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Abstract

Let R be a prime ring, let I be a nonzero ideal of R and let n be a fixed positive integer. We prove that if
the characteristic of R is either 0 or a prime p that is greater than 2n, then an additive map d that satisfies
d(xn+1) =

∑n
j=0 xn− jd(x)x j for all x ∈ I must be a derivation.
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1. Introduction

This paper is about functional identities in ring theories. We study an additive map
that satisfies a specific identity and generalize some results about derivations on prime
rings.

Throughout this paper, R is always a prime ring, not necessarily with identity, which
has center Z(R). Let Qr(R) be the right Martindale quotient ring of R; this is a ring
characterized by the following axioms (see [3, Proposition 2.2.1]).

(1) The ring R is a subring of Qr(R).
(2) For each a ∈ Qr(R), there exists a nonzero ideal I of R such that aI ⊆ R.
(3) If a ∈ Qr(R) and aI = 0 for some nonzero ideal I of R, then a = 0.
(4) For any ideal I of R and any right R-module map φ : IR→ RR, there exists

a ∈ Qr(R) such that φ(r) = ar for all r ∈ I.

Let Q(R) denote the set of all a ∈ Qr(R) such that Ja ⊆ R for some nonzero J / R. Then
Q(R) is called the symmetric Martindale quotient ring of R.

The overrings Qr(R) and Q(R) are also prime rings. The center C of Q(R) is a field,
called the extended centroid of R. The ring RC is called the central closure of R. We
refer to [3] for more details.
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For a, b ∈ R, we denote by [a, b] the commutator ab − ba of a and b. For two
additive subgroups A and B of R, we denote by [A, B] the additive subgroup of R
generated by all elements [a, b] for a ∈ A and b ∈ B. An additive subgroup L of R is
called a Lie ideal if [L, R] ⊆ L.

A polynomial identity (PI) of R is defined to be a polynomial f (X1, X2, . . . , Xn) in
noncommutative variables with coefficients in C such that f (X1, X2, . . . , Xn) vanishes
for all substitutions of the Xi by elements of R. A ring is called a PI-ring if it satisfies
a nontrivial polynomial identity. For example, any commutative ring satisfies the
identity [X1, X2]. More generally, a generalized polynomial of R is a polynomial
in noncommutative variables with coefficients in RC, that is, an element in the free
product

RC{X1, X2, . . . , Xn} = RC ∗C C{X1, X2, . . . , Xn}.

A ring is called a GPI-ring if it satisfies a nontrivial generalized polynomial identity.
See [3, 13] for more details.

Suppose that I is an ideal of R. An additive map d : I→ R is said to be a derivation
on I if d(xy) = d(x)y + xd(y) for all x, y ∈ I. For example,

d(x) = [a, x] = ax − xa,

where a ∈ R is a derivation on I. A derivation of this form is called an inner derivation.
An additive map d : I→ R is called a Jordan derivation if

d(x2) = d(x)x + xd(x) ∀x ∈ I.

Any derivation must be a Jordan derivation, but the converse is not true in general.
In 1957, Herstein [11, Theorem 3.1] proved that a Jordan derivation on a prime ring

of characteristic other than 2 must be a derivation. In 1975, Cusack [9, Corollary 5]
generalized Herstein’s result to a 2-torsion free semiprime ring. In 1988, Brešar
and Vukman [6] gave a brief proof for Herstein’s result and Brešar [4] also gave an
alternative proof for Cusack’s result.

More generally, if d is a derivation on R, then

d(xn) =

n∑
j=1

xn− jd(x)x j−1 ∀x ∈ R,

but the converse is not true in general. Bridges and Bergen [7, Theorem 2] proved that
the converse is true if R is an n!-torsion free prime ring with identity. Vukman and
Kosi-Ulbl [18, Theorem 1] generalized this result to an n!-torsion free semiprime ring
with identity. They also asked whether we can prove the theorem without assuming
that R has an identity, but with a suitable torsion restriction.

In this paper, we will focus on the prime case and just assume that d is defined on a
nonzero ideal of R. More precisely, our main theorem is the following result.
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T 1.1. Let R be a prime ring, let I be a nonzero ideal of R and let n be a fixed
positive integer. Suppose that char(R), the characteristic of R, is either 0 or a prime p
that is greater than 2n. If d : I→ R is an additive map such that

d(xn+1) =

n∑
j=0

xn− jd(x)x j (1.1)

for all x ∈ I, then d is a derivation on I.

We note that Beidar et al. [2] investigated a special functional identity that is related
to Theorem 1.1. In fact, they proved the following result [2, Theorem 4.4]. Let R be a
prime ring such that 2 , char(R) - n. Suppose that I and R are centrally closed, that is,
IC = I and RC = R. If d is a C-linear map such that d(xn+1) =

∑n
j=0 xn− jd(x)x j for all

x ∈ I, then d is a derivation on I.
Essentially, a C-linear derivation that is algebraic over C must be an inner derivation

of Q(R) (see [15, Corollary 2]). But, any derivation clearly satisfies the expansion
formula in Theorem 1.1. In other words, by [2, Theorem 4.4] the C-linear case can
be proved under a weaker restriction on char(R). In this paper, although we have
a stronger restriction on char(R), we prove that d is a derivation in a general case.
Moreover, we do not need to assume that I is centrally closed, but we will prove that
the map d on I can be extended to a map d̃ on RC when R is a PI-ring.

Recently, Fošner and Vukman investigated a similar identity. They proved that in a
prime ring R such that 2 , char(R) ≥ 2n an additive map T : R→ R satisfying

T (xn+1) =

n∑
j=0

(−1) j+1xn− jT (x)x j

must be of the form 4T (x) = qx + xq for some q ∈ Q(R) (see [10, Theorem 3]).

2. Proofs

We always assume that R is a prime ring and the characteristic of R is either 0 or
a prime p that is greater than 2n, where n is a fixed positive integer. We will use our
assumption on the characteristic without further explanation to solve equations by the
van der Monde argument and to cancel some invertible integers.

We shall prove Theorem 1.1 using a sequence of lemmas. For x, y ∈ R, we denote
by S x,y(k, s − k) the sum of all monic monomials with k occurrences of x and s − k
occurrences of y. For example,

S x,y(2, 1) = x2y + xyx + yx2.

First, we prove that R satisfies a specific functional identity.
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L 2.1. Let d : I→ R be an additive map, where I is a nonzero ideal of R. Suppose
that d(xn+1) =

∑n
j=0 xn− jd(x)x j for all x ∈ I. Then

n∑
j=0

((n − j)x2n−2 j−1T (x, x)x2 j + (n − j)x2 jT (x, x)x2n−2 j−1) = 0 (2.1)

for all x ∈ I, where

T (x, y) = 1
2 (d(xy) − d(x)y − xd(y) + d(yx) − d(y)x − yd(x))

is a symmetric biadditive map.

P. Let x, y ∈ I. Expanding

d((x + y)n+1) =

n∑
j=0

(x + y)n− jd(x + y)(x + y) j

and using the identities

d(xn+1) =

n∑
j=0

xn− jd(x)x j

and

d(yn+1) =

n∑
j=0

yn− jd(y)y j,

we see that

n∑
k=1

d(S x,y(n + 1 − k, k)) =

n∑
j=0

(
xn− jd(x + y)

j∑
k=1

S x,y( j − k, k)
)

+

n∑
j=0

(
yn− jd(x + y)

j−1∑
k=0

S x,y( j − k, k)
)

+

n∑
j=0

(( j−1∑
k=1

S x,y( j − k, k)
)
d(x + y)

×

( j∑
k=0

S x,y( j − k, k)
))
.

(2.2)

Since either char(R) = 0 or char(R) = p > 2n > 1, we will obtain n equations by
replacing y by y, 2y, . . . , ny in (2.2) in turn. Then, applying the van der Monde
argument to solve these n equations, we see that

d(S x,y(n, 1)) =

n∑
j=0

(S x,y(n − j − 1, 1)d(x)x j

+ xn− jd(y)x j + xn− jd(x)S x,y( j − 1, 1)).

(2.3)
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Replacing x by x2 and y by x in (2.3) yields

(n + 1)d(x2n+1) =

n∑
j=0

((n − j)x2n−2 j−1d(x2)x2 j

+ x2n−2 jd(x)x2 j + jx2n−2 jd(x2)x2 j−1).

(2.4)

On the other hand, replacing y by xn+1 (leaving x unchanged) in (2.3), we see that

(n + 1)d(x2n+1) =

n∑
j=0

((n − j)x2n− jd(x)x j + xn− jd(xn+1)x j + jxn− jd(x)xn+ j)

=

n∑
j=0

(
(n − j)x2n− jd(x)x j +

n∑
i=0

x2n−i− jd(x)xi+ j + jxn− jd(x)xn+ j
)
.

(2.5)

Combining (2.4) and (2.5), we see that

n∑
j=0

((n − j)x2n−2 j−1(d(x2) − d(x)x − xd(x))x2 j

+ (n − j)x2 j(d(x2) − d(x)x − xd(x))x2n−2 j−1)

=

n∑
j=0

((n − j)x2n− jd(x)x j + (n − j)x jd(x)x2n− j +

n∑
i=0

x2n−i− jd(x)xi+ j

− (n − j)x2n−2 jd(x)x2 j − (n − j)x2 jd(x)x2n−2 j − x2n−2 jd(x)x2 j

− (n − j)x2n−2 j−1d(x)x2 j+1 − (n − j)x2 j+1d(x)x2n−2 j−1).

(2.6)

We perform some complicated and tricky computations with the summations to show
that the sum on the right-hand side is zero.

First, we compute the sum of the first three terms:

n∑
j=0

(n − j)x2n− jd(x)x j +

n∑
j=0

(n − j)x jd(x)x2n− j +

n∑
j=0

n∑
i=0

x2n−i− jd(x)xi+ j

=

n∑
j=0

(n − j)x2n− jd(x)x j +

n−1∑
j=0

(n − j)x jd(x)x2n− j

+

n∑
j=0

( j + 1)x2n− jd(x)x j +

n−1∑
j=0

( j + 1)x jd(x)x2n− j

=

n∑
j=0

(n + 1)x2n− jd(x)x j +

n−1∑
j=0

(n + 1)x jd(x)x2n− j

= (n + 1)
2n∑
j=0

x2n− jd(x)x j.

(2.7)
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Next, we compute the sum of second three terms:

n∑
j=0

((n − j)x2n−2 jd(x)x2 j + (n − j)x2 jd(x)x2n−2 j + x2n−2 jd(x)x2 j)

=

n∑
j=0

( jx2 jd(x)x2n−2 j + (n − j)x2 jd(x)x2n−2 j + x2 jd(x)x2n−2 j)

=

n∑
j=0

(n + 1)x2 jd(x)x2n−2 j.

(2.8)

Finally, the sum of the last two terms is

n∑
j=0

( jx2 j−1d(x)x2n−2 j+1) +

n∑
j=0

((n − j)x2 j+1d(x)x2n−2 j−1)

=

n−1∑
j=0

(( j + 1)x2 j+1d(x)x2n−2 j−1) +

n−1∑
j=0

((n − j)x2 j+1d(x)x2n−2 j−1)

=

n−1∑
j=0

(n + 1)x2 j+1d(x)x2n−2 j−1.

(2.9)

Substituting (2.7), (2.8) and (2.9) into (2.6) enables us to see that the right-hand side
of (2.6) is equal to

(n + 1)
2n∑
j=0

x2n− jd(x)x j −

n∑
j=0

(n + 1)x2 jd(x)x2n−2 j −

n−1∑
j=0

(n + 1)x2 j+1d(x)x2n−2 j−1

= (n + 1)
2n∑
j=0

x2n− jd(x)x j − (n + 1)
2n∑
j=0

x2n− jd(x)x j = 0,

as asserted. Hence, by (2.6),

n∑
j=0

((n − j)x2n−2 j−1(d(x2) − d(x)x − xd(x))x2 j

+ (n − j)x2 j(d(x2) − d(x)x − xd(x))x2n−2 j−1) = 0

for all x ∈ I. This completes the proof. �

Following Lemma 2.1, we can prove that the image of a central element in R under
the map d is still central.

L 2.2. Under the assumptions of Lemma 2.1, if c ∈ I ∩ Z(R), then d(c) ∈ Z(R) and
d(cx) = d(c)x + cd(x) for all x ∈ I.
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P. Replacing x by c in (2.3), we see that

(n + 1)d(cny) =

n∑
j=0

((n − j)cn−1yd(c) + cnd(y) + jcn−1d(c)y)

= 2−1n(n + 1)cn−1yd(c) + (n + 1)cnd(y) + 2−1n(n + 1)cn−1d(c)y.

(2.10)

Replacing y by yn+1 in (2.10), we see that

(n + 1)d(cnyn+1) = 2−1n(n + 1)cn−1yn+1d(c)

+ (n + 1)cnd(yn+1) + 2−1n(n + 1)cn−1d(c)yn+1

= 2−1n(n + 1)cn−1yn+1d(c) + (n + 1)cn
n∑

j=0

yn− jd(y)y j

+ 2−1n(n + 1)cn−1d(c)yn+1.

(2.11)

On the other hand, replacing x by y and y by cny in (2.3) and applying (2.10), we
see that

(n + 1)d(cnyn+1) =

n∑
j=0

((n − j)cnyn− jd(y)y j + yn− jd(cny)y j

+ jcnyn− jd(y)y j)

=

n∑
j=0

(ncnyn− jd(y)y j + 2−1ncn−1yn− j+1d(c)y j

+ cnyn− jd(y)y j + 2−1ncn−1yn− jd(c)y j+1)

=

n∑
j=0

(2−1ncn−1yn− j+1d(c)y j + (n + 1)cnyn− jd(y)y j

+ 2−1ncn−1yn− jd(c)y j+1).

(2.12)

From (2.11) and (2.12), we deduce that

2cn−1
n∑

j=1

yn− j+1d(c)y j = ncn−1yn+1d(c) + ncn−1d(c)yn+1 (2.13)

for all y ∈ I.
Suppose that d(c) is not in Z(R). Then (2.13) implies that R is a prime GPI-ring.

By [17, Theorem 3], Q(R) possesses nontrivial idempotents. By [3, Theorem 6.4.1]
or [8, Theorem 2], (2.13) holds for all y ∈ Q(R). So, if we replace y by an idempotent e
in (2.13), then we see that

ned(c) = (2n − 1)ed(c)e = nd(c)e

and hence [d(c), e] = 0 for all idempotents in Q(R).
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Let E denote the additive subgroup of Q(R) generated by all idempotents and let
E denote the subring of Q(R) generated by E. Then [d(c), E] = 0. It is well known
that E is a Lie ideal of Q(R). Since there exists a nontrivial idempotent e in Q(R) such
that [e, ex(1 − e)] , 0 for some x ∈ Q(R), we know that [E, E] , 0. Moreover, by [12,
Lemma 1.3], Q(R)[E, E]Q(R) ⊆ E. So, d(c) commutes with a nonzero ideal of Q(R)
and this forces d(c) ∈C, a contradiction. Thus, d(c) ∈ Z(R) for all c ∈ I ∩ Z(R).

Replacing x by c in (2.1) shows that d(c2) = 2cd(c). Replacing x by x + c,
x + 2c, . . . , x + (m + n)c in (2.1), applying the van der Monde argument to solve these
m + n equations and using d(c2) = 2cd(c) allows us to deduce that

2d(cx) = 2d(x)c + xd(c) + d(c)x.

Since d(c) ∈ Z(R), the identity d(cx) = d(x)c + xd(c) follows, as required. �

Now we prove a special case of our Theorem 1.1.

L 2.3. Suppose that R is a PI-ring. If d : R→ Q(R) is an additive map such that
d(xn+1) =

∑n
j=0 xn− jd(x)x j for all x ∈ R, then d is a derivation.

P. By Posner’s theorem [13, p. 57], Z(R) , {0}, Q(R) is a simple Artinian algebra
and Q(R) = RC = RZ(R)−1. By Lemma 2.1, we see that (2.1) holds for all x ∈ R. By
Lemma 2.2,

d(cx) = cd(x) + d(c)x (2.14)

for all x ∈ R and c ∈ Z(R). Since Q(R) = RC = RZ(R)−1, we can extend the map
d : R→ Q(R) to the map d̃ : Q(R)→ Q(R) defined by

d̃(c−1x) := c−2(cd(x) − xd(c)) ∀x ∈ R, ∀c ∈ Z(R) \ {0}. (2.15)

We claim that the expression for d̃ in (2.15) is well defined. Let α−1x = β−1y, where
x, y ∈ R and α, β ∈ Z(R) \ {0}. Since βx = αy, we see by (2.14) that

βd(x) − yd(α) = αd(y) − xd(β).

A direct computation proves that

β2(αd(x) − xd(α)) = α2(βd(y) − yd(β)).

Therefore, d̃(α−1x) = d̃(β−1y), as asserted.
We need to prove that d̃ is also an additive map satisfying (1.1). The proof of the

additivity of d̃ is straightforward. Since d(c) ∈ Z(R) by Lemma 2.2, we can deduce
from (2.15) that

d̃((c−1x)n+1) = c−2n−2(cn+1d(xn+1) − xn+1d(cn+1))

= c−n−1
n∑

j=0

xn− jd(x)x j − (n + 1)c−n−2xn+1d(c)

= c−n−2
n∑

j=0

xn− jcd(x)x j − c−n−2
n∑

j=0

xn− j(xd(c))x j
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=

n∑
j=0

(c−1x)n− j(c−2(cd(x) − xd(c)))(c−1x) j

=

n∑
j=0

(c−1x)n− jd̃(c−1x)(c−1x) j,

as asserted. Since Q(R) has an identity, it follows from [7, Theorem 2] that d̃ is a
derivation on Q(R). In particular, d is a derivation on R. This completes the proof. �

Recall that Herstein [11, Theorem 3.1] proved that a Jordan derivation on a prime
ring R of characteristic other than 2 is a derivation. We remark that, by a trivial check,
this result still holds if d maps from I to R. So, we state it here in the following form.

T 2.4 (See [11, Theorem 3.1]). Suppose that R is a prime ring and char(R) , 2.
If d : I→ R is an additive map such that d(x2) = xd(x) + d(x)x for all x ∈ I, where I is
an ideal of R, then d(xy) = xd(y) + d(x)y for all x, y ∈ I.

To prove Theorem 1.1, we also need some results from functional identities. For
x ∈ R, let deg(x) be the minimal degree of x over C if x is algebraic over C and ∞
otherwise. For a subset A of R, we define

deg(A) = sup{deg(x) | x ∈ A}.

It is known that deg(I) = deg(R) for any nonzero ideal I of R and that deg(R) ≤ m for
some positive integer m if and only if R is a PI-ring. We refer to [5] for more details
on functional identities. Now we are ready to prove Theorem 1.1.

P  T 1.1 First suppose that R is a PI-ring. Then I itself is also a prime
PI-ring. By Posner’s theorem [13, p. 57], Z(R) , {0}, Q(R) is a simple Artinian algebra
and Q(R) = RC = RZ(R)−1. Moreover, it is well known that Q(I) = Q(R) = RC in this
case. So, we can regard d : I→ R as d : I→ Q(I). Hence, by Lemma 2.3, d is a
derivation on I.

Next suppose that R is not a PI-ring. By Lemma 2.1,

n∑
j=0

((n − j)x2n−2 j−1T (x, x)x2 j + (n − j)x2 jT (x, x)x2n−2 j−1) = 0

for all x ∈ I, where

T (x, y) = 2−1(d(xy) − d(x)y − xd(y) + d(yx) − d(y)x − yd(x))

is a symmetric biadditive map. Since the sum of all of the coefficients is n(n + 1),
which is not 0, we can conclude by [1, Theorem 4.6] that T , given by

T (x, x) = d(x2) − d(x)x − xd(x),

is a zero map. This means that d is a Jordan derivation on I. So, d is a derivation on I
by Theorem 2.4. This completes the proof. �
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3. An application

As an application, we generalize Theorem 1.1 to generalized derivations. Let I
be an ideal of a ring R. An additive map g : I→ R is called a generalized derivation
on I if there exists a derivation d : I→ R such that g(xy) = g(x)y + xd(y) for all x, y ∈ I.
For example, if g(x) = ax + d(x), where a ∈ R and d is a derivation on R, then g is a
generalized derivation on R.

An additive map g is called a generalized Jordan derivation of R if there exists
a Jordan derivation d such that g(x2) = g(x)x + xd(x) for all x ∈ R. A generalized
derivation is, of course, a generalized Jordan derivation. By analogy with Herstein’s
theorem about Jordan derivations (see Theorem 2.4), Jing and Lu [14, Theorem 2.5]
proved the converse for generalized Jordan derivations. Their theorem may be stated
as follows. If R is a prime ring of characteristic other than 2, and g is a generalized
Jordan derivation of R, then g is a generalized derivation. Now we prove the following
generalization.

C 3.1. Let n be a positive integer. Suppose that R is a prime ring whose
characteristic is either 0 or a prime p that is greater than 2n. Let I be a nonzero ideal
of R. If g : I→ R and d : I→ R are additive maps such that

d(xn+1) =

n∑
j=0

x jd(x)xn− j, g(xn+1) = g(x)xn +

n∑
j=1

x jd(x)xn− j

for all x ∈ I, then g is a generalized derivation on I and d is the associated derivation
of g.

P. By direct computation, we see that

g(xn+1) − d(xn+1) = g(x)xn − d(x)xn.

That is, g − d is an additive map and

(g − d)(xn+1) = (g − d)(x)xn ∀x ∈ I.

By [16, Theorem 3.8], there exists a ∈ Qr(R) such that (g − d)(x) = ax for all x ∈ I.
Moreover, d is a derivation by Theorem 1.1. Hence, g(x) = ax + d(x) is a generalized
derivation on I, as asserted. �
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