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EIGENVALUES OF THE LAPLACIAN

FOR THE THIRD BOUNDARY VALUE PROBLEM
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Abstract

The spectral function 6(t) = L^_1exp("x"'), where {Xn}?_i are the eigenvalues of the
two-dimensional Laplacian, is studied for a variety of domains. The dependence of 6{t)
on the connectivity of a domain and the impedance boundary conditions is analysed.
Particular attention is given to a doubly-connected region together with the impedance
boundary conditions on its boundaries.

1. Introduction

The underlying problem is to deduce the precise shape of a membrane from the

complete knowledge of the eigenvalues \ n for the Laplace operator A = 92/9JC2

+ d2/dy2 in the xy-plane.

Let D c R2 be a bounded domain with a smooth boundary dD. Consider the

impedance problem

(A + X)M = 0 inD, [~L + y ) u = 0 on9l>> I 1 1 )

where 9/8 n denotes differentiation along the inward pointing normal to dD, y is

a positive constant and u e C2(D) O C(D). Denote its eigenvalues, counted

according to multiplicity, by

0 < A 1 < A 2 ^ A 3 < ; ••• < A n < ••• -*oo as H —> oo.
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The problem of determining the geometry of D (simply connected) and the
impedance y has been discussed recently in [6] from the asymptotic behaviour of
the spectral function 0(t) = ti^exp*"4'*) = E~_iexp(-Xn/) for small positive t.
Problem (1.1) has been investigated in [3], [5], [9] in the following special cases:

Case 1. Y = 0 (Neumann Problem)

area D lengih 3Z) It1''2 f /, / w2 d°+ 0{t) as' ̂  °«
(1.2)

Case 2. y -* oo (Dirichlet Problem)

) length 32)

(1.3)

where k(o) is the curvature of the boundary dD. The constant term a0 has
geometric significance, e.g. if D is smooth and convex, then a0 = 1/6 and if D is
permitted to have a finite number "h" of smooth convex holes, then a0 =

The object of this paper is to discuss the following problem: let

D = {(r,6): a < r < 6 , 0 < 6 ^ 2ir}

b e a c i r c u l a r a n n u l u s . S u p p o s e t h a t t h e e i g e n v a l u e s 0 < X 1 < X 2 < X 3 < ••• a r e
g i v e n f o r t h e i m p e d a n c e p r o b l e m

(A + X)U = O infl, ( £ + w , ) _ ( £ + w | 4 _ o . (1.4)

where yx and y2 are positive constants. The basic problem is that of determining
the geometry of the circular annulus D as well as the impedances y1 and y2 from
the asymptotic behaviour of 0(t) for small positive t.

Problem (1.4) has been investigated in [7] in the following special cases:

Case 1. Yx = y2 = 0

^ ^ ^ as^O. (1.5)

Case 2. yl = 0, y2 -» oo

^ ^ = ^ as^O. (1.6)

https://doi.org/10.1017/S0334270000005634 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005634


[ 3 ] Third boundary value problem 81

Case 3. y1 —» oo, y2 — 0

^ ^ ^ 1
+ O ( ^ ) a s ^ 0 . (1.7)

Case 4. yl = y2 -» oo

^ ^ ^ as^O. (1.8)

A restricted form of the results (1.8) and (1.5) has been obtained recently in
[1,2].

With reference to (1.2), (1.3), an examination of the results (1.5)-(1.8) shows
that the coefficient of (4W/)"1 determines the area of the annulus D and the
coefficient of («7)~1/2/8 determines the total length of its boundary. We note
that the constant term a0 is zero because our domain has only one hole (i.e.,
h = 1).

2. Formulation of the mathematical problem

Following the method of Kac [3] and following closely the procedure of Section
2 in [7], it is easy to show that the spectral function 8(t) is given by

6(t)= [ ( G(x,x;t)dx, (2.1)

where G(x, x'; t) is the Green's function for the heat equation

(*-!)-<• (">

subject to the impedance boundary conditions of (1.4) and the initial condition
G(x, x'; t) -> 5(x - x') as / -» 0, where 8(x - x') is the Dirac delta function
located at the source point x = x'. Let us write

G(x,x'; 0 = G0(x,x'; t) + x(x,x'; / ) , (2.3)

where

G0(x,x'; t) = (4w/)-1exp{-|x - xf/4/} (2.4)

is the "fundamental solution" of the heat equation (2.2), while x(x.*'; 0 is a
"regular solution" chosen in such a way that G(x,x'; t) satisfies the impedance
boundary conditions of (1.4).
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On setting x = x' we find that

0(t) = b ~{° + K(t), (2.5)

where

^ X(x,x; t)dx. (2.6)

The problem now is to determine the asymptotic expansion of K(t) for small
positive /. In what follows we shall use Laplace transforms with respect to "t",
and use s2 as the Laplace transform parameter; thus

G(x,x'; s2) = r e-s2'G(x,x'; t)dt. (2.7)
•'o

An application of the Laplace transform to the heat equation (2.2) shows that
G(x, x'; s2) satisfies the membrane equation

(A-5 2 )G(x ,x ' ; s2) = - S ( x - x ' ) in D, (2.8)

together with the impedance boundary conditions of (1.4). The asymptotic
expansion of K(t) for / -» 0 may then be deduced directly from the asymptotic
expansion of K(s2) for s -* oo, where

K(s2)~[2" f rx(r,6,r,$;s2)drd0. (2.9)

3. Construction of Green's function

It is well known that the membrane equation (2.8) has the fundamental
solution

4 l Im{sr')Km(sr)co$[m(0-0% (3.1)

where KQ is the modified Bessel function of the second kind and of zero order,
(see, for example [8]).

On solving the membrane equation (2.8) we deduce that if /•' < r < b,

G(r,0,r',O';s2)

= t lj-Km(sr)Im(sr')+AmKm(sr)

(3-2)
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and if r' > r > a,

G(r,6,r',6';s2)

= £ {j-Km(sr')lm(sr)+AmKm(sr)+BmIm(sr)\cos[m(0-e')],

(3.3)

where Am and Bm are constants to be determined.
Consequently, it is straightforward to show that at r' = r and 0' = 0 the

equation (2.8) has the regular solution

x(r,0,r,0;s>)= £ _
m — - o o m

X [sK'Jsb) + y2Km(sb)]lm(sr)Km(sr)

sa)}

sb)]lZ,(sr)}, (3.4)

where

Rm = [sl'm(sa) + yiIm(sa)][sK'Jsb) + y2Km(sb)]

-[sK'M + yiKjsa)] [sl'Jsb) + y2lm(sb)] * 0. (3.5)

If we insert (3.4) into (2.9) and integrate, we find after some reduction that

K(S2) = Y £ / . (m^-y £ him-s), (3.6)

where

Mm; i) - (l + -
\ 2 a[srm(sa)

-I'm{sa)K'm{sa) + ^ ' ^
sa [srm
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and

f2(m; s ) = l l
\

-I'm(sb)K'Jsb) -
sb[sl'm(sb) + y2lm(sb)]

[s2 \
As Yj, y2 -* oo, we recover (2.1.3) and (2.1.4) of [7]. The series (3.6) is slowly
convergent for s -* oo and it is therefore expedient to apply a Watson transfor-
mation [9] to obtain

K(s2) ~ a2 r /i(r; s) dv - b1 F f2{v; s) dv asj^oo. (3.9)Jo Jo
It now follows that the functions /x(*>; s) and f2(v; s) may be expressed in terms
of the asymptotic expansions of the modified Bessel functions and their deriva-
tives due to Olver [4]; these expansions for s -* oo are uniformly valid in v for

4. Construction of B(t) for our impedance problem

In this section, we look at the following cases:

Case 1. (0 < yu y2 «: 1)
In this case we deduce after some reduction that

L '". ass^oo, (4.1)
n = 0 V

as s -* oo, (4-2)

where T = r / ( r 2 + s2a2)1/2, ij = ^ J - 2 + s2&2)1/2 and for n = 0,1,2,3

a2) + T 7 ( T ~ 2Y!a) - ff9,

and

,3 = -V( f - Y2̂  + Y22*2) - V5{~% + lyib - yib2) - 7,7(f - 2y2b)
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If the asymptotic expansions (4.1) and (4.2) are now integrated, we deduce that:

- , 2 . ir(a + b) (y2b -
{S)~ 4s

as s -» oo. (4.3)

On inverting Laplace transforms and using (2.5) we have the spectral formula:

b2-a2 ^2(a + b) , ,

^ + i ) ~32(Yi
4,1/2

(.01/2

as t -» 0. (4.4)

Similarly the following asymptotic spectral formulae may be derived:

2. (0 < YX « : 1, y2 » 1)

47

as < -» 0. (4.5)

Case 3. (Yl » 1, 0 < y2 « : 1)

4T

as t -• 0. (4.6)

This derives from Case 2 with the interchanges a *+ b and yj «-» y2
 m t n e

other than the first.
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Case 4. (yx, y2 3> 1)

128

as t -* 0. (4.7)

We remark that
(4.4) agrees with (1.5) if y1 = y2 — 0;
(4.5) agrees with (1.6) if yt = 0 and y2 -» oo;
(4.6) agrees with (1.7) if ?! -> oo and y2 = 0;
(4.7) agrees with (1.8) if y1 = y2 -* oo.
The asymptotic expansions (4.4)-(4.7) may be interpreted as:
(i) D is a circular annulus and we have the impedance boundary conditions of

(1.4) on both boundaries of D with large/small impedances yv y2 as indicated in
the specifications of the four respective cases.

(ii) For the first three terms, D is a bounded domain of area m{b2 — a2).
In Case 1, it has h = [1 + 6(y2b — y1a)] holes, a boundary of length 2ir(a + b)

together with Neumann conditions on the boundaries, provided h is an integer.
In Case 2, it has h = (1 + 6y^) holes, a part of the boundary of length 2ira

with Neumann conditions and the other part of length 2n(b + y2T
1) together with

Dirichlet conditions, provided h is an integer.
In Case 4, it has only one hole (h = 1), a boundary of length 2w{(a + y{1) +

(b + Y21)} together with Dirichlet conditions on the boundaries.
(iii) The fourth and further terms in (4.4)-(4.7), as yet undetermined, would

require different interpretations.
(iv) If it is known that the domain D is a circular annulus, then both the

coefficients of t'l/2 and that of t1/2 in (4.7) may be solved to determine y1 and

Y2-

(v) If, in the formula (4.4), Yj/72 = b/a then the first three terms agree with
the annulus with Neumann conditions. Also, if further y^a = \ = y2b, then the
first four terms agree with the annulus with Neumann conditions (i.e. with the
case obtained by setting y1 = y2 = 0 in (4.4)).
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