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Introduction

In a recent paper [4], H. Sharp, Jr., has discussed the problem of
finding formulae for the following naturally defined integers: the numbers
t(n), tc(n), to(n), tco(n), and ts(n) of all homeomorphism classes of finite
topological spaces with n elements, which are respectively (i) arbitrary,
(ii) connected, (iii) To, (iv) connected and To, (v) symmetric. Here, a
finite topological space X is called symmetric provided the following relation
^ is symmetric: x ^ y if and only if x e Uv, the intersection of all open sets
containing y.

In this context, consider also the following integers: the numbers
Ps(n), r(n), m(n) and u(n) of all homeomorphism classes of finite topological
spaces with n elements, which are respectively (i) pseudo-metrizable,
(ii) regular, (iii) measurable, (iv) uniformizable. Here, a topological space
X will be called regular provided only that every closed subset can be
separated in the usual way from any point in its complement, and X will
be called measurable provided every open set is also closed.

THEOREM 1. (i) Ps(n) = r(n) = m(n) = u(n) = ts(n) = p{n), the total
number of partitions of n into a sum of positive integers.

(ii) The formal generating functions for t(n) and to(n) satisfy the relations

1+ f t(n)xn = ft (l-*r)-'c(r).
n=l r=l| o ( ) n ( )
n=l r=l

REMARK. In [4], Sharp provides a table of values for t{n), tc(n), to(n),
tco(n) and ts(n) when n ^ 5; this table is consistent with the present
theorem.

Theorem 1 will be deduced from Theorem 2 and Lemma 1 in Section 1
below. I am grateful to the referee for pointing out the incorrectness of a
formula originally put forward for part (ii) of Theorem 1, and also for
suggesting a simplified proof of Lemma 1.
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An analogue of Theorem 1 for finite algebraic systems is mentioned in
Section 2. Finally, an alternative but far less elementary proof of Theorem 1,
based on a graph-theoretical formula of F. Harary [1], is briefly discussed
in Section 3.

1. Finite spaces

Let a denote a topological property of finite topological spaces such
that a space X has property a if and only if each connected component of
X has property a. Let ta{n) and tca(n) respectively denote the total number
of homeomorphism classes of finite spaces with n elements which (i) have
property a, (ii) are connected and have property a. (The vagueness con-
cerning the property a can always be avoided by listing some particular
properties of interest.)

THEOREM 2. The formal generating function for ta(n) satisfies the relation

f '«(«)*" = IT (l-*r
n = l

PROOF. Any finite topological space X is the disjoint union of its
(closed) connected components. Since there are only a finite number of
components, these are also open. Hence X is the topological sum of its
components.

Now consider a partition n of a set Y with n elements into disjoint
subsets Ct(nt) [i = 1, • • •, k; j = 1, • • •, rt] such that C^w,), • • •, Cr<(»<)
all have nt elements, and % , - • • , « * are distinct. Let N(n) denote the
total number of non-homeomorphic a-topologies for Y such that the C^n^
become the components of Y. Then, by the first remark,

N{7i)=Nx-N2 Nk

where iV< is the total number of non-homeomorphic a-topologies for

Y. = C^ttf) u • • • u Crt{n{)

such that C^Hf), • • •, C^n^ become the components of Yt.
Next, if tt = tca[nt) then, by the first remark again, N( may be regarded

as the total number of un-ordered selections of rt objects from tt distinct
objects, each of which may appear from 0 to r( times in a selection. Hence

(cf. [2] say).
Finally, ta(n) = 2 N(TZ), summing over all partitions n as above. Using

the identity
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1\

Ir=0

the theorem now follows.
Part (ii) of Theorem 1 is now proved. Also if a denotes the topological

property of being measurable, it is clear that tca(n) = 1 for all n. Hence

n=l r=l

which is the generating function for p(n) (cf. [2] say). Part (i) of Theorem 1
therefore follows from the lemma:

LEMMA 1. The following conditions on a finite topological space X are
equivalent:

(i) X is pseudo-metrizable;
(ii) X is uniformizable;

(iii) X is regular;
(iv) X is measurable;
(v) X is symmetric.

PROOF. The fact that, for general spaces, (i) => (ii) => (iii) is well
known.

(iii) => (iv): Regularity implies that, for any x e X, the smallest
neighbourhood Ux of x must contain a closed neighbourhood of x. Therefore,
Ux must be closed. Since every open set is a finite union of such sets Ux,
it must also be closed.

(iv) => (v): Suppose that X is measurable, and let x e Uv in X. Since
Ux and Uy have non-empty intersection, the intersection 0 of Uv with the
complement of Ux is a proper subset of Uv. Since 0 is open, y $0. Hence

(v) => (i): If X is symmetric, it may for example be pseudometrized
by defining

{ 0 (if x < y),

1 (otherwise).
It may be mentioned that part (i) of Theorem 1 could also be deduced

directly from Lemma 1 with the aid of a result of R. E. Stong ([5], Theorem
1).

2. Finite algebraic systems

In this section, we observe that a proof, similar to that for Theorem 2,
leads to the following analogue for finite algebraic systems:
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Consider some category of finite algebraic systems for which the
Krull-Schmidt theorem is valid. Let g(n) denote the total number of non-
isomorphic systems of this type which have n elements, and let gl(n) denote
the total number amongst these which are indecomposable. (The vagueness
here can again be avoided by listing some specific categories of interest.)

THEOREM 3. The formal Dirichlet series for g(n) satisfies the relation

{n)n-* = fj (!—r-*)-'71".

EXAMPLES, (i) For finite p-groups, this gives the relation

n=0 r=l

(cf. the classification of groups of order p" (n < 5) in [3] for example).

(ii) For finite abelian groups, the only indecomposable ones are the
cyclic groups of prime power order. Therefore in this case one obtains a
relation of the form

5 «(«)«-*= n fnw")-1.
n = l primes p r*=l

which gives back the well known formula for a(n).

(iii) For semi-simple finite rings, the indecomposable ones are the
complete matrix rings over finite fields. Hence there is an equation of the
form

| «(»)»-= n n n (i-p-™**)-1-
n = l primes p r = l m«»l

(iv) By looking at the category of finite cyclic groups, it may be noted
that Theorem 3 gives back Euler's identity for the Riemann zeta-function.

3. A formula of Harary

F. Harary [1] has given a formula relating the total number of non-
isomorphic graphs, of arbitrary given type, which have n vertices, with the
total number amongst these which are connected. This result, formula (33)
of [1], is there derived from a powerful 'Enumeration Theorem' due to
Polya. It may be used as follows to give an alternative, although far less
elementary, proof of Theorem 2:

Firstly, by appealing to Propositions 5, 7 and 8 of Stong [5], it may
be noted that connectedness and homeomorphism of finite topological spaces
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are equivalent to connectedness and isomorphism for finite transitive and
directed graphs without multiple edges.

Next, Harary's formula (33) may be applied to transitive digraphs
without multiple edges, which have property a; this is given in terms of the
total number of edges in any such graph. Summing over the number of
edges and transforming by the usual exponential-logarithmic power series
identity, as in another formula (45) of Harary [1], Theorem 2 follows.
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