CHIEF SERIES AND RIGHT REGULAR REPRESENTATIONS OF FINITE p-GROUPS

FELIX LEINEN

(Received 16 June 1986)

Communicated by H. Lausch

Dedicated to B. Huppert on the occasion of his sixtieth birthday

Abstract

We study the embeddings of a finite p-group U into Sylow p-subgroups of $\operatorname{Sym}(U)$ induced by the right regular representation $\rho\colon U\to \operatorname{Sym}(U)$. It turns out that there is a one-to-one correspondence between the chief series in U and the Sylow p-subgroups of $\operatorname{Sym}(U)$ containing $U\rho$. Here, the Sylow p-subgroup P_{Σ} of $\operatorname{Sym}(U)$ corresponding to the chief series Σ in U is characterized by the property that the intersections of $U\rho$ with the terms of any chief series in P_{Σ} form $\Sigma\rho$. Moreover, we see that $\rho\colon U\to P_{\Sigma}$ are precisely the kinds of embeddings used in a previous paper to construct the non-trivial countable algebraically closed locally finite p-groups as direct limits of finite p-groups.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 15, 20 B 35.

1. Introduction

Let $U \leq G$ be finite p-groups. A chief series $1 = U_0 < U_1 < \cdots < U_m = U$ in U is said to be *induced* by the chief series $1 = G_0 < G_1 < \cdots < G_n = G$ in G, if $\{U \cap G_j | 0 \leq j \leq n\} = \{U_i | 0 \leq i \leq m\}$. Since chief factors of finite p-groups are cyclic of order p, every chief series in G induces a chief series in U.

In [3, Section 3] we have developed a uniform construction which yields, for any chief series Σ in U, a finite p-group $G_{\Sigma} \geq U$ such that every chief series in G induces Σ in U. In this situation we say that G_{Σ} controls Σ . The construction is a successive application of Frobenius embeddings into wreath products, and

^{© 1988} Australian Mathematical Society 0263-6115/88 \$A2.00 + 0.00

the group G_{Σ} obtained in this way is isomorphic to the Sylow *p*-subgroups of the symmetric group $\operatorname{Sym}(U)$ on U.

Now, it can already be read off from [2, page 487] that there is a close connection between Frobenius embeddings and right regular representations. Thus, the question arises how id: $U \to G_{\Sigma}$ is related to the embeddings of U into Sylow p-subgroups of $\operatorname{Sym}(U)$ obtained from the right regular representation $\rho\colon U\to \operatorname{Sym}(U)$. It is the aim of the present note to show that this relation is as nice as one can hope for. We will see that, for any Sylow p-subgroup P of $\operatorname{Sym}(U)$ containing $U\rho$, the embedding $\rho\colon U\to P$ is of one of the types "id: $U\to G_{\Sigma}$ ", and this will amount to the following result.

THEOREM. Let $\rho: U \to \operatorname{Sym}(U)$ be the right regular representation of a finite p-group U.

- (a) Every Sylow p-subgroup of Sym(U) containing $U\rho$ controls a chief series in $U\rho$.
- (b) For every chief series Σ in U there exists precisely one Sylow p-subgroup of $\operatorname{Sym}(U)$ which contains $U\rho$ and controls $\Sigma\rho$.

In particular, the number of chief series in U coincides with the number of Sylow p-subgroups of Sym(U) containing $U\rho$.

In [3, Section 4] we have developed a construction for each of the two (isomorphism types of) non-trivial countable algebraically closed locally finite p-groups as direct limits of finite p-groups G_n , $n \in \mathbb{N}$, which are iterated wreath products of the cyclic group C_p of order p, and where the embeddings $G_n \to G_{n+1}$ are essentially of one of the types "id: $U \to G_{\Sigma}$ ". Now, our Theorem says that these embeddings quasi are right regular representations. Therefore, the resemblance of the above constructions to P. Hall's construction of the countable universal locally finite group [1] is even closer than expected then.

As finite nilpotent groups are direct products of finite p-groups, we will also be able to derive the following

COROLLARY. Let $\rho: U \to \operatorname{Sym}(U)$ be the right regular representation of a finite nilpotent π -group U.

- (a) Every maximal nilpotent subgroup of Sym(U) containing $U\rho$ controls a chief series in each prime component of $U\rho$.
- (b) For every tuple $(\Sigma_p)_{p\in\pi}$, where Σ_p is a chief series in the p-component of U, there exists precisely one maximal nilpotent subgroup of $\mathrm{Sym}(U)$ which contains $U\rho$ and controls $\Sigma_p\rho$ for each $p\in\pi$.

Note that, in the Corollary, every nilpotent subgroup of $\operatorname{Sym}(U)$ containing $U\rho$ is also a π -group [4, page 61, Lemma 24].

The author would like to thank Professor Dr. B. Huppert for suggesting the study of the above relationships.

2. The connection

Concerning wreath products we will adopt the notation introduced in [3, Section 2]. Recall that, for any finite group U of order p^m , the Sylow p-subgroups of $\operatorname{Sym}(U)$ are isomorphic as permutation groups to the iterated wreath product S_{p^m} of m cyclic groups of order p, which is defined recursively by

$$S_{p^0} = 1$$
 and $S_{p^m} = S_{p^{m-1}} \operatorname{wr} C_p$.

We say that $\phi \colon U \to S_{p^m}$ is an iterated Frobenius embedding, if it can be obtained recursively by the following process: Given a normal subgroup V of index p in U and an iterated Frobenius embedding $\phi_0 \colon V \to S_{p^{m-1}}$, choose an isomorphism $\gamma \colon U/V \to C_p$ and a transversal $T = \{t_{Vu}|u \in U\}$ of V in U such that $V \cdot t_{Vu} = Vu$; then $\phi \colon U \to S_{p^m} = S_{p^{m-1}}$ wr C_p is defined by

$$u\phi = ((Vu)\gamma, f_u)$$
 for all $u \in U$,

where

$$f_{\mathbf{u}}((V\mathbf{u}')\gamma) = (t_{V\mathbf{u}'\mathbf{u}^{-1}} \cdot \mathbf{u} \cdot t_{V\mathbf{u}'}^{-1})\phi_0 \quad \text{ for all } \mathbf{u}' \in U.$$

It is well known that $U\phi$ is a transitive subgroup of S_{p^m} (see [2, pages 487–488]). Note that, if G_{Σ} is the finite *p*-supergroup of U attached to the chief series Σ in U by [3, Construction 3.1], then there exists an isomorphism $G_{\Sigma} \to S_{p^m}$ whose restriction to U is an iterated Frobenius embedding.

We now come to the key observation.

LEMMA. Let $\rho: U \to \operatorname{Sym}(U)$ be the right regular representation of a finite group U of order p^m . If P is a Sylow p-subgroup of $\operatorname{Sym}(U)$ containing $U\rho$, then there exists an isomorphism $\alpha: P \to S_{p^m}$ such that $\rho\alpha: U \to S_{p^m}$ is an iterated Frobenius embedding.

PROOF. Let $m \ge 1$. Choose any permutation group isomorphism

$$\beta \colon S_{p^m} \to P$$
.

Let B be the image of the base group of $S_{p^m} = S_{p^{m-1}}$ wr C_p under β . Then U is the disjoint union of the orbits $\Omega_0, \ldots, \Omega_{p-1}$ under B, and $|\Omega_r| = p^{m-1}$ for $0 \le r \le p-1$. Since $U\rho$ acts transitively on U, there exists a normal subgroup V of index p in U such that $V\rho = U\rho \cap B$. Fix $u \in U \setminus V$. Since $V\rho$ acts transitively on each coset Vu^r , we may assume that $\Omega_r = Vu^r$.

Now, $B = B_0 \times \cdots \times B_{p-1}$ where B_r is the pointwise stabilizer of $U \setminus Vu^r$ in B. Let d be the image of an element from the top group of S_{p^m} under β such that $u\rho \in d \cdot B$. Clearly,

$$B_0^{(d^r)} = B_r \quad \text{for } 0 \le r \le p-1.$$

Put

$$(u\rho)^r = d^r \cdot b_{r,0}b_{r,1}^d \cdot \cdot \cdot b_{r,n-1}^{(d^{p-1})}$$

where

$$b_{r,s} \in B_0$$
 for $0 \le s \le p-1$.

Next, if we identify $\operatorname{Sym}(V)$ canonically with the pointwise stabilizer of $U \setminus V$ in $\operatorname{Sym}(U)$, then the right regular representation $\rho_0 \colon V \to \operatorname{Sym}(V)$ embeds V into the Sylow p-subgroup B_0 of $\operatorname{Sym}(V)$. Hence, proceeding by induction over m, we may assume that there does already exist an isomorphism $\alpha_0 \colon B_0 \to S_{p^{m-1}}$ such that $\rho_0 \alpha_0 \colon V \to S_{p^{m-1}}$ is an iterated Frobenius embedding. Let $C_p = \langle c \rangle$. Define an isomorphism $\eta \colon P \to S_{p^m} = S_{p^{m-1}}$ wr C_p via

$$\eta \colon d^r \cdot \left[\prod_{s=0}^{p-1} b_s^{(d^s)}\right] \mapsto (c^r, f)$$

where $b_s \in B_0$ and $f(c^s) = b_s \alpha_0$ for $0 \le s \le p-1$. Now, let $\alpha : P \to S_{p^m}$ be conjugation with

$$x = \left[\prod_{s=1}^{p-1} b_{s,s}^{(d^s)}\right]^{-1} \in B,$$

followed by η . Let us calculate $\rho\alpha\colon U\to S_{p^m}$ to show that it is an iterated Frobenius embedding.

In the following, w will be an element from V. Observe that

$$wu^r = [w](u^r \rho) = [wd^r](b_{r,r}^{(d^r)}) = [wd^r]x^{-1}$$
 for $1 \le r \le p-1$,

while $wu^0 = w = [w]x^{-1} = [wd^0]x^{-1}$. Thus,

$$[wu^r]x = [w]d^r \quad \text{ for } 0 \le r \le p-1.$$

For every $v \in V$, we conclude that

$$[wd^r](x^{-1} \cdot v\rho \cdot x) \stackrel{(*)}{=} [wu^r](v\rho \cdot x) = [w \cdot v^{(u^{-r})} \cdot u^r]x$$

$$\stackrel{(*)}{=} [w \cdot v^{(u^{-r})}]d^r = [w](v^{(u^{-r})}\rho_0 \cdot d^r).$$

Hence,

$$v\rho^x = \prod_{s=0}^{p-1} (v^{(u^{-s})}\rho_0)^{d^s} \in B,$$

and thus

$$v\rho\alpha = v\rho^x\eta = (1, f_v)$$
 where $f_v(c^s) = v^{(u^{-s})}\rho_0\alpha_0$.

Furthermore,

$$[wd^r](x^{-1} \cdot u\rho \cdot x) \stackrel{(*)}{=} [wu^r](u\rho \cdot x) = [wu^{r+1}]x$$

$$\stackrel{(*)}{=} [w]d^{r+1} \quad \text{for } 0 \le r \le p-2,$$

while

$$[wd^{p-1}](x^{-1} \cdot u\rho \cdot x) \stackrel{(\star)}{=} [wu^{p-1}](u\rho \cdot x) = [wu^p]x$$
$$= wu^p = [w](u^p\rho_0).$$

Hence, $u\rho^x = d \cdot u^p \rho_0$, and thus $u\rho\alpha = u\rho^x \eta = (c, f_u)$ where

$$f_u(c^s) = \begin{cases} u^p \rho_0 \alpha_0 & \text{if } s = 0, \\ 1 & \text{else.} \end{cases}$$

Straightforward calculations yield that the iterated Frobenius embedding $\phi: U \to S_{p^m}$ obtained from choosing $\phi_0 = \rho_0 \alpha_0$, $\gamma: Vu \mapsto c$ and $T = \{u^r | 0 \le r \le p-1\}$ satisfies $u\phi = u\rho\alpha$ and $v\phi = v\rho\alpha$ for every $v \in V$.

3. Proof of the Theorem

Part (a) is a consequence of the Lemma and of [3, Theorem 3.3]. To prove part (b), let

$$\Sigma \colon 1 = U_0 < U_1 < \cdots < U_m = U$$

be a fixed chief series in the finite group U of order p^m . Choose an iterated Frobenius embedding $\phi: U \to S_{p^m}$. Now, S_{p^m} is a permutation group on the set

$$C_p^{(m)} = C_p \times C_p \times \cdots \times C_p$$
 of order p^m .

Since $U\phi$ acts transitively on $C_p^{(m)}$, there exists for each $x \in C_p^{(m)}$ a unique $u \in U$ with $x = [1](u\phi)$. Therefore, an embedding $\sigma: S_{p^m} \to \operatorname{Sym}(U)$ is given by

$$[1](([u](g\sigma))\phi) = [1](u\phi \cdot g) \quad \text{ for every } g \in S_{p^m}.$$

It is easy to see that the diagram

commutes. And by [3, Theorem 3.3], every chief series of S_{p^m} induces $\Sigma \phi$ in $U\phi$, whence $S_{p^m}\sigma$ is a Sylow p-subgroup of $\mathrm{Sym}(U)$ which contains $U\rho$ and controls $\Sigma \rho$.

Now, for the proof of the uniqueness, let $m \geq 1$, and let P be a Sylow p-subgroup of $\operatorname{Sym}(U)$ which contains $U\rho$ and controls $\Sigma\rho$. From the Lemma and

[3, Theorem 3.9(a)] we obtain that $U_1\rho=Z(P)$. In particular, P is a Sylow p-subgroup of the centralizer C of $U_1\rho$ in $\mathrm{Sym}(U)$. Denote epimorphic images modulo U_1 by bars. Fix $x \in U_1 \setminus 1$. Then $x\rho$ is the product of the p^{m-1} disjoint p-cycles

$$\xi_{\bar{u}} = (u \ ux \ \cdots \ ux^{p-1})$$
 where $u \in U$.

Define the homomorphism $\gamma \colon C \to \operatorname{Sym}(\bar{U})$ via

$$\xi_{[\bar{u}](\tau\gamma)} = \tau^{-1} \cdot \xi_{\bar{u}} \cdot \tau$$
 for all $u \in U$ and every $\tau \in C$.

 γ is an epimorphism; for if $\nu \in \operatorname{Sym}(\bar{U})$ and $\xi_{\bar{u}} = (z_{\bar{u},1} \cdots z_{\bar{u},p})$, then the permutation $\tau \in C$, given by $[z_{\bar{u},i}]\tau = z_{\tau u \nu,i}$ for all $u \in U$ and $1 \leq i \leq p$, is a preimage of ν under γ in C.

Clearly,

$$N = \operatorname{Ker} \gamma = \bigcap_{u \in U} C_{\operatorname{Sym}(U)}(\xi_{\bar{u}}) = \prod_{\bar{u} \in \bar{U}} \langle \xi_{\bar{u}} \rangle.$$

Let $\bar{\gamma}\colon C/N\to \operatorname{Sym}(\bar{U})$ be the isomorphism induced by γ . Denote by $\bar{\rho}\colon \bar{U}\to\operatorname{Sym}(\bar{U})$ the right regular representation. Since each element of $U\rho\backslash 1$ moves every symbol from U, it is obvious that $U\rho\cap N=U_p\rho$. Hence, ρ induces an embedding $\eta\colon U/U_1\to C/N$.

Regard any $g \in U$. Because of $x \in U_1 \leq Z(U)$ we have

$$(g\rho)^{-1} \cdot \xi_{\bar{u}} \cdot (g\rho) = (g\rho)^{-1} \cdot (u \ ux \cdots ux^{p-1}) \cdot (g\rho)$$

$$= ([u](g\rho) \ [ux](g\rho) \cdots [ux^{p-1}](g\rho))$$

$$= (ug \ ugx \cdots ugx^{p-1}) = \xi_{\bar{u}\bar{g}} \quad \text{for every } u \in U.$$

Therefore, $[\bar{u}](g\rho\gamma) = \overline{u}\overline{g}$, whence

$$[\bar{u}](\bar{g}\eta\bar{\gamma}) = \overline{u}\overline{g} = [\bar{u}](\overline{g}\overline{\rho}) \quad \text{ for every } u \in U.$$

Thus, the diagram

commutes.

Next, observe that N is a normal p-subgroup of C. So, $N \leq P$. Further, P/N is a Sylow p-subgroup of C/N which contains $\bar{U}\eta$ and controls the chief series

$$\bar{\Sigma}$$
: $1 = \bar{U}_1 \eta < \bar{U}_2 \eta < \cdots < \bar{U}_m \eta = \bar{U} \eta$

in \overline{U} . Because of $|P:N| = |S_{p^{m-1}}|$, this implies that $(P/N)\overline{\gamma}$ is a Sylow p-subgroup of $\operatorname{Sym}(\overline{U})$ which contains $\overline{U\rho}$ and controls $\overline{\Sigma\rho}$. Using induction over

m, we may assume that $(P/N)\bar{\gamma}$ is uniquely determined by these properties. But then, P/N and P are uniquely determined too.

4. Proof of the Corollary

Every maximal nilpotent subgroup N of Sym(U) containing $U\rho$ is transitive. Therefore, [4, page 61, Lemma 24] yields that N is a π -group. Let

$$U = \prod_{p \in \pi} U_p$$
 and $N = \prod_{p \in \pi} N_p$

be the decompositions of U and N into their p-components U_p resp. N_p . Since $U_q \rho \leq N_q$ for all $q \in \pi$, we have

$$[w_p \cdot w_{p'}]\sigma = [w_p](w_{p'}\rho \cdot \sigma) = [w_p](\sigma \cdot w_{p'}\rho) = w_p\sigma \cdot w_{p'}$$

for every $\sigma \in N_p$ and all $w_p \in U_p$, $w_{p'} \in \prod_{q \neq p} U_q$. Thus, the cosets of U_p in U are precisely the transitivity systems of N_p .

Let $\rho_p: U_p \to \operatorname{Sym}(U_p)$ be the right regular representation, and define an embedding $\hat{\rho}: U \to \prod_{p \in \pi} \operatorname{Sym}(U_p)$ via

$$\hat{\rho}\colon (u_p)_{p\in\pi}\mapsto (u_p\rho_p)_{p\in\pi}.$$

Further, let $\tau : \prod_{p \in \pi} \operatorname{Sym}(U_p) \to \operatorname{Sym}(U)$ be the embedding given by

$$\tau: (\sigma_p)_{p \in \pi} \mapsto \sigma$$
 where $\sigma: (u_p)_{p \in \pi} \mapsto (u_p \sigma_p)_{p \in \pi}$.

Then the diagram

$$U \xrightarrow{\rho} \operatorname{Sym}(U)$$

$$\prod_{p \in \pi} \operatorname{Sym}(U_p)$$

commutes, and the preceding observations show that every maximal nilpotent subgroup of $\operatorname{Sym}(U)$ containing $U\rho$ lies in the image of τ . Therefore, it suffices to prove the Corollary for $\hat{\rho}\colon U\to \prod_{p\in\pi}\operatorname{Sym}(U_p)$ in place of $\rho\colon U\to\operatorname{Sym}(U)$. But this is easily accomplished by applications of the Theorem to the right regular representations $\rho_p\colon U_p\to\operatorname{Sym}(U_p)$, since the p-component of every maximal nilpotent subgroup of $\prod_{p\in\pi}\operatorname{Sym}(U_p)$ containing $U\hat{\rho}$ is a Sylow p-subgroup of $\operatorname{Sym}(U_p)$ (see [4, page 61, Lemma 25]).

References

- P. Hall, 'Some constructions for locally finite groups', J. London Math. Soc. 34 (1959), 305-319.
- [2] P. Hall, 'On the embedding of a group in a join of given groups', J. Austral. Math. Soc. 17 (1974), 434-495.
- [3] F. Leinen, 'A uniform way to control chief series in finite p-groups and to construct the countable algebraically closed locally finite p-groups', J. London Math. Soc. (2) 33 (1986), 260-270.
- [4] D. Suprunenko, Soluble and nilpotent linear groups (Translations of Mathematical Monographs 9, Providence, R.I., 1963).

Fachbereich 17-Mathematik Johannes-Gutenberg-Universität Saarstr. 21 6500 Mainz West Germany