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A DESCENT THEOREM FOR FORMAL SMOOTHNESS

JAVIER MAJADAS

Abstract. We give a descent result for formal smoothness having interesting

applications: we deduce that quasiexcellence descends along flat local homo-

morphisms of finite type, we greatly improve Kunz’s characterization of regular

local rings by means of the Frobenius homomorphisms as well as André and

Radu relativization of this result, etc. In the second part of the paper, we

study a similar question for the complete intersection property instead of formal

smoothness, giving also some applications.

§1. Introduction

In this paper, we obtain a descent result for formal smoothness (and

regularity). This single result (Theorem 1) has as particular cases a variety

of (a priori unconnected) results in commutative algebra. Some of these

particular cases greatly improve known important results (the descent of

quasiexcellence by finite surjective morphisms [18], Kunz’s characterization

of regular local rings in positive characteristic [21, 26], as well as its André–

Radu relativization [2, 3], and its analogue for complete intersections [15]);

some other particular cases improve minor results of some papers [7, 10, 11,

16, 17, 32]; some others give already known theorems [27] or little results

unexplored up to now (Corollary 25), but the point is that it is the same

main result obtained to prove the descent of quasiexcellence the one that

gives also those other results. Since this main result is rather technical, we

confine ourselves in this introduction to discuss these applications in more

detail.

1.1 Descent of quasiexcellence

The descent of quasiexcellence along flat local homomorphisms was

studied in [18], where it was shown that quasiexcellence descends along

finite flat local homomorphisms. We remove here this restriction, proving

that this property descends along flat local homomorphisms of finite type.

More precisely, Greco in [18] deduced this result from the following theorem:
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if f :R→ S is a finite local homomorphism of noetherian local rings such

that Spec(S)→ Spec(R) is surjective, then quasiexcellence of S implies

quasiexcellence of R. He also obtained an example [18, Proposition 4.1]

which shows that this last theorem cannot be extended to the case where

f is of finite type instead of finite, even when R and S are local domains

of dimension 1 (the problem is concentrated in the local condition, that

is, the geometric regularity of the formal fibers, since the J-2 property

always descends and ascends by surjective morphisms of finite type [18,

Corollary 2.4]). So the problem for finite type flat homomorphisms was left

aside (however he was able to show that at least R contains a nonempty

principal open that is quasiexcellent), and he proceeded instead to consider

proper surjective morphisms of schemes instead, a problem which was finally

solved in [14, 24].

We reconsider here the problem for homomorphisms of finite type, and

we will prove that it holds. Note first that if R̂ and Ŝ are the completions

of R and S at their maximal ideals, the surjectivity of Spec(S)→ Spec(R)

is equivalent to the surjectivity of Spec(Ŝ)→ Spec(R̂) when f is finite (but

not necessarily when f is of finite type). Then, a particular case of our main

theorem gives the following theorem.

Theorem 7. Let f :R→ S be a local homomorphism essentially of

finite type (or more generally S ⊗R R̂ is noetherian) of noetherian local

rings such that Spec(Ŝ)→ Spec(R̂) is surjective. If S is quasiexcellent then

R is quasiexcellent. In particular, quasiexcellence descends along flat local

homomorphisms (essentially) of finite type.

1.2 Extension of Kunz’s theorem

In [21], Kunz obtained the following result:

Theorem. (Kunz) Let A be a noetherian local ring containing a field

of characteristic p > 0, let φ :A→A, φ(a) = ap be the Frobenius homomor-

phism, and let φA be the ring A considered as A-module via φ. Then A is

regular if and only if φ :A→ φA is flat.

The relative case was obtained by Radu and André [2, 3, 25]:

Theorem. (André, Radu) Let α :A→B be a homomorphism of noethe-

rian rings containing a field of characteristic p > 0. Then α :A→B is

regular if and only if the relative Frobenius homomorphism φB|A : φA⊗A
B→ φB is flat.
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This theorem contains Kunz’s result as a particular case: if A is a

noetherian local ring containing a field of characteristic p > 0, then A

contains a perfect field F , and applying this theorem to the homomorphism

F →A we recover Kunz’s theorem.

The “if” part in the absolute Kunz’s theorem was extended in [11, 13,

32], from the particular case of the Frobenius endomorphism to the more

general case of a contracting endomorphism, that is, a homomorphism of

noetherian local rings f : (A,m, k)→ (A,m, k) such that there exists some

i > 0 with f i(m)⊂m2.

We show how our main result has also as a special case a relative version

of these results for contracting homomorphisms, that is, we obtain a result

(Theorem 13) generalizing at once both the relative result of André and

Radu and the above extensions for contracting homomorphisms of the

absolute result by Kunz.

1.3 Rodicio’s theorem

Theorem. (Rodicio) Let u :A→B be a flat homomorphism of noethe-

rian rings such that B ⊗A B is noetherian. If the flat (Tor) dimension of B

over B ⊗A B is finite, then u is regular.

This is the main result in [27]. Previous results on this topic were obtained

by Auslander, Eilenberg, Harada, Hochschild, Nakayama, Rosenberg, Zelin-

sky and Rodicio himself among others. Our main result also has this theorem

as a special case (Theorem 15). However, it should be noted that Rodicio’s

proof is valid even when B ⊗A B is not noetherian.

1.4 Decomposition of formal smoothness

Another particular case of our main result is the following one

(Theorem 17). Let A
u−→B

v−→ C be local homomorphisms of noetherian local

rings such that the flat dimension of C over B is finite; if vu is formally

smooth then u is formally smooth.

When C is a flat B-module (i.e., the flat dimension is zero), the result

is well known (it is an easy consequence of [19, 0IV 19.7.1, 0IV 22.5.8]). For

finite flat dimension it follows from [7, Theorem 4.7].

1.5 Other results

There are also a number of particular cases of our main result that, though

important, they are well known and also easy to prove by using André–

Quillen homology. We only point out a couple of them in order to stress the

ubiquity of our main descent theorem (Examples 18).

https://doi.org/10.1017/nmj.2016.64 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.64


116 J. MAJADAS

In Section 2, we study similar questions for the complete intersection

property instead of formal smoothness. For it, we need first some analogues

of the main results of [7] for finite complete intersection dimension instead

of finite flat dimension (Theorem 20 – Remark 22). We now give a more

reduced list of applications, since many of the ones given for formal

smoothness are easy to translate to the complete intersection case.

We will use some facts of André–Quillen homology modules Hn(A, B, M).

For convenience of the reader we list them in an Appendix with precise

references.

§2. Formal smoothness

Theorem 1. Let

(A,m, k)
u //

f
��

(B, n, l)

g
��

(Ã, m̃, k̃)
ũ // (B̃, ñ, l̃)

be a commutative square of local homomorphisms of noetherian local rings

such that

(i) TorAi (Ã, B) = 0 for all i > 0.

(ii) The homomorphism H1(A, B, l̃)→H1(Ã, B̃, l̃) vanishes.

(iii) If p is the contraction in Ã⊗A B of the maximal ideal ñ of B̃, then

(Ã⊗A B)p is a noetherian ring.

(iv) fdÃ⊗AB
(B̃)<∞.

Then u :A→B is formally smooth.

Proof. The commutative diagram of ring homomorphisms

Ã //

=
��

Ã⊗A B //

=
��

B̃

��

Ã // Ã⊗A B // l̃

gives, taking Jacobi–Zariski sequences, a commutative square
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H2(Ã⊗A B, B̃, l̃)
δ //

γ

��

H1(Ã, Ã⊗A B, l̃)

=
��

H2(Ã⊗A B, l̃, l̃) // H1(Ã, Ã⊗A B, l̃).

Associated to the ring homomorphisms Ã⊗A B→ B̃→ l̃ we have an exact

sequence

H2(Ã⊗A B, B̃, l̃)
γ−→H2(Ã⊗A B, l̃, l̃) =H2((Ã⊗A B)p, l̃, l̃)

β−→H2(B̃, l̃, l̃),

where p is the contraction in Ã⊗A B of the maximal ideal of B̃. Avramov’s

result (Appendix 11) says that β is injective. Thus γ = 0.

On the other hand, since TorAi (Ã, B) = 0 for all i > 0, the canonical

homomorphism H1(A, B, l̃)→H1(Ã, Ã⊗A B, l̃) is an isomorphism, so the

commutative triangle

H1(A, B, l̃)

0

&&

' // H1(Ã, Ã⊗A B, l̃)

αvv

H1(Ã, B̃, l̃)

shows that α= 0. From the ring homomorphisms Ã→ Ã⊗A B→ B̃, we

obtain an exact sequence

H2(Ã⊗A B, B̃, l̃)
δ−→H1(Ã, Ã⊗A B, l̃)

α−→H1(Ã, B̃, l̃)

and then δ is surjective.

Thus, from the above commutative square we deduce that H1 (Ã,

Ã⊗A B, l̃) = 0, and so H1(A, B, l̃) = 0. This implies that u :A→B is

formally smooth.

Remark 2.

(i) In the particular case where f and g are the Frobenius endomorphisms,

this result was proved in [17].

(ii) From the proof of Theorem 1, it is also clear that we can also weaken

the condition fdÃ⊗AB
(B̃)<∞ as follows: there exists a local homo-

morphism of local noetherian rings B̃→ C̃ such that the composition

map fdÃ⊗AB
(C̃)<∞.
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In order to apply this result, it will be convenient to state some corollaries

first:

Corollary 3. Let

(A,m, k)
u //

f
��

(B, n, l)

g
��

(Ã, m̃, k̃)
ũ // (B̃, ñ, l̃)

be a commutative square of local homomorphisms of noetherian local rings

such that

(i) TorAi (Ã, B) = 0 for all i > 0.

(ii) The homomorphism H1(A, B, l̃)→H1(Ã, B̃, l̃) is the zero map.

(iii) The Ã⊗A B-module B̃ is flat.

Then u :A→B is formally smooth.

Proof. Condition (iii) of Theorem 1 holds by faithfully flat descent.

Corollary 4. Let

A
u //

f
��

B

g
��

Ã
ũ // B̃

be a commutative square of homomorphisms of noetherian rings verifying

(i) TorAi (Ã, B) = 0 for all i > 0.

(ii) For each q ∈ Spec(B) there exists q̃ ∈ Spec(B̃) with g−1(q̃) = q such that

the map

H1(A, B, k(q̃))→H1(Ã, B̃, k(q̃))

vanishes, where k(q̃) is the residue field of B̃q̃.

(iii) The Ã⊗A B-module B̃ is flat.

Then the homomorphism u :A→B is regular, that is, flat with geomet-

rically regular fibers.

Proof. By [19, 0IV 19.7.1, 22.5.8], we have to prove that the local

homomorphism Ap→Bq is formally smooth for each q ∈ Spec(B), where

p = u−1(q). Let q̃ ∈ Spec(B̃) such that g−1(q̃) = q as in condition (ii), and

let p̃ = ũ−1(q̃). We have
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(i) Tor
Ap

i (Ãp̃, Bq) = 0 for all i > 0.

(ii) The homomorphism

H1(Ap, Bq, k(q̃)) = H1(A, B, k(q̃))→H1(Ã, B̃, k(q̃))

= H1(Ãp̃, B̃q̃, k(q̃))

is zero.

(iii) The Ãp̃ ⊗Ap Bq-module B̃q̃ is flat.

Therefore we can apply Corollary 3 to the commutative square

Ap
//

��

Bq

��

Ãp̃
// B̃q̃

and we obtain that Ap→Bq is formally smooth.

In the applications, we will use frequently the following weaker version of

the theorem:

Corollary 5. Let

(A,m, k)
u //

f
��

(B, n, l)

g
��

(Ã, m̃, k̃)
ũ // (B̃, ñ, l̃)

be a commutative square of local homomorphisms of noetherian local rings

such that

(i) TorAi (Ã, B) = 0 for all i > 0.

(ii) The homomorphism ũ : Ã→ B̃ is formally smooth.

(iii) The ring Ã⊗A B is noetherian.

(iv) fdÃ⊗AB
(B̃)<∞.

Then u :A→B is formally smooth.

Proof. Condition (ii) means H1(Ã, B̃, l̃) = 0.

Remark 6. Another particular case of Theorem 1, a little more general

than Corollary 5, can be useful. It consists in substituting in Corollary 5

condition (ii) with:
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(ii′) The square

(A,m, k)
u //

f
��

(B, n, l)

g
��

(Ã, m̃, k̃)
ũ // (B̃, ñ, l̃)

admits a factorization

(A,m, k)
u //

��

(B, n, l)

��

(Ā, m̄, k̄)
ū //

��

(B̄, n̄, l̄)

��

(Ã, m̃, k̃)
ũ // (B̃, ñ, l̃)

with ū formally smooth.

2.1 Applications

2.1.1 Extension of Greco’s theorem

Let u :R→ S be a local homomorphism of finite type of noetherian local

rings. If R is quasiexcellent then S is quasiexcellent. We are concerned

here with the reciprocal. In [18], Greco shows that if u is finite and

Spec(S)→ Spec(R) is surjective then S quasiexcellent implies that R is

quasiexcellent. He also proves that “u finite” cannot be replaced by “u of

finite type”, even when R and S are local domains of dimension 1 [18,

Proposition 4.1].

Instead of the surjectivity of Spec(S)→ Spec(R), we consider here

the surjectivity of Spec(Ŝ)→ Spec(R̂). When u is finite, both conditions

are equivalent (since in this case Spec(Ŝ)→ Spec(R̂) is obtained from

Spec(S)→ Spec(R) by base change and surjectivity of a morphism of

schemas is a property stable by base change). However, for a homomorphism

of finite type u, the latter condition is in general strictly stronger. Then we

can prove the following theorem.

Theorem 7. Let u :R→ S be a local homomorphism essentially of finite

type of noetherian local rings such that Spec(Ŝ)→ Spec(R̂) is surjective. If

S is quasiexcellent then R is quasiexcellent.
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Proof. A noetherian local ring A is quasiexcellent if and only if the

homomorphism A→ Â is regular. So we apply Corollary 4 to the square

R //

u

��

R̂

��

S // Ŝ

and use for example [20, 7.9.3.1] to see that S ⊗R R̂→ Ŝ is flat.

Corollary 8. Let R be a local ring and u :R→ S be a local flat

homomorphism essentially of finite type. If S is quasiexcellent then R is

quasiexcellent.

Proof. Since S is noetherian, so is R. The local homomorphism R̂→ Ŝ is

flat by the local flatness criterion and so Spec(Ŝ)→ Spec(R̂) is surjective.

2.1.2 Extension of Kunz’s theorem

We will see now that another special case of Theorem 1 gives us a

relative version of Kunz’s result for arbitrary contracting homomorphisms

(Theorem 13; see the Introduction for comments). In order to guarantee

that these homomorphisms satisfy the hypotheses of our theorem, first we

will need to prove some facts. We start by noticing that [16, Lemma 1] holds

also for contracting homomorphisms.

Lemma 9. Let

(A,m, k)
u //

f

��

(B, n, l)

g

��
(A,m, k)

u // (B, n, l)

be a commutative square of local homomorphisms of noetherian local rings

such that f(m)⊂m2. If the homomorphism ω : fA⊗A B→B, ω(a⊗ b) =

u(a)g(b), is flat then u is flat.

Proof. By the local flatness criterion it suffices to show that

un :=A/mn ⊗A u :A/mn→B/mnB

is flat for all n> 1.
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We recall from the introduction that fA is the ring A considered as A-

module via f :A→A and similarly gB, etc. The homomorphism u= fu

factorizes as
fA

fA⊗Au−−−−→ fA⊗A B
w−→ gB,

and so un = fun = f(A/mn)⊗fA
fu factorizes as

f(A/mn)
f(A/mn)⊗A/mnun
−−−−−−−−−−−→ f(A/mn)⊗A/mn B/mnB

ωn−→ g(B/mnB)

where ωn is defined in the obvious way as the natural map from the pushout

of f(A/mn) and B/mnB over A/mn.

But for n> 2 we have

f(A/mn)⊗A/mn un = f(A/mn)⊗A/mn−1 (A/mn−1 ⊗A/mn un)

= f(A/mn)⊗A/mn−1 un−1

(we have used that f(m)⊂m2). The homomorphism u1 is flat since A/m

is a field. By induction, if un−1 is flat, then f(A/mn)⊗A/mn un is flat and

thus un = ωn ◦ (f(A/mn)⊗A/mn un) is flat, since ωn = f(A/mn)⊗fA ω is flat

for all n> 1 by base change.

Now a version of [1, 10.11] for contracting endomorphisms.

Lemma 10. Let A be a noetherian ring, I an ideal of A, M an A-

module of finite type, f :A→A a ring homomorphism such that f(I)⊂ I2,

g :M →M an f -homomorphism (g(am) = f(a)g(m) for a ∈A, m ∈M),

and n > 0 an integer. Then there exists an s > 0 such that the map induced

by fs and gs (in all three variables)

TorAn (M, A/I)→ TorAn (M, A/I)

is zero.

Proof. Let

· · · → F2
d2−→ F1

d1−→ F0→M → 0

be a resolution of M with Fi a projective A-module of finite type for each

i. Since

TorAn (M, A/I) =Hn(F∗/IF∗)

is the homology of the complex

Fn+1/IFn+1
δn+1−−−→ Fn/IFn

δn−→ Fn−1/IFn−1
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we have

TorAn (M, A/I) = Ker(δn)/ Im(δn+1) = Ker

(
Fn/IFn

Im(δn+1)
→ Fn−1/IFn−1

)
.

Applying −⊗A A/I to the exact sequence

0→ Im(dn+1)→ Fn→ Im(dn)→ 0

we get
Fn/IFn

Im(δn+1)
=

Im(dn)

I · Im(dn)
.

Thus

TorAn (M, A/I) = Ker

(
Im(dn)

I · Im(dn)
→ Fn−1/IFn−1

)
=

Im(dn) ∩ IFn−1

I · Im(dn)
.

By the Artin–Rees lemma, there exists a positive integer t such that

Im(dn) ∩ ItFn−1 ⊂ I · Im(dn), so choosing s such that f s(I)⊂ It we see that

fs and gs induce the zero map on

TorAn (M, A/I) =
Im(dn) ∩ IFn−1

I · Im(dn)
.

Proposition 11. Let (A,m, k) be a noetherian local ring and f :A→A

a ring homomorphism such that f(m)⊂m2. For each integer n> 0 there

exists an integer s > 0 such that fs induces the zero map of functors

Hn(A, k,−)→Hn(A, k,−).

Proof. We mean that for any k-module M , the map induced by fs on

the left two variables Hn(A, k, M)→Hn(A, k, M) is zero, where in the left

Hn(A, k, M), M is considered as k-module by restriction of scalars via the

map k→ k induced by fs.

We have H0(A, k, k) = 0, so we can assume n > 0. By Lemma 10, for

i= 1, . . . , n, we can choose integers si such that fsi induces the zero map

TorAi (k, k)→ TorAi (k, k). We will use [1, 10.12] with Ai =A, Bi = Ci = k

for all i, and the homomorphisms Ai−1→Ai, Bi−1→Bi, Ci−1→ Ci are

the ones induced by fsi . We obtain that for s> s1 + · · ·+ sn, the map

Hn(A, k,−)→Hn(A, k,−) induced by f s is zero.
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Corollary 12. Let

(A,m, k)
u //

f

��

(B, n, l)

g

��
(A,m, k)

u // (B, n, l)

be a commutative square of local homomorphisms of noetherian local rings

such that f(m)⊂m2, g(n)⊂ n2. Then for each integer n> 0 there exists an

integer s > 0 such that (fs, gs) induces the zero homomorphism

Hn(A, B, M)
αs−→Hn(A, B, M)

for any l-module M .

Proof. We have a commutative diagram with exact rows

Hn+1(B, l,−)
δ //

βi
��

Hn(A, B,−)
ε //

αi

��

Hn(A, l,−)

γi
��

Hn+1(B, l,−)
δ // Hn(A, B,−)

ε // Hn(A, l,−)

where the vertical maps are induced by (f i, gi). If βi = 0, γi = 0, then

Im(αi)⊂Ker(ε) = Im(δ) and Im(δ)⊂Ker(αi), so α2i = α2
i = 0. Therefore,

taking i sufficiently large, Proposition 11 gives the result.

Now, we can see that the required extension of Kunz’s theorem is also a

particular case of our Theorem 1. Since we are placed in the local case, we

do not need the flatness of ω, but only the flatness of its completion at the

desired prime.

Theorem 13. Let

(A,m, k)
u //

f
��

(B, n, l)

g

��
(A,m, k)

u // (B, n, l)

be a commutative square of local homomorphisms of noetherian local rings

such that there exists some i with f i(m)⊂m2, gi(n)⊂ n2.

Denote by Â and B̂ the completions of A and B at their maximal ideals.

If there exists some j such that the homomorphism ω̂j : f
j
Â⊗Â B̂→

gjB̂ is

flat, then u :A→B is formally smooth.
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Proof. By [19, 0IV 19.3.6], the homomorphism u :A→B is formally

smooth if (and only if) u : Â→ B̂ is. So we can assume that ωj : f
j
A⊗A B

→ gjB is flat. By Corollary 12 there exists an integer s such that (f is, gis)

induces the zero homomorphism H1(A, B, M)→H1(A, B, M) for any l-

module M . On the other hand, if ωj is flat, then ω2j is also flat, since it

coincides with the composition

f2jA⊗A B
f2jA⊗

fjA
ωj

−−−−−−−→ f2jA⊗fjA
gjB

ωj−→ g2jB

of two flat homomorphisms. So, replacing (f, g) by a suitable power (f t, gt)

we can assume f(m)⊂m2, ω : fA⊗A B→ gB flat, and the homomorphism

(f, g) induces the zero map H1(A, B, M)→H1(A, B, M).

By Lemma 9, u is flat. Then the result follows from Corollary 3.

Remark 14. As a particular case of Theorem 13, we have obviously the

original Kunz’s theorem (even for finite flat dimension instead of flatness

if we use Theorem 1): let A be a noetherian local ring containing a field

of characteristic p > 0, let φA :A→A be the Frobenius homomorphism. If

fdA(φAA)<∞ then A is regular. This result follows from Theorem 1 and

Corollary 12 applied to the commutative square

k //

φsk
��

A

φsA
��

k // A

for some s sufficiently large, where k is a perfect field contained in A. When

fdA(φAA) = 0 this is Kunz’s result [21], and in general it was obtained

by Rodicio [26]. If we consider an arbitrary contracting endomorphism φ

instead of φA, taking as k a perfect field contained in the subfield of elements

of A fixed by φ, we obtain a similar result, which by different methods was

obtained previously in [11, 32].

Finally, in the general setting, we may ask if our Theorem 1 gives also

a relativization of [22, Proposition 2]. That is, for a local homomorphism

f :A→B, we ask if [22, Proposition 2] is a consequence of our Theorem 1

applied to

Z // A

f
��

Z // B
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In general, the answer is no, since the homology vanishing hypothesis

required for f :A→B in [22] is weaker than ours. However, when A contains

a field, taking as before a perfect subfield k instead of Z, we can prove that

the answer is affirmative.

2.1.3 Rodicio’s theorem

Theorem 15. Let u :A→B be a flat homomorphism of noetherian

rings such that B ⊗A B is noetherian. If fdB⊗AB(B)<∞ (via the mul-

tiplication map µ :B ⊗A B→B) then u is regular.

Proof. This is the particular case Ã= B̃ =B. More precisely, apply

Corollary 5 to the commutative square

Ap
//

��

Bq

Bq Bq

In this generality, this result was first proved by Rodicio [27] (even when

B ⊗A B is not noetherian), and subsequently improved (in the noetherian

case) by several authors.

Remark 16. We can see this result as a particular case of Corollary 5

also in a different way. Instead of the above square, we use

Bq
// (B ⊗A B)c

��
Bq Bq

where c = µ−1(q). We deduce that (B ⊗A B)c is formally smooth over Bq

and so

H2((B ⊗A B)c, Bq, Bq/qBq) =H1(Bq, (B ⊗A B)c, Bq/qBq) = 0,

that is, ker(µ) is locally generated by a regular sequence.

The value of this second approach is that it can be applied to an arbitrary

noetherian supplemented B-algebra S instead of B ⊗A B.
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2.1.4 Decomposition of formal smoothness

Theorem 17. Let A
u−→B

v−→ C be local homomorphisms of noetherian

local rings such that vu is formally smooth and fdB(C)<∞. Then u is

formally smooth.

Proof. This result is Corollary 5 for Ã=A, B̃ = C, that is, for the square

A // B

��
A // C

2.1.5 Other results

There are also other (well known) interesting particular cases of our main

result, but they also can be easily proved with the help of André–Quillen

homology. So we only state here a couple of them:

Examples 18. (a) 3. Let (A,m, k)→ (B, n, l) be a flat local homomor-

phism of noetherian local rings. If k→B ⊗A k is formally smooth then

A→B is formally smooth.

It follows from Corollary 5 applied to

A //

��

B

��
k // B ⊗A k

This is part of [19, 0IV 19.7.1] and it is also an immediate consequence of

Appendix 4, 10.

(b) Let u : (A,m, k)→ (B, n, l) be a flat local homomorphism of noetherian

local rings. If l|k is separable and B ⊗A k is regular, then u is formally

smooth.

We use the same square as in (a) with B ⊗A k replaced by l. It can

be also deduced from the Jacobi–Zariski exact sequence associated to

k→B ⊗A k→ l and Appendix 4, 9, 10.

§3. Complete intersection

We will now prove similar results for complete intersection instead of

formal smoothness (Theorem 23 and its corollaries). We will need first
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a different version (Theorems 20 and 21) of two of the main theorems in [7].

For convenience of the reader, we include here the details, though they are

easy consequences of Avramov’s results.

Avramov [5] introduces the virtual projective dimension (vpd) as follows

(assuming for simplicity that the residue field of A is infinite). An A-module

M of finite type is said to be of finite virtual projective dimension if there

exists a surjective homomorphism of noetherian local rings Q→ Â with

kernel generated by a regular sequence such that the projective dimension

pdQ(Â⊗AM) is finite. The local ring A is complete intersection if and only

if any module of finite type has finite virtual projective dimension if and

only if its residue field has finite virtual projective dimension.

Subsequently a modification of this concept, the complete intersection

dimension, CI-dim, was introduced in [9]. In its definition, instead of the

completion homomorphism A→ Â, an arbitrary flat local homomorphism of

noetherian local rings A→A′ is allowed. Complete intersection dimension

shares many properties with virtual projective dimension, in particular the

above equivalences. It also behaves well with respect to localization, but

this advantage can also be considered as a symptom of some difficulties

since complete intersection property of homomorphisms does not localize in

general. If f : (A,m, k)→ (B, n, l) is a complete intersection homomorphism

at the maximal ideal of B and A has complete intersection formal fibers

(for instance if A is a quotient of a local complete intersection ring;

see [29]), then f is complete intersection at all primes [7, 23, 30, 5.12].

But in general, this property does not localize as we can see taking as f

the completion homomorphism of a local ring whose formal fibers are not

complete intersection.

For this reason, we consider here a different definition of complete

intersection dimension introduced in [29], cidim, that localizes when the

ring has complete intersection formal fibers. Moreover, we have vpd<∞⇒
CI*-dim<∞⇒ cidim<∞⇒ CI-dim<∞, where CI*-dim is the upper

complete intersection dimension introduced in [31].

Let f : (A,m, k)→ (R, n, l) be a local homomorphism of noetherian local

rings. We say that f is weakly regular if it is flat and the closed fiber R⊗A k
is a regular ring. We say that f is flat complete intersection at n if it is

flat and the closed fiber R⊗A k is a complete intersection ring. Since we

will consider complete intersection homomorphisms always at the maximal

ideal, we will simply say flat complete intersection homomorphism.
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If f : (A,m, k)→ (B, n, l) is a local homomorphism of noetherian local

rings, a regular factorization (resp. complete intersection factorization) of f

is a factorization A
i−→R

p−→B of f where R is a noetherian local ring, i is a

weakly regular (resp. flat complete intersection) local homomorphism and

p is surjective. If B is complete, a regular factorization (and so a complete

intersection factorization) always exists [8].

We say that a finite moduleM 6= 0 over a noetherian local ring A has finite

complete intersection dimension in the sense of [9] (resp. in the sense of [29])

and use the notation CI-dim(M)<∞ (resp. cidim(M)<∞) if there exist

a flat (resp. flat complete intersection) local homomorphism of noetherian

local rings A→A′, and a surjective homomorphism of noetherian local rings

Q→A′ with kernel generated by a regular sequence, such that pdQ(M ⊗A
A′)<∞, where pd denotes projective dimension. For a local homomor-

phism of noetherian local rings f :A→B we say that CI-dim(f)<∞
(resp. cidim(f)<∞) if there exists a regular factorization (resp. complete

intersection factorization) A→R→ B̂ such that CI-dimR(B̂)<∞ (resp.

cidimR(B̂)<∞).

If fdA(B)<∞, then cidim(f)<∞ (and so also CI-dim(f)<∞). Take a

regular factorization A→R→ B̂; from the change of rings spectral sequence

E2
pq = TorRp (TorAq (R, k), B̂)⇒ TorAp+q(k, B̂)

we obtain TorRn (R⊗A k, B̂) = TorAn (k, B̂) = 0 for all n� 0, and then from

the spectral sequence

E2
pq = TorR⊗Ak

p (TorRq (R⊗A k, B̂), l)⇒ TorRp+q(B̂, l)

we deduce TorRn (B̂, l) = 0 for all n� 0 since R⊗A k is regular. That is,

pdR(B̂) = fdR(B̂)<∞. This immediately implies cidim(f)<∞.

However, it is clear that cidim(f)<∞ is far from implying fdA(B)<∞
(take as A a complete intersection local ring and B its residue field).

We will need also the following lemma.

Lemma 19. (Essentially [7, Lemma 1.7]) Let (A, k)
i−→ (R, l)→ (D, E)

be local homomorphisms of noetherian local rings such that i is flat complete

intersection. Then the canonical map Hn(A, D, E)→Hn(R, D, E) is an

isomorphism for all n> 3 and injective for n= 2. If i is weakly regular,

it is also an isomorphism for n= 2.
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Proof. By flat base change Hn(A, R, E) =Hn(k, R⊗A k, E), and by

the Jacobi–Zariski exact sequence associated to k→R⊗A k→ E we have

Hn(k, R⊗A k, E) =Hn+1(R⊗A k, E, E) = 0 for all n> 2 by Appendix 9.

So the Jacobi–Zariski exact sequence

· · · →Hn(A, R, E)→Hn(A, D, E)→Hn(R, D, E)→Hn−1(A, R, E)→ · · ·

gives isomorphisms Hn(A, D, E) =Hn(R, D, E) for all n> 3 and an exact

sequence

0→H2(A, D, E)→H2(R, D, E)→H1(A, R, E)
α−→H1(A, D, E)→ · · ·

The injectivity of α when i is weakly regular follows from the commutative

diagram with exact upper row

0 =H2(R⊗A k, E, E) // H1(k, R⊗A k, E) // H1(k, E, E)

H1(A, R, E)

'

OO

α // H1(A, D, E)

OO

The analogues to Avramov’s theorems [7, Theorems 1.4, 1.3] are the

following two:

Theorem 20. Let f : (A,m, k)→ (B, n, l) be a local homomorphism of

noetherian local rings such that CI-dim(f)<∞. Let m> 2 be an integer

such that (m− 1)! is invertible in B. If Hn(A, B, l) = 0 for some n with

3 6 n6 2m− 1, then Hn(A, B, l) = 0 for all n> 3.

Proof. By Appendix 8, we may assume that B is complete. Consider a

diagram

Q

��
R //

��

R′

##
A

??

// B // R′ ⊗R B
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as in the definition of complete intersection dimension. Let E be the common

residue field of R′ and R′ ⊗R B. By Lemma 19 and flat base change, we have

isomorphisms

Hn(A, B, E) =Hn(R, B, E) =Hn(R′, R′ ⊗R B, E)

for all n> 2. Also, from the Jacobi–Zariski exact sequence associated to

Q→R′→R′ ⊗R B and Appendix 9, we obtain

Hn(Q, R′ ⊗R B, E) =Hn(R′, R′ ⊗R B, E)

for all n> 3.

Therefore, given an integer n> 3, Hn(A, B, l) = 0 if and only if

Hn(Q, R′ ⊗R B, E) = 0. Since fdQ(R′ ⊗R B)<∞, by [7, Theorem 1.4] (by

its proof, that is local, or using [1, 4.57]) we have Hn(Q, R′ ⊗R B, E) = 0

for all n> 2, and then Hn(A, B, l) = 0 for all n> 3.

Theorem 21. Let f : (A,m, k)→ (B, n, l) be a local homomorphism of

noetherian local rings such that CI-dim(f)<∞. If Hn(A, B, l) = 0 for all

n sufficiently large, then Hn(A, B, l) = 0 for all n> 3.

Proof. It follows from [7, Theorem 4.4] using the same ideas as in the

proof of Theorem 20.

Remark 22. It should be noted that working in a similar way with

complete intersection dimension, we can also prove part of [7, Theo-

rem 1.5] in some very particular cases that are not complete intersection. If

f : (A,m, k)→ (B, n, l) is a local homomorphism of noetherian local rings

with edim(A)− depth(A) 6 3 or edim(A)− depth(A) = 4 and A Goren-

stein, the ring R in a regular factorization (we can assume that B

is complete) A→R→B, inherits the same property. If Hn(A, B, l) = 0

for all n sufficiently large (and so Hn(R, B, l) = 0 for all n sufficiently

large by Lemma 19), and we mimic the proof of [7, Theorem 4.4] with

Quillen’s spectral sequence [7, p. 475] instead of the spectral sequence of [7,

Theorem 4.2], we conclude that the Poincaré series∑
i>0

dimlTorRi (B, l)

has radius of convergence > 1. By [6], this implies for these particular rings

that (the virtual projective dimension and so) the complete intersection
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dimension of the R-module B is finite. Therefore reasoning as in the proof

of Theorem 20, we deduce that Hn(A, B, l) = 0 for all n> 3.

Theorem 23. Let

(A,m, k)
u //

f
��

(B, n, l)

g
��

(Ã, m̃, k̃)
ũ // (B̃, ñ, l̃)

be a commutative square of local homomorphisms of noetherian local rings

verifying

(i) TorAi (Ã, B) = 0 for all i > 0.

(ii) The homomorphism H3(A, B, l̃)→H3(Ã, B̃, l̃) vanishes.

(iii) If p is the contraction in Ã⊗A B of the maximal ideal ñ of B̃, then

(Ã⊗A B)p is a noetherian ring.

(iv) If ω is the homomorphism (Ã⊗A B)p→ B̃, then cidim(ω)<∞.

Then H3(A, B, l) = 0.

Proof. We can assume that B̃ is complete. Consider a diagram showing

that cidim(ω)<∞

Q

��
R //

��

R′

##

(Ã⊗A B)p

::

// B̃ // R′ ⊗R B̃

Let E be the residue field of R′ and R′ ⊗R B̃. We have

Hn((Ã⊗A B)p, B̃, E) =Hn(R, B̃, E) =Hn(R′, R′ ⊗R B̃, E)

for all n> 3, by Lemma 19 and flat base change.
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Using [1, 19.21, 20.26, 20.27] to interpret [4] in terms of André–Quillen

homology, since fdQ(R′ ⊗R B̃)<∞, we have a zero homomorphism in the
upper row of the commutative diagram

H4(Q, R′ ⊗R B̃, E)
0 //

'
��

H4(Q, E, E) // //

'
��

H4(R′ ⊗R B̃, E, E)

H4(R′, R′ ⊗R B̃, E) // H4(R′, E, E)

H4(R, B̃, E)

'

OO

H4((Ã⊗A B)p, B̃, E) //

'

OO

H4((Ã⊗A B)p, E, E)

'

OO

where for the isomorphisms we have used again Lemma 19, and Appendix 4,

9, having in mind that R→R′ is flat with complete intersection closed fiber.

We obtain that the map

H4((Ã⊗A B)p, B̃, E)→H4((Ã⊗A B)p, E, E)

is zero.

Using hypotheses (i) and (ii) and Appendix 3, 4, we have a commutative

diagram

H3(A, B, E)

0

''

' // H3(Ã, (Ã⊗A B)p, E)

vv

H3(Ã, B̃, E)

showing that the homomorphism H3(Ã, (Ã⊗A B)p, E)→H3(Ã, B̃, E) is

zero. So from the Jacobi–Zariski exact sequence

H4((Ã⊗A B)p, B̃, E)
δ−→H3(Ã, (Ã⊗A B)p, E)

0−→H3(Ã, B̃, E)
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we deduce that δ is surjective. Therefore we have a commutative diagram

H4((Ã⊗A B)p, B̃, E)

δ

)) ))

0 // H4((Ã⊗A B)p, E, E)

uu

H3(Ã, (Ã⊗A B)p, E)

from which we deduce that

0 =H3(Ã, (Ã⊗A B)p, E) =H3(A, B, E) =H3(A, B, l)⊗l E.

We can point out special cases of this theorem as we did in A− E in

Section 1. In particular, using Corollary 12 and Theorem 23, we can extend

the main results in [15] from the Frobenius homomorphism to contracting

endomorphisms. All works along the same lines, so we content ourselves

with the following two criteria for complete intersection homomorphisms.

The reader may consult the definitions and properties of complete inter-

section homomorphisms and quasicomplete intersection homomorphisms

in [7, 10], where they have been studied in depth. We only need here

their characterization in terms of André–Quillen homology. If f : (A,m, k)

→ (B, n, l) is a local homomorphism of noetherian local rings, f is complete

intersection at n if and only if Hn(A, B, l) = 0 for all n> 2 [7, Proposi-

tion 1.1], and is quasicomplete intersection at n if and only if Hn(A, B, l) = 0

for all n> 3 [10, 8.5]. We will consider these properties always at the

maximal ideals of the rings involved, so again we will suppress “at n” from

the notation. Note that this terminology is congruent with the notion of

flat complete intersection homomorphism defined at the beginning of this

section, since if f is flat, then

Hn(A, B, l) =Hn(k, B ⊗A k, l) =Hn+1(B ⊗A k, l, l)

for n> 2 by Appendix 4, 6, 7, and Hn+1(B ⊗A k, l, l) = 0 for n> 2 if and

only if B ⊗A k is a complete intersection ring (Appendix 9).

Corollary 24. Let A
u−→B

v−→ C be local homomorphisms of noetherian

local rings such that cidim(v)<∞. Assume that the characteristic of the

residue fields is 6=2. If vu is quasicomplete intersection (resp. complete inter-

section) then u is quasicomplete intersection (resp. complete intersection)

and v is quasicomplete intersection.
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Proof. Let E be the residue field of C. We apply Theorem 23 to

A
u // B

v
��

A
vu // C

and we obtain H3(A, B, E) = 0. Then, from the Jacobi–Zariski exact

sequence

0 =H4(A, C, E)→H4(B, C, E)→H3(A, B, E) = 0

we deduce H4(B, C, E) = 0, and so from Theorem 20 we get

Hn(B, C, E) = 0

for all n> 3, that is, v is quasicomplete intersection.

Again from the same Jacobi–Zariski exact sequence

· · · →Hn+1(B, C, E)→Hn(A, B, E)→Hn(A, C, E)→ · · ·

we deduce Hn(A, B, E) = 0 for all n> 3 (resp. for all n> 2).

In the particular case when fdB(C)<∞ this result was proved in [7,

5.7.1] for the case of complete intersection and in [10, 8.9] for quasicomplete

intersection (even in characteristic 2).

Corollary 25. Let u : (A,m, k)→ (B, n, l) be a local flat homo-

morphism of noetherian local rings and ω :B ⊗A B→B the multiplica-

tion map. Let p = ω−1(n) and assume that (B ⊗A B)p is noetherian. If

cidim(B⊗AB)p(B)<∞, then u is complete intersection (at n).

Proof. By Theorem 23 applied to

A

u
��

u // B

B B

we obtain H3(A, B, l) = 0, and since u is flat, we deduce from [1, 17.2] that

Hn(A, B, l) = 0 for all n> 2.
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Remark 26. Similarly to Remark 16, this result is also valid more

generally for a noetherian supplemented B-algebra S instead of B ⊗A B.

If cidimSp(B)<∞, where p is the contraction in S of the maximal ideal of

B, we apply Theorem 23 to the square

B // Sp

��
B B

We obtain H3(B, Sp, l) = 0, and so from the Jacobi–Zariski exact sequence

associated to B→ Sp→B we deduce H4(Sp, B, l) = 0. By Theorem 20 (in

characteristic 6=2), Hn(Sp, B, l) = 0 for all n> 3, and then from [1, 4.57] we

deduce Hn(Sp, B,−) = 0 for all n> 3.

In fact, the hypothesis on the characteristic is not necessary since by [12,

Theorem I], for a noetherian supplemented B-algebra S, H4(S, B,−) = 0

implies Hn(S, B,−) = 0 for all n> 3 (a direct proof of this fact was

communicated to me by Rodicio: we can assume that the rings are local and

complete; take a regular factorization B→R→ S; we have H3(B, S,−) =

H4(S, B,−) = 0 and so H3(R, S,−) = 0 by Lemma 19; using this same

Lemma, we have Hn(R, B,−) =Hn(B, B,−) = 0 for all n> 2; in the

commutative diagram with exact row

H3(S, B, l)

��

// H2(R, S, l) // H2(R, B, l) = 0

H3(S, l, l)
α // H2(R, S, l)

we have α= 0 by [28, Corollary 6] and then H2(R, S, l) = 0; this implies

Hn(R, S, l) = 0 for all n> 2 by Appendix 9 and then Hn(B, S, l) = 0

for all n> 2 by Lemma 19; since Hn+1(S, B, l) =Hn(B, S, l) we deduce

Hn(S, B,−) = 0 for all n> 3).

Acknowledgments. We thank the referee for a careful reading of the paper

and for pointing out a mistake in an earlier version.

Appendix: Some results on André–Quillen homology used in

the proofs

Associated to a homomorphism of (commutative) rings f :A→B and to

a B-module M we have (André–Quillen) homology B-modules Hn(A, B, M)
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for all integers n> 0, which are functorial in all three variables and satisfy

the following properties:

1. If B =A/I, then H0(A, B, M) = 0 [1, 4.60].

2. If 0→M ′→M →M ′′→ 0 is an exact sequence of B-modules, we have

a natural exact sequence [1, 3.22]

· · · →Hn+1(A, B, M ′′)→
Hn(A, B, M ′)→Hn(A, B, M)→Hn(A, B, M ′′)→

Hn−1(A, B, M ′)→ · · · →H0(A, B, M ′′)→ 0

3. (Localization) Let u :A→B be a ring homomorphism, T a multiplica-

tive subset of B, S a multiplicative subset of A such that u(S)⊂ T ,

and M a B-module. Then [1, 4, 59, 5.27]

T−1Hn(A, B, M) = Hn(A, B, T−1M)

= Hn(A, T−1B, T−1M) =Hn(S−1A, T−1B, T−1M).

4. (Base change) Let A→B, A→ C be ring homomorphisms such that

TorAi (B, C) = 0 for all i > 0, and let M be a B ⊗A C-module. Then

Hn(A, B, M) =Hn(C, B ⊗A C, M) for all n [1, 4.54].

5. Let B be an A-algebra, C a B-algebra and M a flat C-module. Then

Hn(A, B, M) =Hn(A, B, C)⊗C M for all n [1, 3.20].

6. (Jacobi–Zariski exact sequence) If A→B→ C are ring homomor-

phisms and M is a C-module, we have a natural exact sequence [1,

5.1]
· · · →Hn+1(B, C, M)→

Hn(A, B, M)→Hn(A, C, M)→Hn(B, C, M)→
Hn−1(A, B, M)→ · · · →H0(B, C, M)→ 0

7. If K→ L is a field extension and M an L-module, we have

Hn(K, L, M) = 0 for all n> 2 [1, 7.4]. So if A→K→ L are ring

homomorphisms with K and L fields, from 6 we obtain

Hn(A, K, L) =Hn(A, L, L)

for all n> 2, which, using 5, gives Hn(A, K, K)⊗K L=Hn(A, L, L)

for all n> 2.

8. If (A,m, k) is a noetherian local ring and Â is its m-completion, then

Hn(A, k, k) =Hn(Â, k, k) for all n> 0 [1, 10.18]. As a consequence,
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if (A,m, k)→ (B, n, l) is a local homomorphism of noetherian local

rings, then taking the map between the Jacobi–Zariski exact sequences

associated to A→B→ l and Â→ B̂→ l, we deduce that

Hn(A, B, l) =Hn(Â, B̂, l).

9. If I is an ideal of a noetherian local ring (A,m, k), then the following

are equivalent:

(i) I is generated by a regular sequence.

(ii) H2(A, A/I, k) = 0.

(iii) Hn(A, A/I, M) = 0 for any A/I-module M for all n> 2 [1, 6.25].

In particular, a noetherian local ring (A,m, k) is regular if and only if

H2(A, k, k) = 0.

Similarly, a noetherian local ring (A,m, k) is complete intersection if

and only if H3(A, k, k) = 0 if and only if Hn(A, k, k) = 0 for all n> 3 [1,

6.27 and its proof].

Finally, two important results by André and Avramov resp. that play

a key role in this paper:

10. A local homomorphism of noetherian local rings (A,m, k)→ (B, n, l) is

formally smooth (for the n-adic topology) in the sense of [19, 0IV 19.3.1]

if and only if H1(A, B, l) = 0 (essentially [1, 16.17]; use [1, 3.21]).

11. The main result in [4] can be read in terms of André–Quillen homology

as follows (see [1, 19.21, 20.26]): if (A,m, k)→ (B, n, l) is a local

homomorphism of finite flat dimension of noetherian local rings, then

the homomorphism H2(A, l, l)→H2(B, l, l) is injective.
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