(ã1+···+ãi−1)

(ñi − n+ 1)!
,

where (H̃i, π̃i) ∈ Ωñi(M) ⊕ χãi(M), δ is the Kronecker delta (so δa,>b = 1 if a > b and zero

otherwise), and ̂̃πi denotes omission of the element π̃i.

Proof. By (12), the sought L∞[1]-algebra is obtained by twisting the L∞[1]-algebra of
Corollary 2.9 by the Maurer–Cartan element (H[3], π[2]). The nth twisted multibracket is
computed as in (11), and we write it as {· · · }n + {· · · }′n. Notice that of the three types of
multibrackets defined in Corollary 2.9, type (a) never appears while computing {· · · }′n, and type
(b) appears only when n = 1. Notice further that type (c) involves exactly one differential form
and as many multivector fields as the degree of the form. (This explains for instance why H
does not appear in the expression for {· · · }′n when n > 4.) 2

2.3.1 Equivalences of twisted Poisson structures. Consider the L∞[1]-algebra L of
Corollary 2.9. We make explicit the equivalence relation induced on its set of Maurer–Cartan
elements.

Fix (B,X) ∈ L−1 = Ω2(M)⊕χ(M). It defines a vector field Y(B,X) on L0 = Ω3(M)⊕χ2(M).
By (19) and Corollary 2.9, at the point (H,π) the vector field reads

Y(B,X)|(H,π) = (−dB, [X,π] + ∧2π̃(B − ιXH)), (25)

where ∧2π̃ := 1
2(π] ∧ π]).

Remark 2.12. The binary bracket on L−1 reduces to the Lie bracket of vector fields on χ(M),
making L−1 into a Lie algebra. The assignment (B,H) 7→ Y(B,X) is not a Lie algebra morphism.

For instance, the bracket of Y(0,X) and Y(0,X̃) differs from Y(0,[X,X̃]) for generic X, X̃ ∈ χ(M),
as one can check using the proof of Proposition 2.16 below.
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For any diffeomorphism φ of M , we consider the vector bundle automorphism

TM ⊕ T ∗M,Y + η 7→ φ∗Y + (φ−1)∗η,

which by abuse of notation we denote by φ∗. For any B ∈ Ω2(M), we consider

eB : TM ⊕ T ∗M,Y + η 7→ Y + (η + ιYB).

Recall that the vector bundle TM ⊕T ∗M is endowed with a canonical pairing on the fibers given

by 〈X1 + ξ1, X2 + ξ2〉 = 1
2(ιX1ξ2 + ιX2ξ1).

Remark 2.13. The group of vector bundle automorphisms of TM⊕T ∗M preserving the canonical

pairing and preserving8 the canonical projection TM ⊕ T ∗M → TM is given exactly by {φ∗eB :

φ ∈ Diff(M), B ∈ Ω2(M)}. This follows by the same argument as for [Gua11, Proposition 2.5].

Further, notice that eBφ∗ = φ∗e
φ∗B.

Abusing notation, for any bivector field π such that 1+B[π] : T ∗M → T ∗M is invertible, we

denote by eBπ the unique bivector field whose graph is eB(graph(π)). Here B[ is the contraction

in the first component of B.

Consider the connected group Ω2(M) o Diff(M)◦ (where the second factor denotes the

diffeomorphisms isotopic to the identity), with multiplication

(B1, φ1) · (B2, φ2) = (B1 + (φ−1
1 )∗B2, φ1 ◦ φ2).

The partial9 action of Ω2(M) o Diff(M)◦ on Ω3(M)⊕ χ2(M) by

(B,φ) · (H,π) = ((φ−1)∗(H)− dBeBφ∗π)

preserves

MC (L) = {(H,π) ∈ Ω3
closed(M)⊕ χ2(M) : π is an H-twisted Poisson structure}.

This can easily be checked using the following two facts. First, for every H ∈ H3
closed(M), the

isomorphism eBφ∗ : TM ⊕ T ∗M → TM ⊕ T ∗M maps the H-twisted Courant bracket to the

(φ−1)∗(H) − dB-twisted Courant bracket [Gua11, § 2.2]. Second, π is an H-twisted Poisson

structure if and only if graph(π) is involutive with respect to the H-twisted Courant bracket.

Remark 2.14. The map eBφ∗ is an isomorphism of Courant algebroids (from the H-twisted to

the (φ−1)∗(H) − dB-twisted Courant algebroids) covering φ, by the above and Remark 2.13.

As a consequence, twisted Poisson structures lying in the same orbit of the Ω2(M) o Diff(M)◦
action share many properties. For instance, their associated Lie algebroids are isomorphic and,

in particular, the underlying (singular) foliations are diffeomorphic.

Notice further that the Ω2(M)oDiff(M)◦ action on MC (L) preserves the cohomology class

of closed 3-forms. For instance, the orbit through (H = 0, π = 0) is {(H ′, 0) : H ′ is exact}.
We will show that the natural equivalence relation on MC (L) is given by the above Ω2(M)o

Diff(M)◦ action. To do so, we first need a technical lemma.

8 In the sense that the projection TM⊕T ∗M → TM is equivariant with respect to the vector bundle automorphism
and the derivative of its base map.
9 The action is defined whenever 1 +B[(φ∗π)] is invertible.
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Lemma 2.15. Let X be a vector field on a manifold M with flow φt defined for t ∈ I ⊂ R, let
{Ct}t∈I be a smooth family of 2-forms, and let π be a bivector field. Denote πt := (φt)∗(e

Ctπ).
Then

d

dt
πt = [X,πt] + ∧2π̃t

(
(φ−t)

∗
(
d

dt
Ct

))
. (26)

Proof. We have
d

dt
(eCtπ) = ∧2(̃eCtπ)

(
d

dt
Ct

)
. (27)

This follows from (eCtπ)] = π](1 + C[tπ
])−1 [ŠW01, § 4] and from (d/dt)(eCtπ)] = −(eCtπ)]

((d/dt)Ct)
[(eCtπ)]. Using (27) in the first equality, we obtain

d

dt
πt = (φt)∗

(
d

dt
(eCtπ) + [X, eCtπ]

)
= (φt)∗

(
∧2(̃eCtπ)

(
d

dt
Ct

))
+ (φt)∗[X, e

Ctπ],

which equals the right-hand side of (26). 2

Proposition 2.16. The leaves of the involutive singular distribution

span{Y(B,X) : (B,X) ∈ L−1 = Ω2(M)⊕ χ(M)} (28)

on MC (L) coincide with the orbits of the partial action of Ω2(M) o Diff(M)◦ on MC (L).

Proof. It suffices to show that (28) coincides with the singular distribution given by the
infinitesimal action associated to the group action of Ω2(M) o Diff(M)◦. Notice that the Lie
algebra of this group is Ω2(M)⊕χ(M), so take an element (B,X) ∈ Ω2(M)⊕χ(M). We compute
the corresponding generator of the action Z(B,X) at a point (H,π) ∈ MC (L): we have

Z(B,X)|(H,π) :=
d

dt

∣∣∣∣
t=0

(tB, φt) · (H,π) = (−d(ιXH +B), [X,π] + ∧2π̃(B)), (29)

where φt is the flow of X and where we use Lemma 2.15 to compute (d/dt)|t=0(φt)∗e
(φt)∗(tB)(π).

Comparing this with (25), we see that

Z(B−ιXH,X)|(H,π) = Y(B,X)|(H,π).

This shows that the two singular distributions agree at the point (H,π) and, repeating at every
point of MC (L), we conclude that the two singular distributions agree on MC (L). 2

We conclude by describing explicitly the flow on MC (L) induced by a fixed element (B,X)
of L−1.

Proposition 2.17. Let (B,X) ∈ Ω2(M) ⊕ χ(M). The integral curve of Y(B,X) starting at the
point (H,π) ∈ L0 reads

t 7→ (H − tdB, (φt)∗eC
H
t π), (30)

where φ denotes the flow of X and

CHt := Dt +

∫ t

0
(φ∗s)(B − ιXH) ds
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for Dt the unique solution with D0 = 0 of

d

dt
Dt = t(φ∗t )ιX dB.

(The above curve is defined as long as φt is defined and 1 + (CHt )[π] is invertible.)

Proof. Fix (H,π) ∈ L0 and consider the curve defined in (30). The curve is tangent to the vector
field Y(B,X) at all times t, by virtue of Lemma 2.15 and since

(φ−t)
∗
(
d

dt
CHt

)
= (φ−t)

∗[t(φ∗t )ιX dB + (φ∗t )(B − ιXH)] = B − ιX(H − t dB).

Since at time t = 0 the curve is located at the point (H,π), we are done. 2

Remark 2.18. Let (B,X) ∈ Ω2(M)⊕χ(M), where B is closed, and let (H,π) ∈ L0. Then Dt = 0

and consequently (φt)∗e
CH

t is a one-parameter group of orthogonal vector bundle automorphisms
of TM ⊕T ∗M (see [Gua11, Proposition 2.6]). Hence, the second component of the integral curve
of Y(B,X) starting at (H,π) is the image of (the graph of) π under a one-parameter group of
orthogonal vector bundle automorphisms of TM ⊕ T ∗M .

2.4 Generalized complex structures and Courant algebroids

In this subsection, we consider deformations of Courant algebroid structures on a fixed
pseudo–Riemannian vector bundle and of their generalized complex structures. Deformations
of generalized complex structures within a fixed Courant algebroid were studied by Gualtieri
in [Gua11, § 5].

Fix a Courant algebroid E→M and a generalized almost complex structure J , i.e. a vector
bundle map J : E→ E with J2 = − Id preserving the fiberwise pairing. The structure J can be
equivalently encoded by a complex maximal isotropic subbundle A ⊂ E ⊗ C transverse to the
complex conjugate Ā. The correspondence is as follows: given J , defineA to be the +i-eigenbundle
of the complexification of J . Given A, consider the complex endomorphism of E ⊗ C with
+i-eigenbundle A and −i-eigenbundle Ā, and define J to be the restriction to E. Further, we have
that J is a generalized complex structure (i.e. it satisfies a certain integrability condition [Hit03],
[Gua11, Definition 3.1]) if and only if A is a complex Dirac structure.

Hence, we are in the situation of § 2.2, except that we consider complex maximal isotropic
subbundles in the complexification E ⊗ C of a (real) Courant algebroid. Notice that E does
not have a preferred splitting into maximal isotropic subbundles. On the other hand, E ⊗ C is
a complex Courant algebroid with a splitting E ⊗ C = A ⊕ Ā into complex maximal isotropic
subbundles. The construction of [Roy02a, Theorem 4.5] leads to a complex graded manifold10

with a degree 2 symplectic structure {· , ·}, namely N = T ∗[2]A[1]. We denote its ‘global
functions’, a graded commutative algebra over C, by CC(N ).

Lemma 2.19. Fix a Courant algebroid E → M and a generalized almost complex structure J ,
encoded by a complex maximal isotropic subbundle A transverse to Ā. The following quadruple
forms a curved V-data:

• the complex graded Lie algebra L := CC(N )[2] with Lie bracket {· , ·};
• its complex abelian subalgebra a := pr∗(CC(A[1]))[2] ∼= Γ(∧A∗)[2];

10 It is given by a sheaf of graded commutative algebras over C satisfying the usual locally triviality condition.
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• the natural projection P : L→ a given by evaluation on the base A[1];
• ∆ = −ϕ+ hdA + F ∗(hdA∗ )−ψ, defined analogously to § 2.2;
hence, by Theorem 1, we obtain a complex11 curved L∞[1]-structure aP∆.

For all Φ ∈ Γ(∧2A∗), we have that Φ[2] is a Maurer–Cartan element in aP∆ if and only if

graph(−Φ) := {(X − ιXΦ) : X ∈ A} ⊂ A⊕ Ā = E ⊗ C

is a complex Dirac structure in E ⊗ C.
Further, the above quadruple forms a V-data if and only if J is a generalized complex

structure.

Proof. This is obtained exactly as in the proof of Lemma 2.6, but working over C and taking
K := Ā. 2

As in § 2.2, let M be the (real) degree 2 symplectic manifold with self-commuting degree 3
function ∆ corresponding to the Courant algebroid E. We have CC(N ) = C(M) ⊗ C. Since ∆
defines a complex Courant algebroid structure on E⊗C which is the complexification of a (real)
Courant algebroid structure on E, it follows that ∆ ∈ C(M) ⊂ CC(N ). We are interested only in
complex Courant algebroid structures on E⊗C which are complexifications of Courant algebroid
structures on E, so we deform ∆ only within C(M).

Corollary 2.20. Fix a Courant algebroid E → M and a generalized complex structure J ,
encoded by a complex Dirac structure A. LetM and the V-data (L, a, P,∆) be as in Lemma 2.19.
Then there exists a (real) L∞[1]-algebra structure on (C(M)[2])[1] ⊕ a with the property that
for all ∆̃ ∈ C(M)3 and small enough Φ̃ ∈ Γ(∧2A∗):{

∆ + ∆̃ defines a Courant algebroid structure on E;

graph(−Φ̃) is the + i-eigenbundle of a generalized complex structure there

⇔ (∆̃[3], Φ̃[2]) is a Maurer–Cartan element of (C(M)[2])[1]⊕ a.

Proof. Apply Theorem 3 (which holds over C as well) with Φ = 0 to obtain the complex L∞[1]-
structure (L[1] ⊕ a)P∆. View the latter as a real L∞[1]-structure. Since ∆ ∈ C(M)[2], it follows
that (C(M)[2])[1] ⊕ a is an L∞[1]-subalgebra. Use Lemma 2.19 to phrase the conclusions of
Theorem 3 in terms of Courant algebroids and generalized complex structures. 2

Remark 2.21. To see that the above V-data is filtered, proceed exactly as in Remark 2.8.

2.5 Deformations of complex structures
In this subsection, we study a special case of the situation considered in § 2.4: we study
deformations of a complex structure on M to generalized complex structures in the H-twisted
Courant algebroids TM ⊕T ∗M , where H ranges through all (real) closed 3-forms. Deformations
of a complex structure within a fixed Courant algebroid (the standard one) were studied by
Gualtieri in [Gua11, § 5.3].

Fix a complex structure I on a manifold M . It gives rise to a generalized complex structure
JI :=

(−I 0
0 I∗

)
for the standard Courant algebroid TM ⊕ T ∗M , whose +i-eigenbundle is the

complex Dirac subbundle A := T0,1⊕T ∗1,0 [Gua11, § 3]. Here T1,0 and T0,1 denote the holomorphic
and anti-holomorphic tangent bundles of (M, I), respectively.

11 Hence, the underlying graded vector space is complex and the multibrackets are C-linear.
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Recall that Ωk(M,R) =
⊕

p,q>0,p+q=k Ωp,q(M,R).

Consider Γ(∧A∗) =
⊕

r>0,s>0 Ω0,r(M,∧sT1,0). Fix p > 1 and Θi ∈ Ω0,ri(M,∧siT1,0) with
si > 1 (for i = 1, . . . , p). We define a map

(Θ]
1 ∧ · · · ∧Θ]

p) : Ωp,q(M,R)→ Ω0,q+
∑

i ri(M,∧−p+
∑

i siT1,0)

similarly to the map defined at the beginning of § 2.3, but taking into account the differential form
part of the Θi, which simply gets wedge-multiplied. More precisely, assume that Θi = ωi ⊗ πi
with ωi ∈ Ω0,ri(M,C), πi ∈ Γ(∧siT1,0) and let α ∈ Ωp,0(M,C) and σ ∈ Ω0,q(M,C). Then the
above map is given by

α ∧ σ 7→ ±σ ∧ ω1 ∧ · · · ∧ ωp ⊗ ((π]1 ∧ · · · ∧ π]p)α),

where the last expression on the right-hand side was defined at the beginning of § 2.3, and the
sign ± is the parity of pq +

∑p
i=1(p+ s1 + · · ·+ si−1)ri (using the convention s0 := 0).

Further, we define [Θ1,Θ2] := (−1)s1r2ω1 ∧ ω2 ⊗ [π1, π2].

Corollary 2.22. Let (M, I) be a complex manifold. There is an L∞[1]-algebra structure on

C := Ω(M,R)[3]⊕
⊕

r>0,s>0

Ω0,r(M,∧sT1,0)[2]

whose only non-vanishing multibrackets (up to permutations of the entries) are:

(a) the differential, which maps (H,Θ) to (−dH, ∂̄Θ+H0,p), where, when H∈ Ωp(M,R), H0,p

denotes the component of H lying in Ω0,p(M,R);

(b) {Θ1,Θ2} = (−1)r1+r2+s1+1[Θ1,Θ2] for Θi ∈ Ω0,ri(M,∧siT1,0);

(c) {H,Θ1, . . . ,Θp} = (−1)
∑p

i=1 si(p−i)(Θ]
1 ∧ · · · ∧ Θ]

p)H for all p > 1, where H ∈ Ωp,q(M,R)
and Θi ∈ Ω0,ri(M,∧siT1,0) with si > 1.

Its Maurer–Cartan elements are exactly pairs (H[3],Θ[2]), where

H ∈ Ω3(M,R), Θ ∈ Ω0,2(M,C)⊕ Ω0,1(M,T1,0)⊕ Γ(∧2T1,0)

satisfy dH = 0 and −Θ defines a deformation of JI to a −H-twisted generalized complex
structure.

Remark 2.23. (1) The graded vector space C is concentrated in degrees {−3, . . . ,dimR(M)− 2},
and its degree i component is Ωi+3(M,R)⊕⊕Ω0,r(M,∧sT1,0) for r + s = i+ 2.

(2) We make precise the meaning of ‘−Θ defines a deformation of JI to a −H-twisted
generalized complex structure’: it means that graph(−Θ) ⊂ A ⊕ Ā = (TM ⊕ T ∗M) ⊗ C is the
+i-eigenbundle of a generalized complex structure in the Courant algebroid (TM⊕T ∗M, J·, ·K−H)
(the Courant bracket twisted by −H was defined in § 2.3). For instance, if Θ = B ∈ Ω0,2(M,C),
then graph(−Θ) = {X + ξ − ιXB : X ∈ T0,1, ξ ∈ T ∗1,0}.

We make more explicit the Maurer–Cartan condition for the L∞[1]-algebra of Corollary 2.22.
The pair (H,Θ) is a Maurer–Cartan element if dH = 0 and the following equation of order four
is satisfied:

∂̄Θ+H0,3 ± 1
2 [Θ,Θ] + Θ]H1,2 ± 1

2(Θ] ∧Θ])H2,1±1
6(Θ] ∧Θ] ∧Θ])H3,0 = 0, (31)

where the signs ± depend on Θ.
We spell out three special cases. When Θ = B ∈ Ω0,2(M,C), (31) is equivalent to

∂̄B+H0,3 = 0 ∈ Ω0,3(M,C).
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When Θ = ϕ ∈ Ω0,1(M,T1,0), decomposing the left-hand side of (31) according to bi-degrees,
we see that (31) is equivalent to

∂̄ϕ+ 1
2 [ϕ,ϕ] = 0 ∈ Ω0,2(M,T1,0),

H0,3+ϕ]H1,2 − 1
2(ϕ] ∧ ϕ])H2,1−1

6(ϕ] ∧ ϕ] ∧ ϕ])H3,0 = 0 ∈ Ω0,3(M,C).

The first equation states that −ϕ defines a deformation of I to an (integrable) complex structure
I−ϕ. The second condition is equivalent to H being of type (2, 1)+(1, 2) with respect to I−ϕ. This
is not surprising, since, for any closed H ′ ∈ Ω3(M,R), a complex structure defines an H ′-twisted
generalized complex structure if and only if H ′ is of type (2, 1) + (1, 2) [Gua11, Example 2.14].
(To see the second condition, first verify that the evaluation of H on three vectors of the form
X − ϕ(X) vanishes for X ∈ T0,1. Hence, the component of H of type (0, 3) with respect to I−ϕ
vanishes. Then use that H is real, to conclude that H is of type (2, 1) + (1, 2) with respect
to I−ϕ.)

The most interesting case is when Θ = β ∈ Γ(∧2T1,0). In that case, (31) is equivalent to

[β, β] = 0 ∈ Γ(∧3T1,0),

∂̄β + 1
2(β] ∧ β])H2,1 = 0 ∈ Ω0,1(M,∧2T1,0),

β]H1,2 = 0 ∈ Ω0,2(M,T1,0),

H0,3 = 0 ∈ Ω0,3(M,C).

(Here we used H3,0 = H0,3 = 0.) By the first equation, β is a Poisson bivector field; however, it
is not holomorphic in general due to the second equation. The form H is of type (2, 1) + (1, 2)
by the fourth equation.

We do not discuss here the equivalences on the set of Maurer–Cartan elements of C. We just
point out that they are induced by elements of Ω2(M,R)[3]⊕ Γ(T1,0)[2]⊕ Ω0,1(M,C)[2].

Proof of Corollary 2.22. Apply Corollary 2.20 to the standard Courant algebroid TM ⊕ T ∗M
and to the generalized complex structure JI (i.e. to A = T0,1⊕T ∗1,0). It delivers an L∞[1]-algebra
structure on (C(M)[2])[1]⊕a governing deformations of the Courant algebroid and of generalized
complex structures. Recall that, given H ∈ Ω3(M), the degree 3 function ∆ +H onM defines a
Courant algebroid structure on TM ⊕T ∗M if and only if H is closed, and in this case it induces
the (−H)-twisted Courant bracket [Roy02a, § 4], [Zam12, § 8].

To conclude the proof, we just need to show that Ω(M,R)[3] ⊕ a is an L∞[1]-subalgebra of
(C(M)[2])[1]⊕ a, and that the restricted multibrackets are those given in the statement.

We use the following notation for the canonical local coordinates on N = T ∗[2]A[1] =
T ∗[2](T0,1 ⊕ T ∗1,0)[1] (i.e. for local generators of CC(N ) = C(T ∗[2]T [1]M) ⊗ C). For j = 1, . . . ,
dimC(M), we denote by zj complex local coordinates on M , by z̄j the conjugate coordinates,
by pj the canonical coordinates on the fibers of T ∗1,0, and by v̄j those on the fibers of T0,1 (so
the degrees are |zj | = |z̄j | = 0, |pj | = |v̄j | = 1). By Pj , P̄j , vj , p̄j , we denote the coordinates
on the fibers of T ∗[2]A[1] → A[1] conjugate to zj , z̄j , pj , v̄j , respectively (their degrees are
|Pj | = |P̄j | = 2, |vj | = |p̄j | = 1).

The quadruple listed in Lemma 2.19 reads:

• L = CC(T ∗[2]A[1])[2], whose Lie bracket we denote by {· , ·};
• a = CC(A[1])[2] ∼= Γ(∧A∗)[2];
• the natural projection P : L→ a given by evaluation on the base A[1];
• ∆ =

∑
i Pivi +

∑
i P̄iv̄i.
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Notice that ∆ is given essentially by the de Rham differential d = ∂ + ∂̄. The multibrackets of

the L∞[1]-algebra (L[1] ⊕ a)P∆ are given in Theorem 2. Clearly, Ω(M,R)[2] is a Lie subalgebra

of L (for it is abelian), and further it is closed under {∆, ·} since the latter acts as the de

Rham differential. By Remark 1.10, it follows that C = Ω(M,R)[3]⊕ a is an L∞[1]-subalgebra of

(C(M)[2])[1]⊕ a ⊂ (L[1]⊕ a)P∆.

The restriction of the multibrackets to C is the one described in the statement of this corollary,

as one computes in coordinates: (a) is obtained from (5), (b) from (8), and (c) from (7). 2
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Yaël Frégier yael.fregier@gmail.com

UArtois, LML, F-62 300, Lens, France

and

MIT, 77 Massachusetts Avenue, Cambridge,
MA 02139, USA

and
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