
doi:10.1017/S0017089518000319.

EXTREME POINTS FOR COMBINATORIAL BANACH SPACES

KEVIN BEANLAND, NOAH DUNCAN, MICHAEL HOLT
and JAMES QUIGLEY

Department of Mathematics, Washington and Lee University, Lexington, VA 24450.
e-mail: beanlandk@wlu.edu, naduncan16@gmail.com, holtm11493@gmail.com,

jamesbquigley93@gmail.com

Abstract. A norm ‖ · ‖ on c00 is called combinatorial if there is a regular family of
finite subsets F , so that ‖x‖ = supF∈F

∑
i∈F |x(i)|. We prove the set of extreme points

of the ball of a combinatorial Banach space is countable. This extends a theorem of
Shura and Trautman. The second contribution of this article is to exhibit many new
examples of extreme points for the unit ball of dual Tsirelson’s original space and give
an explicit construction of an uncountable collection of extreme points of the ball of
Tsirelson’s original space. We also prove some stability properties of the intermediate
norms used to define Tsirelson’s space and give a lower bound of the stabilization
function for these intermediate norms.

2010 Mathematics Subject Classification. 48B20.

1. Introduction. In this paper we consider problems related to the cardinalities
of the set of extreme points of certain Banach spaces. The first type of Banach space
we consider are combinatorial Banach spaces. A norm ‖ · ‖ on the vector space of all
finitely supported scalar sequences c00 is called combinatorial if there is a regular (i.e.,
compact, spreading and hereditary) family of finite subsets F , so that for x ∈ c00

‖x‖F = sup
F∈F

∑
i∈F

|x(i)|.

The Banach space XF is the completion of c00 with respect to the above norm. A
basic example of a regular family of finite subsets is the Schreier family S1 = {F ⊂ � :
|F | � min F}. The space XS1 is the famous space of J. Schreier. Let X be a Banach
space and B(X) unit ball. We denote by E(X) the set of all extreme points of the B(X).
Recall that x ∈ E(X), if x ∈ B(X) and whenever x = 1/2(y + z) for y, z ∈ B(X), we
have x = y = z. Shura and Trautman [9] proved that E(XS1 ) is countably infinite. The
first main result of the current paper is that whenever X is a combinatorial Banach
space, E(X) is countable.

Our second set of results concerns extreme points of Tsirelson’s original space
[10], which, in this paper, we denote by T∗. Recall that Tsirelson’s space [10] was the
first example of a reflexive space not containing any �p for 1 < p < ∞. The norm is
defined using an inductive procedure and satisfies an implicit formula. By a result
of Lindenstrauss and Phelps [8], since Tsirelson’s space T∗ is reflexive, E(T∗) and
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E(T) are uncountable. The proof of this statement is non-constructive as it uses the
Baire Category Theorem. In [6], Casazza and Shura exhibit a countable collection of
elements of E(T). In the final section of this paper, we given many more new examples
of elements of E(T) and give an explicit construction of uncountably many elements
of E(T∗). Our final set of results deal with the stabilisation of the intermediate norms
used to define the norm of T . First, we verify a conjecture in [6] by showing that these
intermediate norms can stabilise for arbitrarily long periods before achieving the norm
of a vector. After this we establish a lower bound on the quantity j(n), which is the
minimum integer value so that if x has a maximum support of n, then ‖x‖j(n) = ‖x‖T .
Here. (‖ · ‖n)∞n=1 are the intermediate norms and ‖x‖T = max ‖x‖n is norm of the dual
of Tsirelson’s space.

2. Extreme points for combinatorial spaces. Let X be a Banach space and B(X),
S(X) and E(X) denote the unit ball of X , the unit sphere of X and the set of extreme
point of B(X), respectively.

A collection F of finite subsets of � is called a regular family if it is hereditary (F ∈
F and G ⊂ F implies G ∈ F), spreading ({�1 < �2 · · · < �n} ∈ F and �i � ki implies
{k1, . . . , kn} ∈ F) and compact as a subset of {0, 1}� (with the natural identification
of P(�) with {0, 1}�). We will also assume throughout that {1} ∈ F for every regular
family F . Some examples of regular families of finite subsets include the small families
Fn = {F : |F | � n} and the Schreier families defined as follows. LetS0 = F1. Supposing
that Sα has been defined for some ordinal α < ω1, we define

Sα+1 = {∪n
i=1Ei : n � E1 < E2 < · · · < En are in Sα}.

In the above, we write E < F if max E < min F and use the convention that ∅ < E < ∅
for each E. If α is a limit ordinal, we fix αn ↗ α and define:

Sα = {F : ∃ n � F ∈ Sαn}.
For each α < ω1 the set Sα is a regular family. These families were introduced in

[1] and have been extensively used and studied.
For each regular family F , we define the Banach space XF as the completion of

c00 with respect to the following norm:

‖x‖F = sup
F∈F

∑
i∈F

|x(i)|.

The space XS1 is called Schreier space and is an important example in Banach space
theory. The unit vector basis is an example of a weakly null sequence having no Cesaro
summable subsequence. Shura and Trautman [9] showed that E(XS1 ) is countably
infinite and that, moreover, XS1 has the λ-property (and therefore every element in
B(XS1 ) is a σ -convex combination of extreme points), defined in [3]. An interesting
unsolved problem is whether XS1 has the uniform λ-property. In [4], Beanland and Chu
studied these properties for combinatorial Banach spaces. For each α < ω1, the spaces
XSα

have also been extensively studied [7] and shown to be c0 saturated. Indeed this
follows from the fact that for each regular family F , there this a countable compact set
K so that XF embedds isometrically into C(K). The K is chosen as some ordinal interval
[0, α], where α is related to the Cantor–Bendixon index of F . Let us note that XF1 is
isometric to c0 and so E(XF1 ) = ∅. For n ∈ �, XFn is easily seen to be isomorphic to c0.
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One of our main results is the following theorem.

THEOREM 2.1. If F is a regular family, then E(XF ) is countable.

In ‘most’ cases, we have that E(XF ) is countably infinite. Indeed, in the case the F
contains a two element subset, it is easy to see that there are infinitely many extreme
points of the type en + ∑n−1

i=1 aiei for all sufficiently large n.
For x ∈ S(XF ), we let

F1
x = {A ∈ F : 1 =

∑
i∈A

|x(i)| and for all B � A,
∑
i∈B

|x(i)| < 1}

Note that if k ∈ F ∈ F1
x , then x(k) �= 0. We call the collection F1

x the 1-sets of x. Let
Mx ⊂ F be the sets in F \ F1

x that do not contain any 1-set. We note that for a set
A �∈ F1

x , we may have
∑

i∈A |x(i)| = 1. However, in this case, there will be some i ∈ A
with x(i) = 0.

We collect several simple lemmas before proceeding to the proof.

LEMMA 2.2. Let F be regular family and (Ai)∞i=1 ⊂ F . Then, there is a subsequence
(A′

i), so that A = ∩∞
i=1A′

i ∈ F and A′
i = A ∪ Bi (disjoint union) with min Bi → ∞.

Proof. Let (Ai) ⊂ F . Since F is compact, we can find a subsequence (A′
i) that

converges to some A ∈ F . Since A is finite, for sufficiently large i we have that A ⊂ A′
i.

Thus, we relabel and assume this holds for all i. Let Bi = A′
i \ A. Note that for each

finite set C with C ∩ A = ∅ there is an I so that for i � I , C ∩ A′
i = ∅. This implies that

min Bi → ∞ as desired. �

REMARK 2.1. From the above lemma we observe that whenever (Ai) ⊂ F , there is a
subsequence A′

i, so that for all x ∈ XF , limi→∞
∑

j∈A′
i
|x(j)| = ∑

j∈A |x(j)|. Indeed, using
the previous lemma, we have a subsequence and a disjoint decomposition A′

i = A ∪ Bi

with min Bi → ∞. Observe that limi→∞
∑

j∈Bi
|x(j)| = 0 since min Bi → ∞.

REMARK 2.2. For each sequence (Ai) ⊂ F , there is convergent subsequence (A′
i)

and A ⊂ A′
i so that for each i0 ∈ �, so that

lim
i→∞

∑
j∈A′

i

|x(j)| =
∑
j∈A

|x(j)| �
∑
j∈A′

i0

|x(j)|.

LEMMA 2.3. Let x ∈ XF . The following equivalent statements hold:

1. There is no infinite sequence (Ai) ⊂ F satisfying

sup
i∈�

∑
j∈Ai

|x(j)| = 1 and
∑
j∈Ai

|x(j)| < 1,∀i ∈ �.

2. For each infinite sequence (Ai) ⊂ F , we have

∑
j∈Ai

|x(j)| < 1, ∀i ∈ � =⇒ sup
i∈�

∑
j∈Ai

|x(j)| < 1.
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Proof. The statements are clearly equivalent. If such a sequence existed, then by
the Remark 2.2 there is a subsequence (A′

i) with

1 = lim
i→∞

∑
j∈A′

i

|x(j)| =
∑
j∈A

|x(j)| < 1.

�
LEMMA 2.4. For each x ∈ S(XF ), the set F1

x is non-empty and finite.

Proof. If F1
x was empty, there is no A ∈ F with

∑
i∈A |x(i)| = 1; however, since

sup{∑i∈A |x(i)| : A ∈ F} = 1, there is necessarily a sequence contradicting Lemma
2.3. Therefore, F1

x is non-empty.
We will show that F1

x is finite. Let {Ai : i ∈ �} = F1
x . Pass to an arbitrary

subsequence. By Remark 2.2, find a further subsequence so that for any i0 ∈ �, we
have

1 = lim
i→∞

∑
j∈A′

i

|x(j)| =
∑
j∈A

|x(j)| �
∑
j∈A′

i0

|x(j)| = 1.

Since x(j) �= 0 for j ∈ A′
i, A′

i = A for all i. We have proved that every subsequence
of (Ai) has a further subsequence that is constant. Therefore, {Ai : i ∈ �} = F1

x is
finite. �

The next lemma is another restatement of Lemma 2.3.

LEMMA 2.5. For each x ∈ S(X), there is an εx > 0 (called the ε-gap for x), so that

sup
A∈Mx

∑
i∈A

|x(i)| � 1 − εx.

LEMMA 2.6. If x ∈ E(XF ), then x ∈ c00.

Proof. Let x ∈ E(XF ) with infinite support and find εx > 0 such that

sup
A∈Mx

∑
i∈A

|x(i)| � 1 − εx.

As the support of x is infinite, each A ∈ F1
x is maximal inF , that is,Mx = F \ F1

x . This
means that if

∑
i∈A |x(i)| = 1, then A ∈ F1

x . Since there are finitely many such elements,
we can find k �∈ ∪F1

x . Consider the vectors y = x + εx/2ek and z = x − εx/2ek. Then,
clearly x = 1/2(y + z) and ‖z‖ � 1. To see that ‖y‖ � 1, we fix A ∈ F . If A ∈ F1

x , then∑
i∈A |y(i)| = ∑

i∈A |x(i)| = 1. Alternatively, A �∈ F1
x and in that case if k ∈ A,

∑
i∈A

|y(i)| � εx/2 +
∑
i∈A

|x(i)| � 1 − εx/2.

Therefore, x �∈ E(XF ). �
Proof of Theorem 2.1. Let Xn the span of {e1, . . . , en} in XF . Since E(XF ) ⊂

∪∞
n=1E(Xn) is suffices to prove that E(Xn) is finite for each n. Our original proof

mimicked the corresponding proof from [9]. The following, much simpler proof was
pointed out by the referee. Note that for each n, there is an N > n, so that Xn embedds
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isometrically into �N
∞. Any such subspace has a polyhedral unit ball and, as such,

finitely many extreme points. �

3. Extreme points for Tsirelson’s space. Let T denote the dual of Tsirelson’s
space [10]. Let (ei) and (e∗

i ) both denote the standard unit vectors in c00. For E ⊂ �

and x = ∑∞
i=1 aiei ∈ c00 let Ex = ∑

i∈E aiei. If E, F are subsets of �, we write E < F ,
if max E < min F . If

∑∞
i=1 aiei ∈ c00, then supp x = {i : ai �= 0}. We define the set of

norming functionals WT as the union of the following subsets of c00. A sequence
(fi)d

i=1 ⊂ c00 is called admissible, if

d � supp f1 < supp f2 < · · · < supp fd .

Let W0 = {±e∗
i : i ∈ �} and for k � 0 let

Wk+1 = Wk ∪
{

1
2

d∑
i=1

Efi : d ∈ �, (fi)d
i=1 ⊂ Wk is admissible, E ⊂ �

}
.

Then, WT = ∪∞
k=1Wk.

The intermediate norms are defined by ‖x‖n = sup{f (x) : f ∈ Wn}. Here, f (x) is
the usual inner product of f with x. Tsirelson’s norm is defined by

‖x‖T = max
n

‖x‖n = sup{f (x) : x ∈ WT }.

The space T is the completion of c00 with respect to the norm ‖ · ‖T and (ei) is a
1-unconditional basis for T .

In [6], it is shown that for 2 � i < j and ε1, ε2, εi, εj ∈ {±1}, the vectors ε1e1 +
ε2e2 + εiei + εjej ∈ E(T). Let E(T)+ be the extreme points with positive coefficients.
To make the future estimates simpler, we note the following lemma that follows from
the fact that the ‘sign-changing’ operator on a space with an 1-unconditional basis is
a surjective isometry, and, as such, maps extreme points to extreme points.

LEMMA 3.1. Suppose X has a 1-unconditional Schauder basis (ei)∞i=1. If x =∑∞
i=1 x(i)ei ∈ X and

∑∞
i=1 |x(i)|ei ∈ E(X), then x ∈ E(X).

3.1. The set E(T). The next proposition is proved in [6], for completeness, we
include a different proof here.

PROPOSITION 3.2. If x ∈ E(T)+ the x(1) = x(2) = 1.

Proof. Suppose x ∈ E(T)+. It is clear that x(1) = 1; otherwise, we can perturb the
first coordinate by an ε > 0, so that x(1) + ε < 1 and write x as the convex combination
of vectors whose first coordinates are x(1) + ε and x(1) − ε, respectively. Suppose
x(2) < 1. Now, slightly perturb x(2) to make a vector y with y(2) = x(2) + ε and which
agrees with x on all coordinates except 2. Since x ∈ E(T), we can assume that ‖y‖ > 1.
Find δ > 0 with ‖y‖ − 2δ > 1 and find f ∈ WT with f (y) > ‖y‖ − δ and min supp(f ) =
2. By definition of f ∈ WT , there are f1 < f2 in WT with f = 1/2(f1 + f2). However,
since f (y) > ‖y‖ − δ, we know that f2(y) > ‖y‖ − 2δ > 1. But, f2(y) = f2(x) � ‖x‖ = 1.
This contradiction yields the result. �
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The next remark says that if a vector x is not an extreme point, we can find two
distinct norm-one vectors that are as close as we wish, so that x is the midpoint of the
two vectors.

REMARK 3.1. Let X be a Banach space. Let x ∈ S(X) \ E(X) and ε > 0. There are
y, z ∈ S(X) not equal to x so that x = 1/2(y + z) and max{‖x − y‖, ‖x − z‖} < ε.

One of our main results concerning extreme points of T is the following theorem
that gives many new examples of elements of E(T).

THEOREM 3.3. For each n ∈ � and F ⊂ � with min F = n and |F | = n + 1, there
are coefficients (a3, a4, . . . , an−1), so that

e1 + e2 +
n−1∑
i=3

aiei + 2
n

∑
i∈F

ei ∈ E(T).

Moreover, by Lemma 3.1 we can put any signs in front of the coordinates.

EXAMPLE 3.1. The proof of the above theorem shows us how to explicitly compute
extreme points for any n. However, for even moderately sized n, the computations are
cumbersome. Some examples for small values of n are the following:

1. e1 + e2 + 1
2

∑8
i=3 ei.

2. e1 + e2 + 3
5 e3 + 2

5

∑10
i=4 ei.

3. e1 + e2 + 1
2 e3 + 1

3

∑12
i=4 ei.

LEMMA 3.4. Let n ∈ � and F ⊂ � with min F = n and |F | = n + 1. Suppose x ∈
c00 and x(k) = 2/n for k ∈ F and x(k) = 0 for k � n and k �∈ F. If y, z ∈ B(X) with
x = 1/2(y + z), then x(k) = y(k) = z(k) for k � n.

Proof. Let 0 � δi < 2/n and |εi| = 1 so that y(i) = x(i) + εiδi and z(i) = x(i) − εiδi.
There are n + 1 many size n subsets of F and for each such set G, since G ∈ S1

and 0 � δi < 2/n, we know that
∑

i∈G y(i) = 1 = ∑
i∈G z(i). Therefore, there are n + 1

equations of the form
∑

i∈G εiδi = 0. The corresponding system of equations has only
the trivial solution; that is, δi = 0 for each i ∈ F .

If k � n and k �∈ F , then G = {k} ∪ (F \ {n}) is admissible, and so, if y(k) = x(k) +
δk, the fact that

∑
i∈G y(i) = 1 implies δk = 0. This proves the claim. �

Proof of Theorem 3.3. It suffices to construct the sequence (a3, a4, . . . , an−1). We
do so recursively starting at an−1. Let

an−1 = sup{a : ∀ f ∈ WT , min supp(f ) � n − 1, f (aen−1 + 2
n

∑
i∈F

ei) � 1}.

Let xn−1 = an−1en−1 + 2
n

∑
i∈F ei. It follows from the definition that ‖xn−1‖ � 1.

Suppose xn−1 = 1/2(y + z). We claim that y(k) = z(k) = xn−1(k) for all k � n − 1.
By Lemma 3.4, it suffice to show that y(n − 1) = z(n − 1) = an−1. This is clear
by definition. Indeed if y(n − 1) = an−1 + δn−1, then there is an f ∈ WT with
min supp(f ) = n − 1 so that

‖y‖ � f (y) = f ((an−1 + δn−1)en−1 + 2
n

∑
i∈F

ei) > 1.
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Therefore, δn−1 = 0 which is the desired result. Fix m with 3 � m < n − 1 and assume
ak has been defined for each m < k � n − 1. Let

am = sup{a : ∀ f ∈ WT , min supp(f ) � m, f (aem +
n−1∑

i=m+1

aiei + 2
n

∑
i∈F

ei) � 1}.

The same argument as before can be applied. The result follows. �

3.2. The set E(T∗). Recall that B(T∗) is the point-wise closure of the closed
convex hull, co(WT ), of WT . Let WT

p
be the point-wise closure of WT .

DEFINITION 3.5. Let n, k ∈ � and In = [2n+1, 2n+2 − 2],

φn = 1
2

∑
i∈In

e∗
i ∈ W1 and gk =

∞∑
n=k

1
2n−k

φn ∈ B(T∗).

Note that |In| = 2n+1 − 1 and so In is one element short of being a maximal S1 set.
From this we see that, in particular, φ1 + 1/2φ2 ∈ W2. For example, the functional g1

is simply the point-wise limit of the functionals

φ1 + 1
2
φ2 + 1

4
φ3 + · · · + 1

2n−1
φn,

that is, gk ∈ WT
p

for each k ∈ �. The main result of this subsection is to prove the
following.

THEOREM 3.6. Let k ∈ �. Then gk ∈ E(T∗). Moreover this implies that E(T∗) is
uncountable.

While the proof that gk ∈ E(T∗) is technical, the idea is pretty straightforward.
Indeed, we show that gk is the unique norming functional of a vector called zk. It is
easy to see that among the elements of g ∈ WT

p
not equal to gk, g(zk) < gk(zk). The

technical complication arises when we have to prove that the same for an arbitrary
elements of B(T∗).

REMARK 3.2. Let � < k in �. Then,

g� =
k−1∑
i=�

1
2i−�

φi + 1
2k−�

gk.

Below we define the vectors zk. Note that for each k, there are many vectors that
are uniquely normed by gk.

DEFINITION 3.7. Let mi ↗ ∞ be positive integers so that for each n ∈ �, the
following is satisfied:

∞∑
i=n+1

1
mi

<
1

mn2n+2
. (1)
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For each k ∈ �, let

zk =
∞∑

i=k

xi where xi = 1
mi2i+1

∑
j∈Ii

ej.

REMARK 3.3. For each k ∈ � we have

‖zk‖�1 =
∞∑

i=k

1
mi

(
1 − 1

2i+1

)
and gk(zk) =

∞∑
n=k

1
mn2n−k+1

(
1 − 1

2n+1

)
. (2)

Let us, roughly, explain why gk uniquely norms zk. First, note that the supports
are the equal. The vector zk can be understood as a ‘cascade’ of flat vectors whose
coefficients are chosen inductively to rapidly decrease in modulus. In addition, the
coefficients of gk are maximal in the following sense: for each n ∈ �, 1/2n is a coefficient
and for each n ∈ �, the coefficient 1/2n appears the maximum number of times.
Therefore, if g ∈ WT \ W0 and not equal to gk, the first non-zero coordinate of gk

that g disagrees with must be larger than the corresponding coefficient of g or else
g is identically 0 after that coefficient. This smaller coefficient for g enables larger
coefficients that must occur further into the support. However, since the coefficients in
subsequent blocks of the vector zk are chosen to be very small depending of previous
blocks, the larger coefficient later on cannot make up for an earlier loss. This allows
us to conclude that g(zk) < gk(zk) for g ∈ WT

p
not equal to gk. The technical step of

proving that gk is the unique norming functional when considering elements in the
point-wise closure of the convex hull of WT is dealt with in Lemmas 3.11 and 3.12.

As a last remark before the proof, we would like to point out that it would be
convenient to decompose each f ∈ B(T∗) as an infinite convex combination of elements
in WT

p
. However, we were not able to show that elements of B(T∗) have this kind of

decomposition. Indeed, whether such a decomposition holds is an open question to
us.

REMARK 3.4. Let h ∈ WT
p

with d = min supp h. Let F = {i : h(ei) = 1/2} and
suppose |F | = d − 1. Then, every decomposition of h is of the form

h = 1
2

(
∑
i∈F

e∗
i + g0)

for some g0 ∈ WT
p
.

Proof. Fix h ∈ WT
p
. Note that the statement is trivial for h ∈ WT and that, in this

case, g0 ∈ WT . Let EN = [1, N]. Then, ENh ∈ WT for N ∈ �. Thus, ENg0 ∈ WT . Since
ENg0 → g0 as N → ∞ point-wise, we know that g0 ∈ WT

p
. �

LEMMA 3.8. Let � < k in �. If g ∈ WT
p

with min supp g � 2k+1 − 1 and

k−1∑
i=�

1
2i−�

φi + g ∈ WT
p
,

then 2k−�g ∈ WT
p
.
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Proof. Fix � and proceed by induction. The base case k = � + 1. In this case we
assume g ∈ WT

p
and

h = 1
2

∑
j∈I�

e∗
j + g ∈ WT

p
.

By applying Remark 3.4, we conclude that

h = 1
2

(
∑
i∈I�

e∗
i + g0)

Thus, g0 = 2g ∈ WT
p

as desired.
Assume the statement holds for some k � � + 1 and we shall prove the statement

for k + 1. Using our induction hypothesis find g so that

k−1∑
i=�

1
2i−�

φi + 1
2k−�

φk + g ∈ WT
p
.

By our induction hypothesis,

hk = 1
2

∑
i∈Ik

e∗
i + 2k−�g ∈ WT

p
.

Using Remark 3.4, we know that

hk = 1
2

(
∑
i∈Ik

e∗
i + g0) ∈ WT

p
.

Thus, 2k−�+1g = g0 ∈ WT
p

as desired. �
The next remark is a consequence of the maximality of the coefficients of g� and

can be proved by a simple counting argument.

REMARK 3.5. Let � ∈ � and g ∈ WT
p
. Suppose that for k � �, there is an i with

g(ei) �= g�(ei) and i < min Ik. Then, there is an i0 ∈ Ik, so that g(ei0 ) �= g�(ei0 ).

REMARK 3.6. Fix g ∈ WT and � ∈ �. Suppose there is a minimum k � �, so that
|g(ei)| > g�(ei) for some i ∈ Ik, then, g|[min Ik−1,∞) = 1

2k−� e∗
i .

Proof. We use Lemma 3.8; since

g =
k−1∑
i=�

1
2i−�

φi + g|[min Ik−1,∞) ∈ WT ,

we have 2k−�g|[min Ik−1,∞) ∈ WT . By assumption,

|g(ei)| > g�(ei) = 1
2k−�+1

.

Therefore, |g(ei)| � 1
2k−� and 2k−�g|[min Ik−1,∞) ∈ WT . This implies the desired result. �
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LEMMA 3.9. Let k ∈ � and g ∈ WT . Suppose there is an i0 ∈ Ik, so that g(ei0 ) �=
gk(ei0 ). Then,

|g(zk)| � 1
2mk

(
1 − 1

2k+1

)
. (3)

Proof. Fix k ∈ �, g ∈ WT and i0 satisfying the assumptions. If g(ej) = 1, then
g = ±e∗

i0 and so |g(zk)| = 1/(mk2k+1). Therefore, we assume that |g(ei0 )| � 1/4. Thus,
|{i ∈ Ik : |g(ei)| = 1/2}| � 2k+1 − 2. Also, since g �∈ W0, g(x) � 1/2‖x‖�1 for each x ∈
T . These observations combined with (2) and (1) yield

g(zk) = g
(

1
mk2k+1

∑
i∈Ik

ei

)
+ g(

∞∑
n=k+1

xn)

<
1

2mk

(
2k+1 − 2

2k+1

)
+ 1

4mk

(
1

2k+1

)
+ 1

2
‖

∞∑
n=k+1

xn‖�1

� 1
2mk

(
1 − 2

2k+1

)
+ 1

4mk

(
1

2k+1

)
+ 1

2

∞∑
i=k+1

1
mi

(
1 − 1

2i+1

)

by (1)
<

1
2mk

(
1 − 1

2k+1

)
.

�

LEMMA 3.10. Let � ∈ � and f ∈ WT not equal to g�. Suppose that k � � is minimum,
so that there is an i0 ∈ Ik with f (ei0 ) �= g�(ei0 ). Then,

f |[min Ik−1,∞)(z�) <
1

2k−�+1mk

(
1 − 1

2k+1

)
.

Moreover, there is an δ�,k so that for any f satisfying the above hypothesis f (z�) <

g�(z�) − δ�,k.

Proof. Note that by Remark 3.5, such a k exists. Considering our set-up, we have

f =
k−1∑
i=�

1
2i−�

φi + f |[min Ik−1,∞).

Applying Lemma 3.8, we know that 2k−�f |[min Ik−1,∞) ∈ WT . Let f0 = 2k−�f |[min Ik−1,∞).
Then, 1

2k−� f0(ej) �= g�(ej) = 1
2k−� gk(ej). Therefore, we can apply Lemma 3 to conclude

that f0(zk) < 1/(2mk)(1 − 1/2k+1). Combining these equations, we have

f |[min Ik−1,∞)(z�) = 1
2k−�

f0(zk) <
1

2k−�

1
2mk

(1 − 1/2k+1).

This is the desired inequality. The ‘moreover’ statement follows from comparing the
above with the quantity g�(z�) from (2). �
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LEMMA 3.11. Let � ∈ � and f ∈ B(T∗). Suppose there exists k ∈ � minimum with
k � � so that |f (ei0 )| > g�(ei0 ) + η for some η > 0 and i0 ∈ Ik. Then,

|f (
∑
i∈Ik

ei)| � |Ik|
2k−�+1

− η = g�(
∑
i∈Ik

ei) − η.

Proof. Suppose first that f ∈ WT . Using Remark 3.6, we know f |[min Ik−1,∞) =
± 1

2k−� e∗
i0 and the conclusion follows easily since |Ik| � 4 for all k ∈ �.

Next, we consider the case f ∈ co(WT ). Let f = ∑d
j=1 λjfj with

∑d
j=1 λj = 1 and

(fj)d
j=1 ⊂ WT . Let J ⊂ {1, . . . , d}, so that for j ∈ J, fj = ± 1

2k−� e∗
i0 . Note that J �= ∅. Let

λ := ∑
j∈J λj. Using Remark 3.6, for j ∈ J ′ := {1, . . . , d} \ J, |fj(ei0 )| � 1/2k−�+1. Note

the following easy inequality

1
2k−�+1

+ η < |f (ei0 )| �
∑
j∈J ′

λj|fj(ei0 )| +
∑
j∈J

λj
1

2k−�
� (1 − λ)

1
2k−�+1

+ λ
1

2k−�
.

Therefore, η < 1/2k−�+1λ. This yields

|
d∑

j=1

λjfj(
∑
i∈Ik

ei)| � (1 − λ)
|Ik|

2k−�+1
+ 1

2k−�
λ � |Ik|

2k−�+1
− λ

2k−�+1
<

|Ik|
2k−�+1

− η.

The penultimate inequality uses the fact that (|Ik|/2 − 1) > 1/2. This finishes the case
of f ∈ co(WT ).

In the final case, we assume f ∈ co(WT )
p = B(T∗). In this case, the result follows

since f is the point-wise limit of a sequence in co(WT ) for which the desired estimate
holds. �

The next lemma provides the desired upper bound in the general case.

LEMMA 3.12. Let � ∈ � and f ∈ B(T∗) not equal to g�. Then, f (z�) < g�(z�).

Proof. Fix f ∈ B(T∗) not equal to g�. Then, using Remark 3.5, we can find k � �

minimum, so that there is some i0 ∈ Ik with |f (ei0 )| �= g�(ei0 ). First, we claim that there
is an η > 0, so that

|f (
∑
i∈Ik

ei)| < g�(
∑
i∈Ik

ei) − η.

Since f (ei0 ) �= g�(ei0 ) for some i0 ∈ Ik, either there is an i0, so that |f (ei0 )| > 1/2k−�+1 + η

for some η > 0, or |f (
∑

i∈Ik
ei)| < |Ik|/2k−�+1. In this latter case we have the above claim

trivially. In the former case the claim follows from Lemma 3.11. Consider the following
claim.

Claim: If
∑d

j=1 λj = 1 and (fj)d
j=1 ⊂ WT , so that

|(f −
d∑

j=1

λjfj)
∑
i∈Ik

ei)| < (1 − 1/2k−�+2)η.

Then, η <
∑

j∈B λj, where B = {j ∈ {1 . . . d} : ∃ i ∈ Ik, fj(ei) �= g�(ei)}.
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We prove the above claim. Let B′ = {1, . . . , d} \ B. Also, by Remark 3.6, for each
j ∈ B, there is an i ∈ Ik, so that either |fj(ei)| = 1/2k−� or |fj(ei)| � 1/2k−�+2. Either way

|(g� − fj)(
∑
i∈Ik

ei)| � 1/2k−�+2

for each j ∈ B. Using these observations

η � |(g� − f )(
∑
i∈Ik

ei)| <

d∑
j=1

λj|(g� − fj)(
∑
i∈Ik

ei)| + (1 − 1/2k−�+2)η

=
∑
j∈B

λj|(g� − fj)(
∑
i∈Ik

ei)| +
∑
j∈B′

λj|(g� − fj)(
∑
i∈Ik

ei)| + (1 − 1/2k−�+2)η

=
∑
j∈B

λj|(g� − fj)(
∑
i∈Ik

ei)| + (1 − 1/2k−�+2)η �
∑
j∈B

λj
1

2k−�+2
+ (1 − 1/2k−�+2)η.

(4)

This finishes the proof of the claim.
Recall the definition of δ�,k from Lemma 3.10. To finish the proof, find a convex

combination
∑d

j=1 γj = 1 in and (fj)d
j=1 ⊂ WT satisfying

|(f −
d∑

i=1

γifj)(
∑
j∈Ik

ej)| < ηδ�,k.

Define B and B′ as before. For j ∈ B′, we have the trivial estimate |fj(z�)| � gk(zk)
and for j ∈ B, we have |fj(z�)| < g�(z�) − δ�,k.

|f (z�)| <

d∑
j=1

γj|fj(z�)| + ηδ�,k =
∑
i∈B

γj|fj(z�)| +
∑
i∈B′

γj|fj(z�)| + ηδ�,k

�
∑
j∈B

γj(g�(z�) − δ�,k) +
∑
j∈B′

γjg�(z�) + ηδ�,k

< g�(z�) −
∑
j∈B

γjδk + ηδ�,k

< g�(z�) − ηδ�,k + ηδ�,k = g�(z�).

(5)

In the above, we use the estimate η <
∑

j∈B γj from the claim at the beginning. This is
the desired result. �

Proof of Theorem 3.6. By Lemma 3.12, gk uniquely norms zk for each k. This
easily yields that gk is in E(T∗). Indeed if gk = 1/2(f + g) for f, g ∈ B(T∗) and different
from gk, we have that |1/2(f + g)(zk)| < 1/2gk(zk) + 1/2gk(zk) = gk(zk). To see that
E(T∗) is uncountable, note that for any sequence of signs and any k ∈ �, (εi)∞i=1 so that∑∞

i=1 εigk(ei)e∗
i ∈ E(T∗) by Lemma 3.1. �

In their book on Tsirelson’s space, Casazza and Shura conjectured [6, p. 170] that
for each m < n, there is a vector x, so that

‖x‖m−1 < ‖x‖m = ‖x‖n < ‖x‖n+1. (6)
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The last result of this paper is a proof of this fact. We need the following finite
truncations of the vectors z1 and g1.

DEFINITION 3.13. For each k ∈ �, define the following vector and functional:

yk =
k∑

i=1

xi + 1
mk2k+1

e2k+2−1,

hk =
k∑

i=1

1
2i−1

φi + 1
2k

e2k+2−1.

Let Ek := suppyk = supp hk.

Note that φi(xi) = 1
2mi

(1 − 1
2i+1 ). Therefore,

hk(yk) =
k−1∑
i=1

1
2imi

(1 − 1
2i+1

) + 1
mk2k+1

.

PROPOSITION 3.14. Let k ∈ �. Then, hk(yk) = ‖yk‖ and there is an ε > 0 so that if
f ∈ WT with f �= hk, then f (yk) < ‖yk‖ − ε.

The existence of the ε > 0 above follows from the fact yk ∈ c00 and the coefficients
of elements of WT lie in the set {±21−k : k ∈ �}.

PROPOSITION 3.15. For each m < n in �, there is a vector x so that

‖x‖m−1 < ‖x‖m = ‖x‖n < ‖x‖n+1. (7)

Proof. Fix m < n in �. Using Proposition 3.14, find ε > 0 so that if f ∈ WT with
f �= hm, then f (ym) < ‖ym‖m − ε. Note that ‖ym‖m−1 < ‖ym‖m = ‖ym‖.

Using the repeated average hierarchy from [2, p. 17], there is a vector wn, so that
min supp wn > max supp ym and so that if f ∈ Wn, then f (wn) < ε/2, but ‖wn‖n+1 � 1.
Let x = ym + wn.

Let f ∈ Wn with f �= hm. Then, it follows that

f (x) = f (ym + wn) � ‖ym‖m − ε/2 < hm(x).

As hm ∈ Wm \ Wm−1, this implies that ‖x‖m−1 < ‖x‖m = ‖x‖n.
Also, note that ‖x‖n = hm(ym) < 1. Thus,

‖x‖n+1 � ‖wn‖n+1 � 1 > ‖x‖n.

This is the desired result. �

For our final result, we use the above vectors to establish a lower bound on a
quantity j(n) defined below an first defined in [6].
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DEFINITION 3.16. For n a positive integer, j(n) is the smallest non-negative integer
such that for all x ∈ c00 with max supp x � n, we have

‖x‖j(n) = max
m∈�

‖x‖m.

In [6] they state that j(n) � �(n + 1)/2�, admitting this is likely not a sharp upper bound
for j(n). In a recent work [5], Beanland et al. improved this upper bound by showing
that j(n) is O(

√
n). Here, we give a lower bound on j(n).

THEOREM 3.17. For each k ∈ �, j(k) � log2(k + 2) − 3.

Proof. For each n ∈ �, the vector yn is uniquely normed and max supp yn = 2n+2 −
2. Therefore, j(2n+2 − 2) � n. Now, let k ∈ � and find n ∈ � with 2n+1 � k + 2 < 2n+2.
Then,

j(k) � j(2n+1 − 2) � n − 1 � log2(k + 2) − 3.

This is the desired result. �
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