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I . INTRODUCTION

Stimulated by Karl Borch's paper [3] we have tried to analyze
the paper written by K. Arrow [1] in 1953. Contrary to Borch's
opinion we have some doubt whether this work contains a theory
of insurance as a special case. Nevertheless, it has inspired us to this
note, which tries to develop a somewhat more realistic model. As
a matter of fact, our development is more in the spirit of another
paper by Arrow [2]. We, however, have chosen a more general
setup, and we believe that our treatment is also different.

2. ARROW'S MODEL (INTERPRETED FREELY)

Arrow considers an economy of exchange with C commodities
(labelled c = 1, .. ., C) and a "world" that will be in one of S dif-
ferent states (s — 1, . . ., S). The problem is to distribute the total
supply of each commodity c in state s among I individuals in a
Pareto-optimal fashion. According to a standard result in economic
equilibrium theory every Pareto-optimal allocation can be realized
by a system of perfectly competitive markets. The latter means
that there are prices psc (the price for a unit of commodity c if
state s occurs) and that each individual has a certain amount of
money, which he then will spend to maximize his own utility. The
beauty of this approach lies in its simplicity: Each individual has
his own maximization problem (irrespective of the others). Thus it
is enough to focus our attention on a particular individual. Let y
denote his spendable money, let xsc > o denote the amount of
commodity c contingent to the occurrence of state s purchased, and
let V(xn, . . ., xSc) denote the "value" (or utility) of this decision.

Then the problem is to

maximize V(xu, . . ., xsc)
X C

subject to £ £ xsc psc < y. (1)

Arrow's idea is to replace this market by a two stage market.
Let gi > o, . . ., qs > o be arbitrary numbers with q\ + . . . +
+ qs = 1. Here qs is the price of a security ("policy" in insurance
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terminology) of type s, which pays one monetary unit if state s
occurs and nothing otherwise. Let psc be the price of commodity
c when state s has occurred. For consistency set

psc = f>sclqs- (2)

The two decisions are now:

a) choice of the securities. Buy ys > o securities of type s(s = i,
,s-

. . ., S) such that 2 ysqs < V-
s = 1

b) Purchase of commodities after the state s has occurred. Let xsc

denote the amount of commodity c that is purchased after the state
c s

s has occurred. We must have 2 xsc psc < Js + y — 2 y ^ .
c-l i-l

Again, we make our decision in a) and b) to maximize the resulting
utility. Obviously, this two stage problem is equivalent to the orig-
inal problem (i), equivalence meaning that the same commodity
bundles can be bought with the same original money amount.

From now on let us assume that the function V is of the form
(according to the axioms of vonNeumann-Morgenstern)

V(xu, . . . . xsc) = S TCS Vs(xsi, .. ., xsC). (3)
« = i

Here TCS is the individual's subjective probability for state s, and
Vs is the utility function that applies when state s occurs. Let

Us(w) = maximum Vs(xsi, . . ., xsC)
c

subject to xsc > o, 2 xsc psc < w. (4)
C =• 1

Thus Ug{w) is the utility of w monetary units in state s. With
these definitions and assumptions problem a) (optimal choice of
the securities) can be isolated as follows:

.5 S

maximize 2 ^sUs(y + ys — 2 )

subject to ys > o, 2 ytqt < y. (5)
i = l

3. THE PROBLEMS OF OPTIMAL COVERAGE

We shall study in detail the solutions of problems of the type (5).
Our assumptions are as follows, a) The S utility functions Us(y)
are twice differentiate, such that U's(y) > o and U'g'(y) < o. Thus
we assume that the utility functions are risk adverse, b) qi + • • •
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14 BUHLMANN AND GERBER

+ Is > i- If ps is the probability that the market assigns to state
s, certainly qs > fts. Summation over s yields the inequality above.

If qi -f- . . . + qs = i, (as in Arrows model) we can assume that

2 yi1i = y without loss of generality in (5). However, in the more
i = 1

interesting case where #1 + . . . + qs > i, this is not true anymore.
This suggests that we distinguish the following two problems.

Problem A

For a fixed z, o < z < y, maximize 2 T:S Us(y + ys — z) subject
g = 1

s

to the constraints that ys > o and 2 ys#s = z.

Problem B
a .1

Maximize 2 ns Us(y -\- ys — 2 yiqt) subject to ys > o, and
t = 1

Thus in Problem A the total amount spent for premiums, z, is
prescribed, while in Problem B it is variable, subject only to the
upper bound y.

In either case the existence of an optimal solution is clear: The
quantity to be maximized is a continuous function of the decision
variables y%, . .., ys, which (in both cases) vary over a compact set.

4. SOLUTION OF PROBLEM A.

Theorem 1

For any z(o < z < y) there is a unique vector 3/1, . . ., ys sat-
isfying

.S'

(i) 2 ~ysqs = z, jy« > o for all s
g = 1

(ii) — Us(y -\- ys — z) < K for all s, such that ys = o whenever
Is

this inequality is strict.

This vector, and only this vector, solves problem A.

Proof

For z = o, the theorem is trivially true. Hence assume z > 0.
To show the necessity of condition (ii), consider a vector y\, . .., ys
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for which it is violated. Then there are indices s, t such that yt > o,
ys > o and

7 u't(y + y, - * ) < 7 u'.(y + y,-z). (6)

Then, by increasing ys and decreasing yt (such that the total
premium remains z) the expected utility could be increased. (Note
that for this part of the proof we did not need the assumption that
the utility functions are risk averse.)

The necessity (and the existence of an optimal solution) show
that there is at least one vector y\, . . . ,ys that satisfies conditions
(i) and (ii) above. Let yi, . . . , ys be any other vector that satisfies
(i). First using concavity from below of the function Us, and then
(ii), we obtain the following estimate:

Us(y + ys — z)<Ul(y + ys — z) + U'g(y + yt — z) • (ys~ys)

<Us(y+y,-z)+K^ (y,-yt). (7)

Note that the first inequality is strict unless ys = ys. By sum-
ming (7) over s we see that

s
2 Tt8Ug(y + ye — z) < 2 us Us(y + ys — z), (8)

with a strict inequality holding unless ys = ys for all s. This
completes the proof of Theorem 1.

5. SOLUTION OF PROBLEM B.

If S qs = 1, solve Problem A with z = y. Otherwise, the fol-

lowing result holds.

Theorem 2

Suppose that 2 qs > 1. Then Problem B has a unique solution,
» - l S

which we denote by yi, . . ., ys. a) If 2 ysqs — y, it can be char-

acterized by conditions (i) and (ii) in Theorem 1 with z = y. b) If
s
2 ysqs < y, it is the only vector ~y\, . . ., "ys that satisfies

* - 1

i) y« > 0 f°r all s and

») -T U',(y + ys — 2 ytqt) < 2 u; U]{y + y} — 2 ^ ^ )

for all s, such that ys = o whenever the inequality is strict.
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l 6 BUHLMANN AND GERBER

Proof

a) If there is an optimal yi, . . ., ~ys with 2 ysqs < y, it has to

satisfy condition (ii) above. For, if it did not, there would either be
an index s such that

•7 u's(y + ys —
 s yfli) > s ^ u'}{y + y} — 2 y4^), (9)

in which case the expected utility could be increased by increasing
ys, or there would be an index s such that ys > o and the inequality
in (ii) is strict, in which case the expected utility could be increased
by a reduction of ys. (For the necessity of (ii) we again did not need
the assumption that the utility functions are risk averse).

b) Suppose now that y\, ..., ys is a vector that satisfies con-
ditions (i) and (ii) of part b) in Theorem 2. Any other decision, say
yi, • • •, ys (where 2 qsys = y is also permissible), can be compared

with it as follows: For any s,

Us{y + ys—z) <Us(y + ys—'z) + U's{y + ys — 2) • (ys — ys + ~z—z)

< Us(y + ys — z) + ~(ys— ys)

+ U's(y + ys — 1) • (z — z), (10)

with the convenient notation z = 2 y^i, z = 21 y ^ . Multiplying
both sides by TCS, and summing over s, we get

s
2 TzsUs(y + ys — z) < 2 TCS f/s(y + ys — z). (11)

« - 1 * - 1

Furthermore, this inequality is strict unless ys = ys for all s,
which shows the uniqueness of any optimal solution satisfying (ii).

6. How TO FIND THE SOLUTIONS.

To find the solution of Problem A, first relabel the states such
that

~ U[(y ~z)>y Va(y - z) > . . . > ^ Us(y - z). (12)

Now we choose yi such that

- z ) = -± U'2(y - z). (13)
I2
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Then we increase yi and choose y2 such that

7 U[(y + y, - z) = -* U'2(y + y2 - z) = 7 ^ ( y - 2) (14)
<7l <?2 </3

etc. Thus, gradually we increase the coverage, from left to right,
until the total premium reaches the level z. Clearly, the resulting
coverage will satisfy properties (i) and (ii) of Theorem 1.

For the further discussion, let yi, . . ., y^ denote the optimal
coverage if the premium equals z, hence

U(z)=i*lUt(y + ya-z) (15)
1 = 1

is the maximal utility at premium level z, and let K = K(z) denote
the upper bound in (ii) of Theorem 1. Finally, set

Kv(z)=i-KtU'l(y + yt — z). (16)
t = 1

Theorem 3

U'(z) equals K(z) — Kv(z) and is a non-increasing function.

Proof

Let JZI, 22 be any two numbers, and let y^ denote the optimal
coverage for state s if the total premium should be zi (i = 1, 2).
Using the concavity from below of Us and property (ii) in Theorem 1,
we find that

< U't(y + y'1' - zj • (y«2) - y<x) + z 1 - z2) (17)

< ^ K(zx) • (y <2>- y*1*) - U's(y + y « - Zl) . (z2 - Z l ) .
~s

Multiply both sides by izs, and summing over s, we obtain the
inequality

U(z2) — U(Zl) < (K{zi) — Kv{Zl)) • (*s — zi). (18)

By interchanging the roles of Z\ and 22, and inverting the sign, a
lower bound is obtained for U{z2) — U{zi). Finally, assume Z\ < Z2.

Then these two inequalities can be written as follows.

U(zi) — Ulzi)
K{z2) — Kv{z2) < - ^ — < K(zx) — Kv(zi). (19)

22 — Zi

Monotonicity of K(z) — Kv(z) is seen immediately from (19),
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l 8 BUHLMANN AND GERBER

and the rest of theorem 3 follows by taking the limit for 22 -> z\.
Now observe the following: Let 0 < 2 < y be the premium spent in

A-

the optimal solution yi, y2, . . . ys of problem B (i.e. 2 = 2 (fays)-

For this 2 problem A must have the same solution as problem B
and we conclude, that the two bounds appearing in the char-
acterization of the solutions must be the same, hence

K{z) = Kv(z).

On the other hand theorem 3 leads to the following

Corollary
If

otherwise let

K(o)<
K(y)>

z satisfy

K(z) =

Kv(o)

Kv(y)

Kv(z)

then
then

then

2 = 0

z = v

2 = 2

Based on this corollary and the monotonicity of K(z) —
o < z < y one may find 2 ^ 0 by gradually increasing the level z
of premium spent until K(z) — Kv(z) = o, or if this does not hap-
pen for z < y, by putting 2 = y.

Note

It is sometimes more convenient, to follow the above procedure
K{z)

until the quotient v . reaches 1. To justify this alternative, we
Kv[z)

^ +
 K { - Z ) • • • (Kv{z) , , • \ t

also prove that is nonmcreasmg nondecreasing I for
Kv{z) \&(z) I

0 < z < y.
Proof

Let N = N(z) denote the set of indices for which ys = o. Then

Kv(z) = K(z) ( S q,) + 2 TTS tT,(y - 2), (20)

and therefore

Since * if < qg for s 6 N, this shows that Kv(z)/K(z) is

https://doi.org/10.1017/S0515036100006309 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006309
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a nondecreasing function (the numerator in the last expression is a
nondecreasing function, while K(z) is nonincreasing).

In the following the procedure for finding the optimum in prob-
lem B is explicitly carried out for

exponential utility (Section 7)
quadratic utility (Section 8).

7. EXPONENTIAL UTILITY

Let Us{x) = x—e-^-uV , U's(x) = a.eay* e~*x. You may inter-
pret y* as the "need for money" in state s. Suppose then y suf-
ficiently large, such that the following property holds for the
optimum yi, y2, . . . ~ys of problem B (according to theorem 2).

for all s, with strict in-
e~**>> < 2 * ^

With the notation

and

equality only allowed if
ys = 0.

7T_

— e~ay

C,(Vi, V*. • • • Vs) =

(22)

(23)

(24)

(22) becomes

r>s(yi, y2, . . . ys) <

Abbreviate z for
s

2

for all s, with strict in-
equality only allowed if
Vs = 0.

(25)

. (25) may hold for 2 = 0 and then

2 = 0. Otherwise, increasing gradually the premium level z and
adjusting yi, y2, . . . ys at each level z according to the solution of
problem A, max Cs will monotonically decrease until it reaches 1 at

z = 2. (See note after theorem 3.) Observe that in the exponential
case the ordering

Ci(yi, y2, . . . ys) > C2(yi, ya, • • • ys) > • • • > Cs(yi, yi- • • • y»)

never changes during this process.

Let then m be the number of states, which are insured in the
optimal solution of B (number of variables ys different from 0
in (25)).
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20 BUHLMANN AND GERBER

From (21) we have

Kv®= S n; e-*"i = K(2) S q}-
i-i j - 1

and hence from the corollary of theorem 3

1 =

1 — z, 1

J - l

therefore (recall K(z) = — e ay- for s = 1, 2. . . . m)
qs

= log — + l o§q, ' ^ & K(z) ^ (26)

n*
log - 1 + log (1 — S fy) — log S TT:*

Am

for s <. m.

The optimal OT is found as the first index for which

m

n* I— S q, ^

/ = m + 1

< 1 or equivalently log - ^ — + Am < o (27)
51m + 1 v _

ZJ It

It is easily checked, that this condition also applies if m = 0.

Numerical Examples (In all examples the exponent a = 10 ~2)

^ 2 j 4 5

1000 100 50 10 5

0.1 0.2 0.3 0.2 0.2

0.3 0.3 0.3 0.3 0.3

2202.65 .544 0.495 0.221 0.210

7342.16 1.813 1.65 0.737 o-7
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I — 2, qi i 0.7
1-1

1-

Kj 2204.12 L47O

check (27) 3.33 0.863

Hence only state 1 is insured and from (26) yi = 815.95
q{yi = 244.78.

Second example

Insurance becomes "horribly expensive" for s = 1, otherwise
same as in first example.

s 1 2 3 4 5

ys
71,

1l
K*g

K
Is
s

j — I

check

*

(27)

1000
0.

1

2202.

2202.

2204.

< I

I

65

65

12

100

0.2

0.3
0-544

I.8I3

50
0-3
0-3
0.495

I.65

10

0.2

o-3
0.221

0-737

5
0.2

o-3
0.210

0.7

Hence now no insurance is bought at all!

Third example

The "insurance need" is eliminated in state s = i, otherwise
still the same as before.

s 2 3 4 5 1

100

0.

0.

0.

1.

1.

2

3
544

813

155

50
0.3
0.3
0-495

1.65

1.126

10

0.2

0.3
0.221

0-737

0-555

5
0.2

0.3
0.210

0.7

0

0.

0.

0.

0.

1

3
1

3

Hence insurance on s = 2 and 3 y2 = 31.17 qiy2 = 9.35
y3 = 21.75 q3y3 = 6.52
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8. QUADRATIC UTILITY

In this section
tx v * * \ 2

Us(x) = x ( x — y s ) — ; * — ys < a

U's(x) = oL + y*s*-x

The condition corresponding to (22) in Section 7 is then

— (« + y? — y — ys +
 s s w ) <* + yV — y — $ + zIM (28)

Hs i i

for all s, with strict inequality only allowed if ys = o

Abbreviations

y = S •Kjyj
1

Redefine
a + y** — y = y* and you obtain

;
^-=i—^ , v ' ^ — < 1 (29)

y —y + ZqjVi
j

for all s, with strict inequality only allowed if ys = o

Observe that as long as the numerator of the left side in (29) is
positive, we are in the region where U's is positive. The numbering
of the sides is defined in decreasing order of

7ts y*
Cs = — =-, hence C\ > C2 > . . . > Cs (30)

These quantities are the inital values at yi = yz = • • • = ys = °
of the functions

C.(y» y,,... ya) = - ^ T T f +

We again gradually increase z = S ^y; and for each 2 adapt
i

yi, yi, • • • ys according to the solution of problem A; max Cs will

then again monotonically decrease to 1, but unfortunately the
ordering of the Cs(yi, yz, . . . ys) (for those s which are not yet
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insured) may change! So while it is clear that insurance, if any,
must always be bought on s = i, we must if necessary try several
combinations of other states to find out the optimum.

Numerical Examples

First

s

y'.

*s

qs

c.

example

1

1000

O . I

0.3

2415

2

1 0 0

0 . 2

0.3

0.483

3

50

0.3

0-3

0.362

4
1 0

0 . 2

0.3

0.048

5

5
0 . 2

0.3

0.024

V = 138

We try to insure state number i only. If this does achieve an
optimum we must have

1 1000 — yi + 0.3 3/1
Ci(yi, 0, o, . . . o) = • = 1

3 138 — 0.1 yi + 0.3 yi

from which we find

yx = 450-77

= 135-23

It remains to be checked whether Cs(yx, o, o, . . . o) < i for
s > 2

2 100 -f 135.23
C2(yu 0, o, . . . 0) = 2^-~ = 0.69

r / x 3 50 + 135-23 0 ., , r . .
C3(yi, 0, o, . . . o) = = 0.81 (has surpassed C2!)

As states 4 and 5 have the same probabilities and premiums as
state 2 their C-values must be lower than that of state 2 also.
This shows that just insuring state 1 with the above amounts is
optimal.

Second example

If we change in the first example only 1̂ from 0.3 to 1 (insurance
on the state insured in the first example becomes "horribly ex-
pensive"), then all initial C-values drop below 1 which means that
no insurance should be bought.
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Third example

"Insurance need" in state i is eliminated (i.e. y* = o). Other-

wise same as first example.

2

1 0 0

0 . 2

0-3

i-75

3

50

o-3

o-3

1.32

4
1 0

0 . 2

0-3

o.i8

5
5
0 . 2

o-3

0.09

I

0

O . I

0.3

0

It is obvious that some insurance must be bought, certainly on

s = 2 and probably also on some other states, s = 3 being a very

likely candidate.

We try to find an optimal solution, where y2 and y3 are different

from zero

2 100 — y2 + Q-3(y2 + ys)
C*(y2l ys, 0, . . . o) = -

3 g _ ^

or 860 —14 y2 + 3 y3 = 0

^ . . 50 — ys + o.3(y2 + y3)
C3(y2, ys, O, . . . 0) = — ; : ; , = I

38 —o.2y2 —o.3y3 + o.3(y2 + y3)

or 120 — 7 ys + 2y2 = o

y2 = 69. J5 y3 = 36.96
= 20.80 ^3y3 = 11.09 total premium 31-89

We must check that Ci(y2, y3, o, o, o) < 1. This check suffices since

— < — for s = 5, 1 (C5 and C\ will then automatically be below 1).

qs q*
2 10 + 3I.89

Check: C4(y2, ys, o, 0 , 0 ) = 7— -— = 0.62,
v 3 38 — 24-96 + 31-89

which proves optimality.
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