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SHARPLY TRANSFERABLE LATTICES 

H. GASKILL, G. GRÂTZER, AND C. R. PLATT 

1. I n t r o d u c t i o n a n d r e s u l t s . In a lecture in 1966 (see [6]), the second 
au thor considered briefly those first order properties which hold for a latt ice J$f 
if and only if they hold for the latt ice I(<££) of all ideals of «jSf. The best known 
examples of such properties are those given by identities. T h e well-known 
connection between the modular ident i ty e and the five-element nonmodular 
latt ice jV» t ransforms the above result for e into the following s t a t ement : 
•-Àf$ is a sublatt ice of a lattice ££ if and only if <J/$ is a sublat t ice of I{J£). 
Fur thermore , it can be seen t ha t for any embedding <p oî<yV-0 into I(^), there 
is an embedding o f ^ 5 into<if which " separa tes" the image of <p. Generalizing 
these properties of JV^ we obtain the concepts of transferable and sharply 
transferable lattices. 

1.1 Definition. A lattice 2f is called transferable if and only if, for every 
embedding <p of tf into the lattice I(J£) of ideals of a latt ice S£, there exists an 
embedding \p of 2f into S£. If, in addit ion, \p can always be chosen so as to 
satisfy the condition: for x ^ yf, 

\f/(x) £ <p(x), bu t if y < x, then \f/(x) Ç? <p(y), 

then / ^ is called sharply transferable. (The terminology introduced here differs 
from tha t in previously published results. In [3] and [4], transferable and 
sharply transferable were called weakly transferable and transferable, respec
tively. We feel the present terminology is more descriptive and a t the same 
t ime more appropr ia te , since the (present) notion of transferabili ty is the more 
fundamental concept.) 

T h e first general result was al ready found in 1966 (announced in [6]; see [9] 
for a proof) : a transferable latt ice contains no doubly reducible elements. 

In his thesis [4], the first au thor defined similar concepts for semilattices and 
proved (see [3] and [4]) that a finite semilattice is sharply transferable if and 
only if it satisfies the condition (T) (defined in § 2) . He then established (see 
[4]) tha t , if (L; A , V ) is a sharply transferable finite latt ice, then both 
(L; V ) and the dual of (L; A ) satisfy (T). Finally, he showed t ha t ( J T V ) , (TA), 
and (W) (defined in § 2) are jointly sufficient for sharp transferabili ty of a 
finite lattice. T h e principal result of this paper is the following complete 
characterization. 
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SHARPLY TRANSFERABLE LATTICES 1247 

1.2 T H E O R E M . A finite lattice is sharply transferable if and only if it satisfies 
the three conditions (Ty), (TA), and (W). 

Observing tha t (Ty) is the dual of (TA), and tha t (W) is self-dual, we obtain 

1.3 COROLLARY. If a finite lattice i f is sharply transferable, so is the dual of J£. 

The sufficiency of the three conditions of 1.2 is established in § 2 below, and 
the proof follows ra ther closely t ha t given in [4]. In § 3, we give new and 
simplified proofs of the necessity of (Tw) and (TA). Finally, in § 4 we prove 
the necessity of (W). 

There are a number of recent related results tha t should be mentioned here. 
Generalizing the above-mentioned relation between jty\ and the modular 
ident i ty e, R. McKenzie [12] introduced the impor tant concepts of splitting 
lattices and splitting identities, and characterized splitting lattices. In estab
lishing this theorem, he proved tha t a finite lattice is embeddable into a free 
lattice if and only if it satisfies (W) and is a bounded homomorphic image of 
a free lat t ice. Utilizing McKenzie 's ideas and the present characterization 
theorem, H. Gaskill and C. R. P ia t t [5] proved tha t the class of finite sharply 
transferable lattices coincides with the class of finite sublattices of free lattices. 
This has the unexpected corollary tha t a sublattice of a finite sharply trans
ferable lattice is sharply transferable. 

R. Freese has communicated to us his unpublished result tha t a finite 
lattice satisfies (W) if and only if it is a retract of the lattice of ideals of the 
lattice of dual ideals of some finitely generated free lattice, I(D(F(n))) (here 
the dual ideals are ordered by reverse inclusion). This, together with 1.2 and 
1.3 above, yields another proof of one direction of the result of Gaskill and 
Pia t t . 

Finally, we mention the paper of K. Baker and A. Hales [1] in which they 
give a number of interesting results concerning first order properties of the sort 
mentioned in the first paragraph of this paper. 

In conclusion, we summarize in the form of a theorem what we know about 
transferability. 

1.4 T H E O R E M . LetJ£ be a finite lattice. 
(i) If J£ is transferable, then ^ has no doubly reducible elements. 

(ii) If J£ is transferable, then J£ satisfies the semi-distributive laws (S DA) 
and (SDv). 

(iii) If J£ is transferable, thenJ£ can be embedded into a finite partition lattice. 
(iv) If S£ satisfies (W), and if S£ and its dual are transferable, then S£ is 

embeddable into a free lattice. 

Sta t emen t (i) is proved in [9], (ii) in § 3 below, and (iii) in [1] and [8]. 
S ta tement (iv) follows from R. Freese's result quoted above. 

The notat ion used in this paper is tha t of [7]. We mention specifically only 
the following: if «if is a lattice, I{J£ ) is the lattice of all ideals of i f ; if X is a 
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finite subset of a lattice, AX and VX denote the greatest lower bound and the 
least upper bound of X, respectively; if a and b are elements of a partially 
ordered set, then 

(a] = {x : x ^ a}, [b) = {x : x ^ b], and [a, b] = {x : a S oc ^ b) ; 

if / : A -» 5 is a function a n d I Ç i , then/(X) = {/(*) : x G X}. 

2. Sufficient conditions for sharp transferability. We begin with several 
definitions. 

2.1 Definition. Let (P ; ^ ) be a partially ordered set. For X, F Ç P , define 
X < Y to hold if and only if for every x £ X there exists 3/ G F such that 
x ^ y. 

2.2 Definition. Let (5 ; V ) be a join-semilattice, p £ S, and / Ç S. We say 
(£>, / ) is a minimal pair if and only if the following three conditions hold: 

(i) P$J; 
(ii) P S W ; 

(iii) if J' C 5, £ ^ W , and / ' < / , then / Ç / ' 

2.3 Definition. A semilattice (5; V ) is said to satisfy (T) if and only if there 
exists a linear order relation R on 5 such that if (p, J) is a minimal pair then 
p R x holds for all x £ J. 

2.4 Definition. A lattice (L; A, V ) is said to satisfy (Tv) if and only if 
(L; V) satisfies (T), and to satisfy (TA) if and only if the dual of (L; A ) 
satisfies (T). 

The following remarks will help clarify the connection between these defini
tions and the concepts in [3] and [4]. 

2.5 Remark. If (p, J) is a minimal pair, then clearly J is an antichain; i.e., 
any two members of J are incomparable. Furthermore, p % q_ for all q £ / . 

2.6 Remark. If (p, J) is a minimal pair, then every element x £ J is join-
irreducible. Indeed, if x £ / and x = y V s, let J' = ( / — {x) ) \J {y, z}. Then 
p S \/J' and J' < J, so J C / ' by (iii) of 2.2. Thus, x = 3/ or x = z. 

2.7 Remark. If (£>, 7) is a minimal pair, then | J\ ^ 2. 

2.8 Remark. If £ is join-irreducible, then the present concept of minimal pair 
coincides with that of [3] and [4]. 

2.9 Remark. (S; V ) fails to satisfy (T) if and only if for some n £ co there 
exist minimal pairs (pu Jt), i = 1, 2, • • • , n, such that £<+i G J % for 1 ^ i < n 
and £1 G Jn- Therefore, in view of 2.6-2.8, (5; V ) satisfies (T) if and only if 
it is strictly transferable in the sense of [3], 

The next lemma illustrates the significance of minimal pairs. 
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2.10 LEMMA. Let (S; V ) and (S*; V ) be semilattices, S finite, and let (p : S —> 
S' be an order-preserving function. Then the following are equivalent: 

(i) <p is join-preserving. 
(ii) For each minimal pair (p, J) of (S; V ), <p(p) ^ \/(p(J). 

(iii) For each minimal pair (p, J) of (S; V) satisfying p = \fj, <p(p) ^ 

V*(/). 
Proof, (i) =» (ii) => (iii) are trivial, so assume (iii). Let x, y G 5 be incom

parable. Since <p is order-preserving, <p(x V y) ^ <p(x) V <p(y) is clear. Since 5 
is finite there must exist J Q S such that J < {x, y} and (x V y, J) is a 
minimal pair. Since Vj = x V y, (iii) implies that 

v(x V y) ^ V<p(J) £ <p(x) V <p(y), 

the latter inequality holding because J < {x, y). This completes the proof. 

The next definition introduces some useful terminology. 

2.11 Definition. Let i f = (L\ A, V ) and i f ' = <Z/; A, V ) be lattices, and 
let / ( i f ') denote the lattice of all ideals of if ' . Let p : i f -> I(£?') be a lattice 
embedding. A function \// : L —» Z/ is called <p-normal if and only if it satisfies 
the following condition: 

for x, y £ L, \p(x) £ <p(;y) if and only if x ^ 3>. 

If ^ is also a lattice homomorphism, it is called a (p-transfer. 

The following remarks are immediate from the definition. 

2.12 Remark. The condition for \f/ to be ^-normal is equivalent to: 

for all x £ L, \//(x) £ <p(x) — U <p(y)-
V<X 

2.13 Remark. If ^ is ^-normal, then ^ is one-to-one. Consequently, S^ is 
sharply transferable if and only if, for every embedding <p : ££ —> I(J^f)f there 
is a ^-transfer ^ : ̂ £ —"><f£'. 

2.14 Remark. If ^ is ^-normal and ^ : L —> Z/ satisfies ^(x) ^ ^'(#) G <p(x) 
for all x (z L, then ^ is <p-normal. 

Our last condition for sharp transferability is the following. 

2.15 Definition. A lattice i f = (L; A , V ) is said to satisfy (W) if and only if 
for every x, y, u, v £ Z, 

(WO x A y ^ w V A implies [x /\ y, u V v\ C\ {x, y, u, v) ?± 0. 

The condition (W) was formulated by B. Jonsson [10] on the basis of 
P. M. Whitman's characterization of free lattices [13]. By induction we have 
the following 

2.16 Remark. J£ satisfies (W) if and only if for any non-empty finite sets X, 

https://doi.org/10.4153/CJM-1975-130-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-130-5


1250 H. GASKILL, G. GRÂTZER AND C. R. PLATT 

F C L, if AX ^ V F , then AX ^ y for some ^ F o r else x ^ V F for 
some x Ç X. 

We are now ready to prove the main result of this section. 

2.17 THEOREM. LetJ£ be a finite lattice satisfying (Tw), (TA) and (W). Then 
<=£? is sharply transferable. 

Proof. Let <p : ££ —» !{££') be an embedding. We will first construct a 
«^-normal join-preserving function \pf : (L; V ) —» (Z/; V ). Using (JHV), choose 
an ordering (xi, x2, • • - , xn) oî all the elements of L such that if (xit J) is a 
minimal pair of ££ and x;- G J, then i < j . Let \//o : L —•> Z/ be an arbitrary 
^-normal function. Such a function clearly exists in view of the finiteness of L. 
We will construct functions \pi : L —> L', 1 ^ i ^ n which are ^-normal, and 
such that 

(1) for 0 ^ i ^ n, if 1 ^ j rg i and (x,,-, J ) is a minimal pair, 
then *,(*,) g V * , ( / ) . 

This is in fact vacuous for i = 0. Suppose 0 S i and ^ has been defined as 
required. Let (x î+i, / ) be a minimal pair. Then \l/t(xi+i) G <p(xi+i) ^ W(f(J), 
so for each q £ J we can choose an element g J G <p(g) such that \pt(xi+i) ^ 
V{g J : ç G i | . Doing this for each minimal pair (xi+i, J), we then define, 
for every q £ L, 

\f/i+1(q) = ypi{q) V V{g J : (xi+i, J) is a minimal pair and gÇ / ) . 

Observe that ^ + i is ^-normal by Remark 2.14. 
To show that \pi+i satisfies (1), we begin by noting that \f/i+i(Xj) = ypi(xf) 

for j ^ i + 1. This is immediate, since if q = ^ G / a n d (Xi+i, J ) is a minimal 
pair, then i + 1 ^ j . Now, let 1 S j ^ i + 1 and let (x;, / ) be a minimal pair. 
If j ^ fc, then, by the preceding observation, 

where we have used the inductive hypothesis and the fact that \pt ^ ^i+i. If 
j = i + 1, then we have, by the choice of the qJ, 

*,+1(*,) ^ V{ç':<zG /} ^ V*„.i(/). 

Thus, (1) holds for \f/i+i. 
Now observe that for any minimal pair (p, J)oiS£, we have\f/n(p) ^ V^W(J). 

Indeed, if £ = x< then for i = n, this is (1), and for i < n, we have 

*»(*«) = *«(*«) ^ V^,:U) ^ V*„(/). 

Define ^ ' : L - • L' by 

*'(*) = V{-A„(y) : y ^ xî H i ) . 

By Remark 2.14, \j/' is ç>-normal. We claim \p' is join-preserving. Since \p' is 
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clearly order-preserving, it suffices to establish condition (ii) of Lemma 2.10. 
If (p, J) is a minimal pair, then for each y ^ p we consider two cases: 

(1) If y ^ q for some q (z J, then 

*„(y) ^ f (s) ^ W(J). 
(2) If 3/ ^ q for all q £ J, then there exists a minimal pair (yy / ' ) , where 

J" < / . Then 

My) ^ WW) ^ W(J), 
the latter inequality holding since $n(J') < $'(J). Since ypn(y) = VV'( / ) for 
all y ^ £, we have ^'(/>) ^ \Z\//'(J), and therefore ^' is join-preserving. 

The next step in the proof is to modify ypr to obtain a meet-preserving <p-
normal mapping. Let us call (p, J) a dual minimal pair of «if if and only if 
(p, J) is a minimal pair of the dual of (L; A ). Since «if satisfies (TA), we can 
choose an ordering (yi, y2y . . . , yn) of all the elements of L such that if {yt, / ) 
is a dual minimal pair and 3^ £ / , then j < i. We define \[/ : Z, —> U as follows: 
for x £ L, set 

^(x) = iA'(x) V V{A ^ ( / ) : (x, J ) is a dual minimal pair}. 

Observe that the formula for \l/(yt) depends only on values ^(3^) satisfying 
j < i, so \// is well-defined. 

First we show \p is order-preserving. We will prove the following statement 
by induction on j : 

if y £ L and yj ^ y, then ^(3^) ^ ^(y). 

Indeed, given i, 1 ^ i S n, suppose this holds for all j such that j < i. If 
y% S y, then since ^ is order-preserving, we have ^(yt) ^ \p''(y) ^ ^(y)- Let 
(yi} J) be a dual minimal pair. If yj ^ y holds for some 3^ Ç / , then j < i, so 
by inductive hypothesis, 

On the other hand, if 3^ ^ 3; for all 3^ £ / , then there exists / ' C Z such that 
(3/, / ' ) is a dual minimal pair and J' < J holds in the dual of «if ; that is, for 
every u £ J' there exists 3^ £ J such that 3^ ^ u. Since j < i, we then have 
by inductive hypothesis that \l/(yj) ^ $(u). From this it follows that A^(7) ^ 
/\\[/(Jf). However, by definition of \p, /\ip(J') S $(y)- Since yp(yt) is a join of 
terms each of which we have shown to be less than or equal to ip(y), we have 
proved yp{yi) ^ tiy)-

It is clear from the definition that if (p, J) is a dual minimal pair, then 
${p) ^ A ^ ( / ) . Thus, by the dual of Lemma 2.10, yp is meet-preserving. 

We next show that \p is «p-normal. Since \p' ^ \p. it suffices to prove yp{yi) £ 
<p(yt) for all yt £ 7. The proof is again by induction on i. Suppose then that 
^(y*) £ <p(yj) for all 7 < i. We have \p'(yt) G <p{y%) by the «^-normality of \p'. If 
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{yu J) is a dual minimal pair, then, by inductive hypothesis, 

A * ( / ) € f W ) = <P(AJ) Q <P(X). 

Thus , yp(y{), being a finite join of elements of the above types, is in <p(x). 
Finally, we conclude the proof of the theorem by using (W) to establish 

condition (iii) of Lemma 2.10, proving t h a t \f/ is join-preserving. Let (p, J) be 
a minimal pair with p = V / . Since yp' is join-preserving, we have \pf (p) ^ 
W ( / ) ^ W ( / ) . If (p, Jf) is a dual minimal pair, then VJ = p ^ A / ' ' . 
Since, by the definition of a dual minimal pair, we have p ^ q for all q £ Jf, 
it follows by (W) (Remark 2.16) t ha t A / ' ^ q for some a £ J. Then we have 

A * ( / ' ) = HAJ') ^ Hq) è W ( J ) . 

Thus , we have \p(x) ^ V V ( J ) , completing the proof of the theorem. 

3. N e c e s s i t y of ( 7 \ ) a n d (TA). In this section we will prove t h a t every 
sharply transferable latt ice satisfies (Tw) and (TA). We begin with the follow
ing construction. 

3.1 Definition, Let ££ = (L; A , V ) be a finite latt ice. Let Z denote the 
integers with their usual linear ordering. Let wi : L X Z —» L and 7r2 : L X 
Z —> Z be the projections onto the two factors. Then we define L to be the 
collection of all non-empty subsets H of L X Z which satisfy the following 
two conditions: 

(i) for some n G Z, iri(H) Ç (V|; 
(ii) if 0 ^ Z Ç F , J is finite, 2 ^ Vin(X), and i < A T T 2 ( X ) , then 

Observe t ha t for each n £ Z, L X (w] G L. Therefore we can make the 
following definition. 

3.2 Definition. Ii n £ Z, X Ç L X (n], and X 9e 0, then we define 

[X] = H { # £ £ : X C f f } . 

If u £ -L X w, we write [u] for [{#}]. 

3.3 Remark. Clearly [X] £ L. Fur thermore , there exists a finite set XQ Ç X 
such t h a t [X0] = [X]. 

3.4 Definition. II H, K £ L, define H V K = [H \J K] and H A K = 
H C\K. 

T h e proof of the following is straightforward and is left to the reader. 

3.5 LEMMA. J£ = ( L ; A , V ) is a lattice with set inclusion as its partial order. 

T h e following remark is easily verified. 
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3.6 Remark. If 0 ^ X C L X ( » ] , » € Z, then 

[ I ] = I U ( « a X Z : there exists F Ç I J finite, 
iri(«) ^ \An(F ) , 7r2(^) < A T T 2 ( F ) } . 

In particular, if X is finite, then [X] Ç (VTTI (Z) ] X (»]. 

3.7 LEMMA. If X Q L X (n], n £ Z, and (x,i) £ [X] - X, then 

(X,i)e [xn(Lx [i + im 
Proof. Obvious by Remark 3.6. 

3.8 LEMMA. For a finite lattice =£?, define, for each x G L, 

<p(x) = {H £ L:H Q (x] X Z}. 

Then <p(x) is an ideal of ££, and <p : J£ —> I(J£) is an embedding. 

Proof. The proofs that <p(x) is an ideal and that <p is one-to-one and meet-
preserving are straightforward, so we prove cp is join-preserving. Since <p is 
order-preserving it suffices to show that <p(x V y) ^ <p(x) V <p(y) for x, y (z L. 
Let H G <p(x V y), and put i = WTT2(H). Then H C [(x V y, i + 1)]. Also, 
[<x, * + 2)] 6 ^(x), [(y, i + 2)] G <p(y), and <x V % i + 1) G [{<*, * + 2), 
(y, i + 2)}]. Therefore, 

HQ[(xV y, i + 1)] C [(x, i + 2>] V [(y, i + 2)] G *>(*) V ^(y), 

so H £ (p(x) V <^(y). Thus <p(x V y) Ç <£>(x) V <^(y), completing the proof. 

Now we prove the necessity of (Tw). The stronger statement in Theorem 3.9 
will be used in a forthcoming paper [5], and also yields a new proof of the main 
result of [3]. It is only necessary to observe that the construction of ££ and 
the proof of Lemma 3.8 remain valid whenjSf is a join semilattice. 

3.9 THEOREM. If a finite lattice ££ is sharply^ transferable, then ££ satisfies 
(Tv). In fact, if for the embedding <p : ££ —> IÇSf) there exists a cp-nor mal join-
preserving function, then^ satisfies (Tv). 

Proof. Let \f/ : ^£ —*J£ be ^-normal and join-preserving. If x G L, we claim 
that x G TTI(\I/(X)). Indeed, if z = VTTI(^(X)) , then for some i G Z, (z, i) G 
\p(x). Since ^(x) G <p(x),£ ^ x. But clearly ^(x) G ^>(z), so since \p is «^-normal, 
x g s. Thus, (x, i) = (z, i) G \ls(x). 

Now, for each x G L, we define 

p(*) = V{j G Z : (x,j) G *(*)}• 

Claim: If (/>, / ) is a minimal pair of jSf and g G / , then p(£) < p(#). 
Given this, (Tv) follows immediately, letting R be any total ordering such 

that p(p) < p(q) implies p R q. 
To prove the claim, let j = p{p). Then 

(pj)e +(p) ^ V*(/) = [u *(/)]. 
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By Remark 3.3, we can choose a finite set T Ç \J \p(J) which is minimal with 
respect to (p,j) G [T], Now (p,j) d T, for otherwise (p,j) G \[/(q) G <p(q) for 
some g G / , hence p S q, contrary to Remark 2.5. Thus, by Lemma 3.7 and 
the minimality of T, if (x, i) G T, then i > j . Let J' = TTI(T). By Remark 3.6, 
p ^ \fj'. If (x, i) G r , then for some q (i J, (x, i) G i^(g) G <p(g), so x ^ g. 
Thus, / ' < / , so by definition of minimal pair, / Ç J'. Now let q G J be 
given. Then ç G / ' , so let (q,i) G r , hence (g, i) G ^(go) for some g0 G / . Then 
ç ^ Co, whence g = go by Remark 2.5. Thus, (g, i) G ^(g), so p(g) ^ i > j = 
p(p), proving the claim and the theorem. 

Turning now to (7"A), we wish to dualize the construction of ££. Let ££d 

denote the dual of a l a t t i c e d ; we define 

if* = (^2)*. 

Thus, L* is the set of all non-empty subsets H of L X Z with H Ç Z, X (w] for 
some w G Z and satisfying 

(iii) if 0 ^ X Ç jff, X is finite, 2 ^ Airi(X), and 
i < A ^ ( X ) , then <z, i) G # • 

The ordering of oSf* is the dual of set inclusion. If the notation [X] is defined 
as before, then for H, K G £*, # V K = H C\ K and H A # = [H C\ K] 
in if*. 

We again have a natural embedding of i f into I{f£*). 

3.10 LEMMA. For a finite latticed, define, for each x G L, 

<p*(x) = {He L* :x G TnOtf)}. 

TTzen <p*(x) is an ideal of if*, awa7 <£>* : i f —•> 7(j5f*) is aw embedding. 

Proof. If i l G *>*(*), X G L*, and K ^ # , i.e., H Q K, then x G wi(if) Ç 
7ri(X), so i£ G <?*(x). If H, K G <£>*0O> choose (x, i) £ H and (x, j ) G K. 
Then (x, i A j) £ H C\ K = H V K, so H V K £ <p*(x). Thus <?*(x) is an 
ideal of if*. 

Suppose x, y G £ and x ^ y. If i l G <£* (x), let (x, i) G iï". Then (y, i — 1 ) G 
H, so H £ <p*(y)> Thus, <£>*(x) Ç <p*(y), and <p* is order-preserving. 

Next, assume <?*(x) Ç <p*(y). Let i l = [(x, 1)]. Then H G ^*(y), so 
y G TI(H). But by (the dual of) Remark 3.6, iri(H) Ç [x), so x ^ y. Hence 
<p* is an order embedding. 

To show <p* is meet-preserving, it suffices to show <p*(x) Pi <p*(y) Çz 
cp*(x A 3>) for x, y G £. Let iZ G <£>*(#) ^ <P*(y)- Then there exist (x, i) , 
(3/, j) £ H, so (x A y, i A j — 1) £ H. Thus, i? G <?*(x A 3>). 

Finally, we show that <p*(x V 3/) Ç <£*(#) V <p*(y), proving cp* is join-
preserving. Given H G <£>*(x V y), let (x V y, i) G # . Define X z = [(x, i)] 
and Ky = [(y, i)]. Since Kx G <£*(#) and Kv G <p*(y), it suffices to show that 
H ^ Kx V Ky in i^7*, i.e., that Kx C\ Ky Q H. Suppose then that (z, j) G 
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Kx r\ Ky. By (the dual of) Remark 3.6, z ^ x V y and j S i. Thus, if j < i, 
we have (z, i) G [{% V y, i)] C 77. On the other hand, by Lemma 3.7, Kx Pi 
(L X {i}) = {(x,i)} and i ^ H (L X {i}) = {(y, *)}, soifj = Athens = x = 
y, so again (2, i) G 77. This completes the proof. 

We now have the dual of Theorem 3.9. 

3.11 THEOREM. If a finite latticed is sharply transferable, then S^ satisfies 
( r v ) . In fact, if for the embedding <p* : j£f—» i"(o£f*) there exists a <p*''-normal 
meet-preserving function, then <f£ satisfies (TA). 

Proof. Let xp* \ ££ —*<££* be <p*-normal and meet-preserving. We begin by 
observing that for x G L and i G Z, 

(2) if (x,i) G ifr*(y), then x ^ y. 

Indeed, if (x, i) G *p*(y), let (y, j ) G ^*(j) . Then (x A 3/, i A 7 — 1) G ^*Cy), 
so ^*(y) G (p*(x A y). By ^-normality, y ^ x A y S x. 

Now for x G L, define 

<r(x) = V { j G Z : <x,j> G **(* ) } . 

The proof will be completed by establishing the following. 
Claim: If (p, J) is a dual minimal pair in J?f, then for all q (z J, <r(p) < c(g). 
Thus, let (j(£) = j . We have £ è /\J, so ^*(/>) ^ yp*(f\J), i.e. 

**(*>) Ç **(A/) = A**CO = [U**(/)]. 
Since (£, j) G *P*(p), we can choose a finite set 2" Ç! {Jxp*(J), minimal with 
respect to (£, j ) G [7"]. Now (p, j) G 7", since (p, j) £ \//*(q), q £ J would 
imply p ^ q, contrary to Remark 2.5. Thus, by Lemma 3.7, i > j for all 
i G 7T2(r). Let / ' = 7ri(r). By (the dual of) Remark 3.6, p ^ /\Jf, and by 
(2), if g G J', then q ^ qf for some g' G / . Thus, by the definition of dual 
minimal pair, J Ç / ' . Now let q G J be given. Then g G / ' , so (g, t) G 7" for 
some i. But then (q, i) G *P*(qo) for some g0 G / , implying g ^ go, so g = g0 

by Remark 2.5. Thus, (g, i) G *P*(q), so o-(g) ^ i > j = a(p), proving the 
claim and the theorem. 

In the remainder of this section, we will use the constructions ££ and ££* 
to establish the semi-distributivity of transferable lattices. This will be needed 
in Section 4. We first define the concept. 

3.12 Definition. A l a t t i c e d is said to satisfy the semi-distributive law {S Dy) 
if and only if for x, y, z £ L, x \/ y = x V z implies x V y = x V (y A z). 
The semi-distributive law (S DA) is defined dually. 

There is a related property which for finite lattices is equivalent to (S Dy). 

3.13 Definition. A join-semilattice (S; V ) is said to have canonical join 
representations if and only if for every x G S, there is a set Qx C 5 such that 
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\/QX = x, and if / Ç 5 with x = V / , then Qx < J. (Canonical join represen
tations are usually required to be antichains. However it is clear that the set 
Qx in Definition 3.13 contains a unique antichain which will also satisfy the 
definition.) 

We will need the following observation due to B. Jônsson and J. Kiefer [11]. 
For completeness, we include a proof. 

3.14 LEMMA. If a latticed = (L; A, V) is such that (L; V) [respectively, 
the dual of (L; A )] has canonical join representations, then ^ satisfies {S Dy) 
[respectively, (SDA)]. 

Proof. Let x, y, z G L and suppose x V y = x V z. Let Q be the canonical 
join representation for x V y. Put R = jg G Q : q ^ x}, and S = Q — R. 
Then Ç < {x, y}, hence 5 < {y}. Similarly, 5 < {z}, so S < {y /\ z). Since 
R < [x], we have Q < {x V ( j A z)), so that 

x V y = V<2 ^ x V (y A z) ^ x V y. 

Thus, equality holds, proving the lemma. 

3.15 LEMMA. For any finite lattice ^ , ££ has canonical join representations. 

Proof. For if G if , define 

H0 = {u e H : u £ [H - {u}}\. 

We claim that 
(i) [H0] = H, and 

(ii) if X Ç # and [X] = # , then # 0 C X. 
For (i) it suffices to prove H Ç [i70]. If u £ H, we prove « £ [iJ0] by down
ward induction on 7r2(w). Thus, suppose that v £ H and 7r2(z>) > 7r2(u) imply 
v G [i^o]- If u G iïo, then of course w G [-Ho]- If u $ Ho, then, by definition, 
u £ [H - {u}]. By Lemma 3.7, u £ [(H - {u}) H ( I X [TT2M + 1))] Ç 
[i70], the latter inclusion following by inductive hypothesis. 

To establish (ii), let [X] = H. If u G H0 but M ^ I , then u £ [X] = 
[X — {u}] Ç [JT7 — {w}] contradicting the définition of H0. 

Now let & = {[«] : M G ff0}.Then V & = [H0].UJ C L and ff = V / = 
[U / ] , (ii) implies iJ0 £ U / , hence ()# < / . This completes the proof. 

3.16 THEOREM. A finite transferable lattice J£ satisfies (S Dw) and (S D A). 

Proof. First, by 3.14 and 3.15, i f satisfies (S Dy). By Lemma 3.8 there is an 
embedding <p : i f —> I(J£), so by transferability, there is an embedding 

Since (5 Z>v) is clearly hereditary, i f satisfies (S Dy). 
Now, by Lemma 3.10, i f is embeddablejnto I(&*), where i^7* = {^d)d. 

By transferability, <=$? is embeddable in (^d)d, which satisfies (S DA). Again 
by heredity, «if satisfies (S DA). This completes the proof. 
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3.17 Remark. A direct proof that, in a semilattice (S; V ), (T) implies 
existence of canonical join representations can be obtained as follows: if x is 
join-reducible, define Qx = {y (z S : y < x and there exists no minimal pair 
(y, J) with J < {x}}. Using induction on an ordering given by (T), one can 
show Qx is the canonical join representation of x. 

3.18 Remark. The lattice in Figure 1 shows that (S Dy) does not imply (Tw). 

FIGURE 1 

In view of the results of [5], the assertion that (S Dy), (S DA), and (W) jointly 
imply (JTV) is equivalent to Jônsson and Kiefer's conjecture [11] that (S Dv), 
(S DA), and (W) characterize finite sublattices of free lattices. 

4. Necessity of (W). The "splitting" of an element of a lattice was intro
duced to facilitate a proof in [6] (see [9]). This was extended by A. Day [2] to 
the ''splitting" of an interval. We begin here with a generalization of this con
struction. Let «if = (L; A, V ) be a lattice and let {C\ : X £ A} be a collection 
of pairwise disjoint convex subsets of ££. Put S = U {C\ : X £ A}, and form 
the set 

L*= ((L-S) X ( 0 ) ) U ( 5 X {0,1}), 

where {0, 1} forms a chain with 0 < 1. 

Let Ti : L X {0, 1} -^ L and TT2 : L X {0, 1} -» {0, 1} 

be the projections. Then if u, v Ç L*, define u ^ * v to hold if and only if the 
following two conditions are satisfied: 

(i) 7TiO) ^ 7TiO) 

(ii) if TI(U) and ir\{v) are both elements of C\ for some X G A, then 
7T2(^) ^ 7T2(y). 
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4.1 LEMMA. The relation S* is a partial ordering under which L* becomes a 
latticed* = (L*; A , V ) . The projection wi is a lattice homomorphism of 
^*onto^. 

Proof. I t is trivial to check t h a t 5^* is reflexive and ant isymmetr ic . T o 
establish transi t ivi ty, suppose u tk* v and v fk* w hold. Then iri(u) ^ 
TT\{V) S 7Ti(w) so wi(u) ^ Ti(w). Fur thermore , if iri(u), TT\(W) £ Cx for some 
X G A, then, by convexity, TTI(V) £ C\ so by (ii), TT2(U) ^ ir2(v) ^ ir2(w). Thus , 
u ^ * w. 

In order to describe joins and meets in J?f*, we define, for each X G A, two 
functions, f\ and / x , from L* to {0, 1} as follows: if u £ L* and TT\(U) £ Cx, 
then / x ( t t ) = fx(u) = TT2(U) ; if wi(u) £ C\thenfx(u) = 0 a n d / x ( » = 1. Now, 
given u, v £ L*, define j by: 

• = ih(u) V fx(v), if ,ri(tt) V vnW € CX| X 6 A; 
7 ( 0 , if TTi(tt) V TCi(v) £ S. 

Then we claim tha t w = {ir\(u) V 7n(fl), 7) is the least upper bound of u 
and z/f relative to ^ * . T o prove u tk**w, we need only establish (ii). Bu t if, 
say, TTI(U) and wi(u) V 7ri(fl) are in Cx, then 

7T2(^) = / x ( « ) g / X ( t t ) V/ X (» ) = j . 

Similarly, y £^* w. 
Next, suppose 2; £ £ * , w ^ * 3 , and v tk* z. Then clearly 7ri(w) = TT\(U) 

V 7ri(^) ^ 7ri(z). Suppose 7ri(w) and 71-1(2;) are in Cx. Then certainly f\(u) S 
TT2(Z), for if / \ (w) = 1, then 7ri(w) £ Cx, whence by (ii), f\(u) = 7r2(w) ^ 
7T2(z). Similarly, f\(v) ^ ^2(3)» hence 

TT2(W) = j = / x ( w ) V f\(v) ^ 7T2(Z). 

This proves w :g* 3 and our claim. 
In a similar manner , we can show t h a t the greatest lower bound of u and v 

is {TVI(U) A TTI(V)J k), where 

h = ifxW A / x » , ^ iri(u) A TI(V) Ç Cx, X G A; 
(0 , if iri(«) A 7n(v) g 5 . 

T h e last s ta tement of the lemma is obvious. 

From the proof, we extract for future reference two observations. 

4.2 Remark. Suppose u, v £ L*,iri(u) (? Cxand7ri(y) g C\. Then if in(u) V 
7ri(^) G Cx, then w2(u V v) = 0 and if 7ri(w) A 7n(z/) G Cx, then w2(u A v) = 
1. In any case, if u, v £ £ * and 7r2(w) = TT2{V) = 0, then TT2(U V v) = 0. 

We now introduce a weak form of condition (W). 

4.3 Definition. A latt ice J?f is said to satisfy {W) if and only if for every 
x, y, u,v £ L, 

(W) u ^ x A y ^ t i V v implies [x A y, u V v] H {x, ;y, w, z;} 7e 0. 
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We next show that sharp transferability implies (W). We remark that the 
following theorem does not require ££ to be finite. 

4.4 THEOREM. A sharply transferable lattice satisfies (W). 

Proof. Let $£ be a lattice which does not satisfy (W). We will show that i f 
is not sharply transferable. Choose a, b, c, d G L such that c^aAb^cVd, 
and {a, b, c, d} Pi [a A 6, c V d] = 0. Let J = (d], and form the set 

L' = (J X {0}) U ((Z, - 7 ) Xo>), 

where o> denotes the natural numbers. Let V have the partial ordering in
herited from the direct product i f Xw, where w is given its usual ordering. 
It is a trivial exercise to show that V with this ordering forms a lattice S£' 
with joins and meets as follows: if (x, i), (y,j) G L', then 

(x, i) V (y,j) = ( x V y . i V j ) , 
' (x A 3>, i A j ) , if x A y G J; 

<x, i) A <y,j) - ^ ^ A yf o) , otherwise. 

Now take A = w, and for n G <o, C„ = [a A &, c V d] X {w}. Then construct 
the lattice i f * from if r and | C B : w U | as in Lemma 4.1. Let wi : L* —> 1/ 
and 7T2 : L* —> {0, 1} be the projections as before, and also introduce the pro
jections ci : V —> L and o-2 : L' —> o. Observe that ci o 7Ti : i f* —>if is an 
onto lattice homomorphism, and a2 o 7ri —> (o is a join-preserving 
function. 

For x G L, define 

<p(x) = {2 G Z/*: ci o 7ri(z) ^ x}. 

Claim: <p(x) is an ideal of S£*, and <p : ^£ —> 7"(i?7*) is an embedding. 
Indeed, < (̂x) is the inverse image under <j\ o 71-1 of the principal ideal (x]. 

It is, therefore, immediate that < (̂x) is an ideal and that <p is one-to-one and 
meet-preserving. 

To see that <p preserves joins, let x, y G L. Since <p is order-preserving, it is 
enough to show <p(x V y) Ç ^(x) V <p(y). Let w G ^(x V y). Then we con
sider two cases. 

(1) If x and y are in J, then x V y G / , so 0-1(̂ 1 (w)) G / . Thus, o^OriM) 
must be 0, and we have 

zi g * «x V y, 0), 0) = «x, 0>, 0) V ((y, 0), 0) 

in ^* by Remark 4.2. But clearly 

«x,0>,0> G *>(*) and «y, 0), 0) G *(y), 

so u G < (̂x) V ^>(y). 
(2) If one of x and y, say x, is not in / , let 0-2(71-1 (w)) = k. Then 
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((x, k + 1), 0 ) € <p(x), ((y, 0>,0> 6 <p{y), and 

u g * « x V y, k + 1), 0) = « * , ft + 1) V {y, 0 ) , 0 ) = 

« x , * + 1>,0> V « y , 0 > , 0 > , 

hence again u £ <p(x) V <p(y). This proves the claim. 
Now suppose there is a «^-transfer, \f/ : «if —><if*. We will derive a contra

diction, proving the theorem. For any x 6 L, we claim t h a t 0"i(7Ti(^(x))) = x. 
Indeed, \p(x) G <?(x), so 0-iOri(^(x))) ^ x, while if y = 0-i(7n(^(x))), then 
\//(x) £ (p(y) f so x S y by definition of <p-normal. 

For convenience of notat ion, let g denote the join-preserving function 
(72 o xi o \j/ : f£ —* (o. Observe t h a t g(d) = 0 so t h a t c ^ a A b ^ c V d im
plies t ha t 

£(c) ^ g (a A 4 ) g g(c V d) = g(c) V g(d) = g(c), 

so equali ty holds throughout . Thus , with n = g(c), both 7ri(^(a A &)) and 

xiGKc V d)) are in Cn = [a A 6, c V d] X {?*}. T h e n x//(a A ft) ^ * ^ ( c V d) 

implies t ha t 7r2(^(a A b)) ^ 7r2(^(c V d ) ) . However, by hypothesis TTI o 

\l/{a, b, c, d) is disjoint from Cm so by Remark 4.2, -KI{^{CL A 6)) = 7r2(^(a) A 

^(6)) = 1, and 7r2(^(a V 6)) = 7r2(^(a) V ^(&)) = 0, a contradiction. This 
completes the proof of the theorem. 

Next , we show t h a t in the presence of (SDA), (W) can be s t rengthened to (W). 

4.5 LEMMA. Letf£ be a finite lattice satisfying (S DA) and (W'). Thenf£ satis
fies (W). 

Proof. Let «if fail to satisfy (W). Choose a, b, c, d £ L such t h a t a A b S 
c V d and {a, t , c, d] C\ [a A 6, c V d] = 0. From this failure of (W) we will 
produce a failure of (W). Since L is finite, we can assume t h a t c V (a A b) 
covers c and d V (a A b) covers d. Let e = c A a A b and f = d A a A b. 
Then aAb^eoraAbSf would imply aAb^coraAb^d, cont rary 
to hypothesis. Therefore, if e V / = a A b, then {a, fr, e, /} yields a failure 
of ( I T ) . 

If e V / ^ a A b, we claim e 9^ f. Indeed, if e = / , then (5 Z>A) implies 
g = (c V d) A (a A b) = a A b, whence a A b S c, again cont rary to 
hypothesis. Thus , either / ^ c or e ^ d. Suppose e ^ d, the other case being 
handled similarly. Then d < e V d ^ (a A b) V d. B u t (a A b) V d covers d, 
so £ V d = {a A b) yd. Thus , e ^ a A b ^ e y d ^ c y d , and it is easily 
seen t ha t {a, ft, e, d} C\ [a A b, e V d] = 0, which is a failure of (W). This 
completes the proof. 

4.6 Remark. I t is clear from the proof t h a t the assumption t h a t «if is finite 
could be replaced by the requirement t h a t for every x, y £ L with x < y there 
exists z ^ x covered by 3/. T h a t this la t ter requirement is essential is shown by 
the lat t ice in Figure 2, which satisfies (5 DA) and (W) bu t not (W). 
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4.7. Remark. The proof of Lemma 4.5 is essentially due to I. Rival and R. 
Antonius (unpublished) and is part of a proof that a finite lattice satisfying 
(5 Z)v) and (5 DA) satisfies (W) if and only if it contains no sublattice iso
morphic to either of those in Figure 3. 

Finally by 4.4, 4.5, and 3.16, we have the main result of this section. 

4.8 THEOREM. A finite sharply transferable lattice satisfies (W). 

/ 
/ 

\ 

/ 
\ 

\ 
\ 

FIGURE 2 
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FIGURE 3 
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