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Flow-induced vibrations of a cylinder along a
circular arc

Rémi Bourguet†

Institut de Mécanique des Fluides de Toulouse, Université de Toulouse and CNRS, Toulouse 31400, France

(Received 8 April 2022; revised 7 November 2022; accepted 20 November 2022)

An elastically mounted circular cylinder, immersed in a cross-current and free to move
along a rectilinear path, is subjected to vortex-induced vibrations (VIV). These vibrations
develop through a mechanism referred to as lock-in, where body motion and vortex
shedding synchronize at a frequency that may deviate both from the oscillator natural
frequency and from the vortex shedding frequency past a fixed cylinder. The present
numerical study aims at extending the analysis to curved trajectories, by considering
that the cylinder is free to translate along a circular path. The Reynolds number based
on the body diameter (D) and current velocity (U) is set to 100. A wide range of path
radii, from 0.05D to 10D, and values of the reduced velocity (inverse of the oscillator
natural frequency non-dimensionalized by D and U) up to 30 are examined, for the
concave and convex configurations, i.e. the circular path centre located upstream or
downstream of the cylinder. Path curvature results in a major alteration of the flow–body
system behaviour compared with rectilinear VIV, with substantially different evolutions
in the concave and convex configurations. In addition to the typical lock-in mechanism,
two subharmonic forms of synchronization, at half and one third of vortex formation
frequency, are uncovered in the convex configuration. They coexist with a desynchronized
regime where the body and the flow oscillate at incommensurable frequencies. The
four interaction regimes exhibit contrasted trends in terms of structural response,
spatiotemporal organization of the wake and associated forces. They particularly differ
by their symmetry properties, which are closely linked to the possible reconfiguration of
the oscillator due to mean fluid forcing.

Key words: flow-structure interactions, vortex streets, wakes

1. Introduction

Flow-induced vibrations (FIV) of bluff bodies placed in a cross-current are ubiquitous
in nature, e.g. oscillations of plants in wind or water streams, and are also common in
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industrial systems. Their impact on the fatigue damage of engineering structures, such as
heat exchanger tubes, chimney stacks, spar hulls, cables or mooring lines, as well as their
fundamental interest as paradigms of fluid–structure interaction, have motivated a number
of research works, as reviewed, for example, by Blevins (1990) and Païdoussis, Price & de
Langre (2010).

The system composed of an elastically mounted, rigid circular cylinder, free to translate
along a rectilinear path, i.e. with a single degree of freedom, under the effect of a uniform
oncoming flow normal to its axis, represents a canonical problem to study a particular
form of FIV, called vortex-induced vibrations (VIV). This system has been extensively
examined in prior works, where the direction of motion was either normal to the current
(Feng 1968; Mittal & Tezduyar 1992; Hover, Techet & Triantafyllou 1998; Khalak &
Williamson 1999; Shiels, Leonard & Roshko 2001; Klamo, Leonard & Roshko 2006;
Leontini et al. 2006; Riches & Morton 2018), aligned with the current (Naudascher 1987;
Okajima, Kosugi & Nakamura 2002; Cagney & Balabani 2013; Konstantinidis 2014;
Gurian, Currier & Modarres-Sadeghi 2019; Konstantinidis, Dorogi & Baranyi 2021) or at
an arbitrary angle (Brika & Laneville 1995; Bourguet 2019; Benner & Modarres-Sadeghi
2021). In the following, the directions normal and parallel to the current are referred to
as the cross-flow and in-line directions, respectively. For such one-degree-of-freedom
oscillators, VIV appear over a well-delimited range of values of the reduced velocity,
U�, defined as the inverse of the oscillator natural frequency, non-dimensionalized by
the inflow velocity and the cylinder diameter. Within this range, body motion and
flow unsteadiness, associated with vortex formation in the wake, are synchronized. This
mechanism of synchronization is referred to as lock-in. The shape of VIV amplitude
evolution as a function of U�, and flow/body frequency ratio (1 or 0.5) depend on
the orientation of the direction of motion. Vortex-induced vibrations reach amplitudes
of the order of one body diameter in the cross-flow direction and one or more orders
of magnitude lower in the in-line direction. Under lock-in, the vibration frequency can
depart from the oscillator natural frequency, while the vortex shedding frequency can
deviate from that observed downstream of a stationary cylinder (Strouhal frequency).
Such a deviation is often accompanied by a modification of the von Kármán vortex
street and a variety of flow patterns may be encountered in the wake of the vibrating
body.

The present study also focuses on the vibrations of a one-degree-of-freedom oscillator.
It aims at extending the analysis to curved trajectories by considering that the elastically
mounted, rigid cylinder is free to translate along a circular arc. The radius of the circular
path is introduced as a new parameter of the problem; the rectilinear trajectory corresponds
to the particular case where this radius tends to infinity. The objective here is to examine
how path curvature may impact the VIV properties previously described for rectilinear
displacements, and more generally, to investigate the possible emergence of novel regimes
of the flow–body system.

A few recent studies have considered an elastically mounted, rigid circular cylinder,
free to rotate about a pivot point, and they have shown that VIV may also develop
in this context (Sung et al. 2015; Arionfard & Nishi 2017; Malefaki & Konstantinidis
2018, 2020; Arionfard & Mohammadi 2021). Such a physical system differs from the
present one by the nature of body motion, i.e. rotation versus translation. Yet, a pivoted
cylinder oscillates along a circular path and some observations reported in these prior
works may also apply to the present system. These previous works examined symmetrical
configurations where the pivot point, i.e. circular path centre, and the cylinder at rest are
aligned relative to the current, with the pivot point placed either upstream or downstream
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of the cylinder. These arrangements are referred to as concave and convex configurations
in the following. Over the ranges of pivot arm lengths (or, equivalently, circular path
radii) and reduced velocities investigated in these studies, 0.5 to 8 cylinder diameters and
U� < 14, respectively, VIV globally resemble those reported in the cross-flow, rectilinear
motion case: the amplitude of the cylinder angular oscillation exhibits a single-bell-shaped
evolution over a range of U� where vortex shedding and body motion frequencies
coincide. The cross-flow displacement amplitudes reached by the pivoted cylinder are
comparable to the rectilinear VIV amplitudes. A specific feature can however be noted.
The value of U� at which the peak of vibration amplitude occurs tends to increase in the
concave configuration, compared with the rectilinear motion case, and to decrease in the
convex configuration. This shift is enhanced as arm length is reduced or, equivalently, as
path curvature magnitude is increased. It may be connected to the effect of the mean
in-line force (also called drag hereafter) exerted by the fluid on the cylinder once it
is placed in flow, which tends to increase (reduce, respectively) the stiffness of the
oscillator in the concave (convex, respectively) configuration (Malefaki & Konstantinidis
2018).

Prior works concerning the related problem of a tethered cylinder, i.e. a pivoted
body without elastic restoring force, immersed in a cross-current, have investigated
the vibrations arising in the concave configuration (Ryan 2011; Dominguez, Piedra
& Ramos 2021). Sharp variations of body response amplitude were reported in the
low arm length range, typically below 0.5 diameters. Tethered body studies have also
analysed the system behaviour when vibrations develop about an asymmetrical position,
under the effect of gravity in this case (Carberry & Sheridan 2007; Ryan, Thompson
& Hourigan 2007). As shown in the following, such asymmetrical arrangements may
occur for the present system in the convex configuration, when the equilibrium position
shifts due to the mean drag. This aspect was not addressed in the above mentioned
works concerning elastically mounted bodies. Angular oscillations about an asymmetrical
position are associated with an alteration of the anti-symmetrical organization of the
vortex shedding patterns, as well as an asymmetry of fluid forces, with, in particular, the
emergence of a mean cross-flow force. It can be noted that comparable symmetry breaking
phenomena may exist for rectilinear vibrations in an arbitrary direction (e.g. Bourguet
2019).

The objective of the present work is to explore the behaviour of the flow–body system
when the cylinder is elastically mounted and free to translate along a circular arc. Among
other aspects and based on the insights gained from prior pivoted cylinder studies, two
elements that need to be investigated are the regimes encountered in the range of low path
radii, and the appearance of vibrations after reconfiguration about asymmetrical positions.
In order to provide a global vision of the system behaviour, the exploration is carried out
over a wide parameter space: for path radii varying from 0.05 to 10 body diameters, in the
concave and convex configurations, and for reduced velocity values up to U� = 30. The
cross-flow, rectilinear motion configuration is also considered for comparison purposes.
As a first step in this work, the Reynolds number based on the cylinder diameter and
current velocity is set to 100. This value ensures that the flow remains two dimensional and,
thus, permits precise inspection of the parameter space via two-dimensional numerical
simulations.

The paper is organized as follows. The physical system, its modelling and the numerical
method are presented in § 2. The system behaviour is examined in § 3, through a joint
analysis of the structural response, flow physics and fluid forces. The main findings of this
study are summarized in § 4.
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Figure 1. Sketch of the physical system: (a) general configuration of the oscillator; the present work focuses
on the (b) concave and (c) convex configurations.

2. Formulation and numerical method

The flow–body system and its modelling are described in § 2.1. The numerical method
employed and its validation are presented in § 2.2.

2.1. Physical system
The general configuration of the physical system is schematized in figure 1(a). The
(x, y, z) frame is fixed. The elastically mounted, rigid circular cylinder of diameter D
and mass per unit length Mc is parallel to the z axis and placed in an incompressible,
uniform cross-current of velocity U, density ρf , viscosity μ and aligned with the x axis.
The Reynolds number, Re = ρf UD/μ, is set to 100, which ensures that the flow is two
dimensional across the parameter space investigated. This point has been verified via a
number of three-dimensional simulations, including when three-dimensional flow fields
are used as initial conditions. The two-dimensional Navier–Stokes equations are thus
employed to predict the flow dynamics.

The cylinder is free to translate along a circular path of radius R, parallel to the (x, y)
plane and centred at the origin of the (x, y, z) frame. The stiffness of the elastic support
is denoted by K. The cylinder equilibrium position in quiescent fluid is identified by the
angle θ0. The angle θ , referred to as the angular displacement, designates the deviation
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from this equilibrium position. The cylinder diameter, the current velocity and the fluid
density are used to non-dimensionalize the physical variables. In the rest of the paper
all the variables are non-dimensional and the term non-dimensional is often omitted to
simplify the reading. The non-dimensional, curvilinear displacement of the cylinder along
the circular path, about its equilibrium position in quiescent fluid, can be expressed as
ζ = rθ , where r = R/D is the non-dimensional radius of curvature. The in-line, cross-flow
and tangential force coefficients are defined as Cx = 2Fx/ρf DU2, Cy = 2Fy/ρf DU2 and
C = 2F/ρf DU2, where Fx, Fy and F are the dimensional fluid forces per unit length,
aligned with the x and y axes, and the direction of body motion, respectively. The tangential
force coefficient can be expressed as

C = −Cx sin (θ + θ0) + Cy cos (θ + θ0) . (2.1)

The dynamics of the one-degree-of-freedom oscillator is governed by the equation

ζ̈ +
(

2π

U�

)2

ζ = C
2m

, (2.2)

where ˙ designates the non-dimensional time derivative. The mass ratio is defined as m =
Mc/(ρf D2) and it is set equal to 10. The reduced velocity is defined as U� = 1/fn, where
fn = D/(2πU)

√
K/Mc is the non-dimensional natural frequency in vacuum. No structural

damping is considered to allow maximum amplitude oscillations.
Two symmetrical configurations of the oscillator are examined in this work, the concave

(θ0 = 0◦) and convex (θ0 = 180◦) configurations, which are depicted in figure 1(b,c).
To facilitate the presentation of the results, the signed, non-dimensional curvature
is introduced: κ = 1/r in the concave configuration and κ = −1/r in the convex
configuration. For each configuration (concave or convex), r is varied from 0.05 to 10,
i.e. |κ| ∈ [0.1, 20], and U� ranges from 1 to 30. This parameter space is substantially
wider than those considered in prior studies concerning elastically mounted, pivoted
cylinders, especially in the regions of low path radii and large reduced velocities.
The cross-flow, rectilinear motion configuration, considered for comparison purposes,
is denoted symbolically by r = ∞ (κ = 0). In this configuration ζ designates the
non-dimensional, cross-flow displacement and the forcing term on the right-hand side of
the dynamics equation (2.2) is Cy/(2m). As previously mentioned, no structural damping
is included. It can however be noted that additional simulations (not presented here)
show that the principal features of the system behaviour, in particular the different
interaction regimes uncovered in this work, persist when a low level of structural damping
is considered.

2.2. Numerical method
The numerical method is the same as in previous studies concerning comparable physical
systems, i.e. elastically mounted cylinders in a cross-current at Re = 100 (e.g. Bourguet
& Lo Jacono 2014; Bourguet 2019). Descriptions of the simulation approach, boundary
conditions and discretizations, as well as detailed validations were reported in these prior
works. Only a brief summary of the method and some additional convergence results are
presented here.

The coupled flow–body equations are solved by the parallelized code Nektar, which is
based on the spectral/hp element method (Karniadakis & Sherwin 1999). Body motion
is taken into account by adding inertial terms in the Navier–Stokes equations (Newman
& Karniadakis 1997). A large rectangular computational domain is considered (350D
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Figure 2. Relative difference with respect to the fifth-order simulation results as a function of the polynomial
order: (a) curvilinear displacement amplitude and vibration frequency ratio, (b) time-averaged in-line force
coefficient and r.m.s. value of the tangential force coefficient fluctuation, for (r, κ, U�) = (0.111, −9.001, 20).

downstream and 250D in front, above and below the cylinder) in order to avoid any
spurious blockage effects due to domain size. The computational domain is discretized
in 3975 spectral elements. A no-slip condition is applied on the cylinder surface. The
free-stream value is assigned for the velocity at the upstream boundary. At the downstream
boundary, a Neumann-type boundary condition is used. Flow periodicity conditions are
employed on the upper and lower boundaries.

A convergence study in a typical case of large-amplitude vibrations, encountered for
low path radii in the convex configuration, is presented in figure 2. The evolutions of
the relative difference with respect to the fifth-order simulation results for the curvilinear
displacement amplitude, vibration frequency ratio (fζ /fn, where fζ is the dominant
vibration frequency), time-averaged in-line force coefficient and root-mean-square (r.m.s.)
value of the tangential force coefficient fluctuation are plotted as functions of the spectral
element polynomial order. In this figure and in the following, ˜ designates the fluctuation
about the time-averaged value denoted by ¯ , and the subscript max designates the maximum
value. The displacement amplitude is quantified by the maximum fluctuation about the
time-averaged value, ζ̃max. A polynomial order equal to 4 is selected since an increase
from order 4 to 5 has no significant impact on the results. It has also been verified that
dividing the non-dimensional time step by 2 (from 0.0025 to 0.00125) results in less than
0.1 % of relative differences on force and displacement statistics.

The simulations are initialized with the established periodic flow past a stationary
cylinder at Re = 100, then the body is released without initial velocity (ζ̇ = 0). Prior works
concerning VIV have shown that the system may exhibit hysteretic behaviours (e.g. Singh
& Mittal 2005). Additional simulations with different initial conditions (not presented)
confirm that hysteresis occurs at the edge of the interaction regimes reported in this paper.
The width of the hysteresis loops in terms of U� is typically lower than 0.5 and a detailed
investigation of this phenomenon would require a dedicated study, with a refined resolution
in specific regions of the parameter space. The present analysis is based on time series of
more than 40 oscillation cycles, collected after convergence of the time-averaged and r.m.s.
values of the fluid force coefficients and body displacement.

3. Flow–body system behaviour

In order to illustrate the comportment of the flow–body system across the parameter space
investigated, its evolution in five typical cases is depicted in figure 3, via selected time
series and spectra of some physical variables. For each case, the cylinder curvilinear
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displacement fluctuation, the cross-flow component of flow velocity fluctuation (ṽ)
sampled 10 diameters downstream of the body, the tangential force coefficient and the
power coefficient defined as e = Cζ̇ are plotted over two cycles of body oscillation,
once the permanent state is reached (a,c,e,g,i). The time-averaged curvilinear and angular
displacements of the cylinder are indicated above the time series in each case. The
corresponding spectra (b,d, f,h,j) are issued from fast Fourier transform over long time
series. For each physical variable, the spectral amplitude is normalized by its maximum
value and the frequency range is normalized by the dominant vibration frequency. In this
figure and in the rest of the paper, the cases considered are designated by the triplet
(r, κ, U�); even if r and κ are directly linked (r = 1/|κ|), this redundancy is adopted to
facilitate the localization in the parameter space.

The signals presented in figure 3 cover the different aspects of the system behaviour
that will be examined in this work: the structural response (§ 3.1), flow dynamics and
its possible synchronization with body motion, which will be used to distinguish the
interaction regimes (§ 3.2), and fluid forcing (§ 3.3). Each element of the figure will
be described step-by-step in the corresponding subsection. A first overview however
reveals contrasted trends among the selected cases, e.g. a variety of amplitudes and
frequency contents, diverse symmetry properties and connections between body response
and flow fluctuation, different deviations from the natural frequency in vacuum (green
dashed-dotted line) and Strouhal frequency (blue dotted line), non-zero time-averaged
displacement in some cases, which betrays a reconfiguration of the oscillator. As explained
in the following, the cases depicted in figure 3 actually represent the distinct regimes of
the system.

3.1. Structural response
The response of the elastically mounted body is explored across the (r, U�) parameter
space for the concave and convex configurations depicted in figure 1(b,c). The
time-averaged displacement and the possible reconfiguration of the oscillator are examined
in § 3.1.1. Then, focus is placed on the amplitude and frequency of vibration, which are
studied in §§ 3.1.2 and 3.1.3, respectively.

3.1.1. Time-averaged displacement and reconfiguration
The concave and convex configurations are characterized by a cross-flow symmetry about
the x axis, which suggests that the time-averaged position of the cylinder in flowing fluid
should match its equilibrium position in quiescent fluid, i.e. θ̄ = 0◦. A shift from this
equilibrium position may however occur, under the effect of mean fluid forcing. Such a
shift results in a reconfiguration of the oscillator that breaks the cross-flow symmetry of
the system since it introduces an asymmetry in the cylinder trajectory.

The shift due to mean fluid forcing can be estimated a priori, based on the only
knowledge of the time-averaged force exerted on a stationary cylinder, by considering a
static version of (2.2), i.e.

8π2 mr
U�2 θeq = −C̄ f

x sin
(
θeq + θ0

)
, (3.1)

where θeq designates the angular position of the predicted equilibrium and C f
x denotes

the in-line force coefficient in the fixed body case (C̄ f
x = 1.32 at Re = 100). In the

absence of vibration, θeq is equal to θ̄ ; a deviation appears when the body vibrates, as the
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ṽ

C̃

e

ζ̃

ṽ
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(r, κ, U�) = (0.175, –5.714, 22)

(r, κ, U�) = (0.111, –9.001, 20)
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(r, κ, U�) = (0.5, 2, 6.5)
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Figure 3. Selected time series (a,c,e,g,i) and associated frequency spectra (b,d, f,h,j) of the cylinder curvilinear
displacement fluctuation, cross-flow component of flow velocity fluctuation in the wake, tangential force
coefficient and power coefficient, for (a,b) (r, κ, U�) = (0.5, 2, 6.5) (locked 1 : 1 regime), (c,d) (r, κ, U�) =
(0.062, −16, 25) (locked 1 : 1 regime), (e, f ) (r, κ, U�) = (0.175, −5.714, 22) (locked 2 : 1 regime), (g,h)
(r, κ, U�) = (0.111, −9.001, 20) (locked 3 : 1 regime) and (i,j) (r, κ, U�) = (0.1, 10, 20) (unlocked regime).
The time-averaged curvilinear and angular displacements are indicated above the time series in the left panels.
The time series are plotted over two periods of body oscillation. The time intervals over which the flow
excites/damps body motion, i.e. positive/negative values of e, are denoted by yellow/grey areas. In the right
panels the spectral amplitude is normalized by its maximum value for each variable. The frequency range
is normalized by the dominant vibration frequency. The natural frequency of the oscillator in vacuum, the
modified natural frequency taking into account the drag (3.3) and the vortex shedding frequency in the fixed
body case (Strouhal frequency, St = 0.164) are indicated by green dashed-dotted, grey dashed and blue dotted
lines, respectively.
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Flow-induced vibrations of a cylinder along a circular arc

right-hand side of (3.1) departs from C̄. Based on (3.1), no shift is expected in the concave
configuration (θ0 = 0◦), while a shift is predicted in the convex configuration (θ0 = 180◦)
when

U�>

√
8π2 mr

C̄ f
x

≈ 24.45
√

r. (3.2)

It is recalled that the mass ratio m is equal to 10.
The time-averaged position issued from the flow–body system simulation is plotted

in figures 4 (concave configuration) and 5 (convex configuration) as a function of the
reduced velocity, over a range of path radii (black dots). In these figures panels (a)
represent the results obtained in the cross-flow, rectilinear motion configuration. In the
other panels, body position is reported in terms of curvilinear (left axis) and angular
(right axis) displacements. The equilibrium position predicted via (3.1) is denoted by a
black dashed line. In the concave configuration no shift of the time-averaged position is
observed relative to the position in quiescent fluid, as indicated by the above static analysis.
A shift may occur in the convex configuration. The critical value of U� beyond which the
reconfiguration arises and the trend of the time-averaged position with U� are globally
captured by the static analysis. Yet, deviations appear, for example, close to the boundaries
of the orange areas in figure 5(h–j), where irregular evolutions are not predicted. They are
associated with the emergence of significant vibrations of the body, as shown in § 3.1.2.
The background colours in figures 4 and 5 denote the different regimes of the flow–body
system; the colour code will be explicited later in the paper.

A remarkable feature is that the oscillator may recover a time-averaged position that
corresponds to its position in quiescent fluid, beyond the onset of reconfiguration (red
areas in figure 5l–o). This phenomenon, called symmetry recovery in the following in
reference to the cross-flow symmetry of the system before reconfiguration, is not captured
by the above analysis that predicts that reconfiguration should occur. Among the cases
selected to illustrate the system behaviour in figure 3, three are expected to be subjected
to reconfiguration (based on (3.1)); they are depicted in figure 3(c–h). Reconfiguration is
actually observed in the first two cases, where θ̄ = 162.37◦ and θ̄ = 121.25◦, respectively,
while the third one exhibits symmetry recovery, i.e. θ̄ = 0◦ vs θeq = 153.6◦.

It can be noted that, for low path radii and large reduced velocities, the time-averaged
position of the reconfigured oscillator tends towards 180◦ and the arrangement is then
close to the concave configuration.

3.1.2. Vibration amplitude
The maximum and minimum values of the body curvilinear and angular displacements
are reported in figures 4 and 5 (blue and green triangles) for the concave and convex
configurations, respectively. As previously mentioned, panels (a) represent the results
in the rectilinear motion configuration, in order to better visualize the impact of path
curvature. The displacement range swept by the body, i.e. [ζmin, ζmax] or [θmin, θmax],
where the subscripts min and max denote the minimum and maximum values, is indicated by
a dark grey area. The response amplitude values reported hereafter refer to the maximum
fluctuation about the time-averaged value (ζ̃max, θ̃max).

The cylinder is found to vibrate throughout the parameter space investigated, with
distinct regions of large-amplitude responses. In the concave configuration (figure 4)
the cylinder oscillates about its position in quiescent fluid (θ̄ = 0◦, no reconfiguration),
i.e. along a path that is symmetrical relative to the x axis. The magnitudes of its minimum
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Figure 4. Time-averaged, maximum and minimum values of the body curvilinear (left axis) and angular (right
axis) displacements in the concave configuration, as functions of the reduced velocity, over a range of path
radii. The values of path radius and signed curvature are specified in each panel. For comparison purposes, the
displacements observed in the cross-flow, rectilinear motion configuration are reported in panel (a). In each
case, the dark grey area depicts the displacement range swept by the body. The equilibrium position predicted
by (3.1) is represented by a black dashed line (from panel (b)). Black dotted lines indicate θ = ±180◦ (from
panel (g)). The background colours denote the different regimes of the flow–body system; the regimes are
described in § 3.2 and the colour code is explicited in figure 9.

and maximum displacements are identical, as illustrated by the example depicted in
figure 3(a). The typical bell-shaped evolution of the vibration amplitude as a function
of U�, observed in the rectilinear path configuration, is progressively distorted as the
radius of curvature is reduced. Several elements can be noted. A comparison of figure 4(a)
(rectilinear path) and figure 4(b) (r = 10) shows that the introduction of a slight curvature
of the trajectory has only an imperceptible influence on the response amplitude. The peak
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Flow-induced vibrations of a cylinder along a circular arc
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Figure 5. Same as figure 4 in the convex configuration.
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value of curvilinear displacement amplitude reached over the U� range decreases with r,
from 0.56 diameters for r = 10 (and the rectilinear path case) to 0.1 diameters for r =
0.05. Simultaneously, the peak value of angular displacement amplitude increases, up to
120◦–130◦ below r = 0.1. The value of U� associated with the onset of the large-amplitude
responses and the value associated with the peak amplitude tend to increase as r is
reduced, while the bell shape of the response amplitude curve widens. The shift of the
peak amplitude along the U� range as r is varied was previously reported for pivoted
cylinders (Malefaki & Konstantinidis 2018). For low path radii, substantial vibrations
are encountered until U� = 30, i.e. the largest value examined here, vs U� = 8.5 in the
rectilinear path configuration. A kink can be identified in the evolution of the response
amplitude with U�, at the boundary between the yellow and grey striped areas (figure 4e–j).
This phenomenon will be connected to a change of interaction regime.

The bell-shaped amplitude region, typical of the rectilinear motion configuration, where
the body vibrates along a symmetrical path about its position in quiescent fluid, is
also found to persist in the convex configuration (first yellow areas close to U� = 5 in
figure 5). However, contrary to what was observed in the concave configuration, this
region tends to shrink and slightly shift towards lower U� values when r is reduced.
As in the concave configuration, the peak value of curvilinear displacement amplitude in
this region decreases, down to 0.08 diameters for r = 0.05, while angular displacements
close to 100◦ are reached for low path radii. Two large-amplitude vibration regions
emerge for r < 0.2, in the higher range of U� values. A first region, encountered
around r = 0.17, is characterized by oscillations of curvilinear and angular amplitudes
close to 0.3 body diameters and 100◦, respectively. These oscillations develop about a
reconfigured position, with θ̄ ≈ 120◦ (orange areas in figure 5h–j). An example of such
responses is depicted in figure 3(e). A second region appears below r = 0.13, where
the cylinder exhibits a wide range of vibration amplitudes. In this region the curvilinear
amplitude reaches 0.58 diameters and is thus slightly larger than in the rectilinear path
configuration, while the angular amplitude exceeds 280◦. The vibrations may occur
about a reconfigured position (second yellow and grey striped areas in figure 5m–r) or
about the quiescent-fluid position, after symmetry recovery (red areas in figure 5l–o).
The cases presented in figure 3(c,g) illustrate these distinct behaviours. In the absence
of reconfiguration, or after symmetry recovery, the magnitudes of the maximum and
minimum displacements about the time-averaged position are the same, as previously
observed in the concave configuration. When the cross-flow symmetry of the trajectory
is broken by the reconfiguration, differences exist, for example, around U� = 20 for
r = 0.175 (figure 5i). As also mentioned for the concave configuration, the jumps in the
evolution of the response amplitude are related to switches between interaction regimes,
that will be clarified later in the paper.

For low path radii and large reduced velocities, typically below r = 0.075 and beyond
U� = 20, the reconfiguration tends to transform the convex configuration into a concave
arrangement (θ̄ ≈ 180◦). As a result, the vibration amplitudes are comparable for both
configurations in this region.

To summarize the above observations, a global vision of the vibration amplitude across
the parameter space is proposed in figure 6, which represents the maximum fluctuation
of the curvilinear displacement about its time-averaged value, as a function of the signed
curvature and reduced velocity. It is recalled that the signed curvature κ is the inverse of
path radius affected with a positive sign in the concave configuration and a negative sign
in the convex configuration; κ = 0 designates the rectilinear path configuration, which
corresponds to the transition between the concave and convex configurations. All the
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Flow-induced vibrations of a cylinder along a circular arc
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Figure 6. Curvilinear displacement amplitude as a function of the signed curvature and reduced velocity: (a)
three-dimensional view of the cases depicted in figures 4 and 5, and (b) isocontours. In panel (b) white dashed
lines delimit the significant vibration regions (ζ̃max ≥ 0.05), which are designated by Roman numerals (I, II,
III). The dotted area indicates the region where the oscillator is subjected to reconfiguration, i.e. ζ̄ /= 0. The
cases considered in figure 3 are denoted by blue points.

cases examined in figures 4 and 5 are gathered in figure 6(a). A map, which provides a
complementary and more continuous visualization of the vibration amplitude, is plotted
in figure 6(b). The cases depicted in figure 3 are indicated by blue points in the map.

The three regions of the parameter space where the curvilinear displacement amplitude
is larger than or equal to 0.05 diameters are delineated by white dashed lines in figure 6(b).
These regions are identified by Roman numerals (I, II, III) and referred to as the significant
vibration regions in the following. The vibration region I extends across the entire
range of curvatures investigated. Its evolution with κ highlights the distortion of the
typical bell-shaped amplitude curve associated with rectilinear vibrations (κ = 0). The
two other significant vibration regions arise in the convex configuration. The area where
the oscillator is subjected to reconfiguration, which includes the vibration region II and a
portion of region III, is indicated by white dots in the map. The peak-amplitude part of
region III represents an island of symmetry recovery in the reconfiguration area.

3.1.3. Vibration frequency
The vibrations are periodic or close to periodic in all studied cases. As illustrated by
the examples selected in figure 3, the vibration spectrum is generally dominated by a
single frequency, denoted by fζ and referred to as the vibration frequency. The possible
emergence of higher harmonics or incommensurable components is discussed at the end
of this subsection.

In figures 7 and 8 the vibration frequency normalized by the natural frequency in
vacuum is plotted as a function of the reduced velocity over the range of path radii
examined in figures 4 and 5, for the concave and convex configurations. To ease
interpretation, different symbols are employed within and outside the significant vibration
regions identified in figure 6(b), i.e. ζ̃max ≥ 0.05 vs ζ̃max < 0.05. Outside these regions,
the vibration frequency (green triangles) is close to the Strouhal frequency (St = 0.164,
black dotted line), as also noted in previous studies concerning rectilinear oscillations at
comparable Re (e.g. Shiels et al. 2001; Bourguet & Lo Jacono 2014). Within the significant
vibration regions, the vibration frequency (blue squares) may substantially depart from
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Figure 7. Dominant frequencies of body vibration and wake fluctuation in the concave configuration, as
functions of the reduced velocity, over a range of path radii. The values of path radius and signed curvature
are specified in each panel. For comparison purposes, the frequencies observed in the cross-flow, rectilinear
motion configuration are reported in panel (a). The frequencies are normalized by the natural frequency of
the oscillator in vacuum. Distinct symbols are used to designate the vibration frequency within and outside
the significant vibration regions (ζ̃max ≥ 0.05 vs ζ̃max < 0.05). The vortex shedding frequency in the rigidly
mounted body case (Strouhal frequency, St = 0.164) and the modified natural frequency taking into account
the mean drag ((3.3), from panel (b)) are indicated by a black dotted line and a black dashed line, respectively.
The background colours denote the different regimes of the flow–body system; the regimes are described in
§ 3.2 and the colour code is explicited in figure 9.

St. It remains relatively close to the natural frequency in vacuum for r > 0.2. Yet, major
deviations can be observed for lower path radii, in both configurations, with frequency
ratios larger than 4.

Prior works concerning pivoted cylinders suggested to take into account the effect of the
mean in-line force to modify the expression of the natural frequency of the oscillator in
vacuum (Arionfard & Nishi 2017; Malefaki & Konstantinidis 2018). By considering small
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Figure 8. Same as figure 7 in the convex configuration. In panels (h–j) and (l–o), the ‘×’ and ‘+’ symbols
designate 1/2 and 1/3 of the wake fluctuation frequency, respectively.
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oscillations about the equilibrium position predicted by the static analysis (3.1), a modified
natural frequency can be defined as

f ′
n =

√
f 2
n + C̄ f

x

8π2 mr
cos(θeq + θ0). (3.3)

The derivation of f ′
n is explained in an appendix dedicated to a quasi-steady analysis of

fluid forcing (Appendix A). Equation (3.3) indicates that the influence of the mean drag
on the natural frequency should be more pronounced for low path radii and tends to vanish
as the trajectory gets closer to rectilinear. In the absence of reconfiguration (θeq = 0◦), it
predicts that the mean force increases the natural frequency in the concave configuration
(θ0 = 0◦) and reduces it in the convex configuration (θ0 = 180◦). Under the assumption
that a peak of vibration occurs when the natural frequency f ′

n coincides with St, a shift
of this peak towards higher (lower, respectively) U� values is expected in the concave
(convex, respectively) configuration, compared with the rectilinear path configuration.
This phenomenon, also reported by Malefaki & Konstantinidis (2018), is actually observed
in region I (figure 6b). After reconfiguration, the effect of the mean drag on the natural
frequency depends on the equilibrium position.

In the significant vibration regions, fζ is found to globally follow the trend of f ′
n, which

is represented by a black dashed line in figures 7 and 8, and by a grey dashed line in the
spectra of figure 3. An exception can however be noted in the red areas in figure 8. In this
part of the parameter space, the oscillator is subjected to symmetry recovery, which is not
captured by the above analysis, and the vibration frequency is found to be close to fn.

Another element can be noted. The vibrations observed in the orange and red
areas in figure 8 occur at frequencies relatively close to St/2 and St/3, respectively.
Such a coincidence suggests that these vibrations could develop under a subharmonic
synchronization with the wake, i.e. at a submultiple of wake unsteadiness frequency. This
aspect will be clarified in the following.

Some higher harmonic contributions may emerge in the vibration spectrum. Their
magnitudes are small in all cases, typically lower than 15 % of the fundamental component
amplitude, but they reflect the symmetry of the vibration. For periodic responses
in the absence of reconfiguration, or after symmetry recovery, only odd harmonics
are encountered and the displacement is thus symmetrical about the time-averaged
position (figure 3g,h). Once the cross-flow symmetry of the trajectory is altered by the
reconfiguration, even harmonics may also appear (figure 3f ). In certain regions of the
parameter space, incommensurable components of low magnitudes arise in the vibration
spectrum (figure 3j). They break the periodicity of the oscillation. They also break its
strict cross-flow symmetry, even though the magnitudes of the maximum and minimum
displacements measured over a large number of cycles are identical.

The above observations concerning the structural response raise the question of the
nature of the interaction between the flow and the vibrating body. This is the object of the
next subsection.

3.2. Interaction regimes
This subsection focuses on the connection between the behaviour of the elastically
mounted cylinder and flow dynamics. An analysis of the synchronization between body
motion and flow unsteadiness leads to the identification of different interaction regimes
in § 3.2.1. The spatiotemporal organization of the wake is more specifically examined in
§ 3.2.2.
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Flow-induced vibrations of a cylinder along a circular arc

3.2.1. Flow–body synchronization – regime identification
For each case depicted in figure 3, flow unsteadiness is represented by a time series of the
cross-flow component of flow velocity fluctuation (ṽ), sampled 10 diameters downstream
of the cylinder, at (x, y) = (10 + r cos(θ0), 0). A comparison of these signals with the time
series of body displacement, and the associated spectra, suggest that distinct interaction
regimes may develop.

In the parameter space under study, flow unsteadiness, quantified via ṽ time series,
is generally dominated by a single frequency and the contributions of the other spectral
components remain marginal. The dominant frequency of flow unsteadiness, denoted by
fv and referred to as flow frequency in the following, is superimposed on the vibration
frequency plots in figures 7 and 8 (black dots; the frequencies are normalized by fn in these
plots). Outside the significant vibration regions (ζ̃max < 0.05), fv matches the vibration
frequency and is always close to the Strouhal frequency. Once significant structural
oscillations occur (ζ̃max ≥ 0.05), the vibration frequency may substantially deviate from
St, as previously noted. However, the condition of synchronization where fζ = fv is
found to persist (yellow areas in the plots). This condition represents the typical lock-in
mechanism, usually observed in cross-flow VIV of circular cylinders (Williamson &
Govardhan 2004). Examples of such synchronization, in the concave configuration and
in the convex configuration in a case where the oscillator is subjected to reconfiguration,
are depicted in figures 3(a,b) and 3(c,d), respectively.

Two other forms of flow–body synchronization are uncovered within the significant
vibration regions, in the convex configuration. First, the vibration frequency can coincide
with fv/2, which is specified by the ‘×’ symbols in figure 8h–j) (orange areas). Second,
the vibration frequency can be equal to fv/3, indicated by the ‘+’ symbols in figure 8(l–o)
(red areas). The deviations of the dominant frequency of the flow from St appear to be
smaller than those encountered when fζ = fv . Examples of these two additional forms of
synchronization are presented in figures 3(e, f ) and 3(g,h), respectively. The time series
and spectra show that, in spite of some low-amplitude modulations at fζ , flow velocity
fluctuation is essentially determined by the dominant component at fv , with distinct
frequency ratios, fv/fζ = 2 and fv/fζ = 3. Flow–body synchronization where the structure
oscillates at a submultiple of flow dominant frequency is referred to as subharmonic
synchronization hereafter. It is not observed when the circular cylinder is restrained to
rectilinear motion, but it was reported in this case for asymmetrical bodies, e.g. a square
prism in Zhao et al. (2014). Subharmonic synchronization was not detected in previous
works concerning elastically mounted, pivoted cylinders; it is recalled that the range of
low path radii where such synchronization appears was not explored in these prior studies.

Under flow–body synchronization, regardless of the frequency ratio, the system
behaviour is periodic. As previously noted for the structural response, in the absence of
reconfiguration, only odd harmonic contributions appear in the flow velocity spectrum.
This reflects the strict anti-symmetrical organization of the wake, which will be addressed
in § 3.2.2.

In addition to the three forms of flow–body synchronization, a desynchronized state
where the body and the flow oscillate at incommensurable frequencies is also encountered
in the significant vibration regions, both in the concave and convex configurations (grey
striped areas in figures 7d–j and 8m–p). In this desynchronized condition, the vibration
frequency follows the modified natural frequency (f ′

n), while the dominant frequency
of flow unsteadiness is close to St. A typical example is presented in figure 3(i,j).
Such a condition resembles the desynchronization or decoherence usually reported for
VIV at higher Re, when U� is increased beyond the lock-in range (e.g. Khalak &
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Williamson 1999). It should however be mentioned that this condition does not occur
at Re = 100 when the body moves along a rectilinear path (figure 7a) and its appearance
here is thus due to path curvature. Despite their limited amplitudes, the emergence of
incommensurable components, at fv in the vibration spectrum and at fζ in the flow velocity
spectrum, results in an aperiodic dynamics of the system, which contrasts with the periodic
behaviours encountered under flow–body synchronization.

Based on the different forms of synchronization or desynchronization between the flow
and the moving body, determined via the frequencies fv and fζ , four distinct regimes of
interaction can be identified within the parameter space investigated. A first visualization
of these regimes is proposed in figure 9, which is used to introduce the nomenclature
employed to designate them. This figure represents, for all studied cases, the amplitude of
the body curvilinear displacement as a function of the ratio between the flow frequency
and vibration frequency. Different symbols are used to distinguish the concave and convex
configuration cases. The threshold of the significant vibration regions (ζ̃max = 0.05) is
specified by a dark grey dashed line. The three regimes where the flow and the body
are synchronized with an integer frequency ratio, fv/fζ ∈ {1, 2, 3}, are referred to as the
locked regimes. These regimes are denoted by plain background colours and called locked
1 : 1, locked 2 : 1 and locked 3 : 1, in reference to flow/body frequency ratios. The locked
1 : 1 regime is encountered in the concave and convex configurations, and associated
with a wide range of vibration amplitudes, from the lowest amplitudes detected to 0.56
body diameters. This is the only regime observed outside the significant vibration regions
identified in figure 6(b), i.e. ζ̃max < 0.05, below the dark grey dashed line in figure 9.
It is denoted by a yellow background colour, with a lighter tone outside the significant
vibration regions. In contrast, the locked 2 : 1 and locked 3 : 1 regimes, which only develop
in the convex configuration, are associated with specific ranges of response amplitudes:
intermediate amplitudes around 0.3 diameters in the locked 2 : 1 regime versus large
amplitudes close to 0.5 diameters in the locked 3 : 1 regime, which is the regime where
the largest amplitude is measured (0.58). These regimes are indicated by orange and
red background colours, respectively. The regime where the flow and the body exhibit
incommensurable frequencies, i.e. they are desynchronized, is referred to as the unlocked
regime and identified by a grey striped background. It is observed in the concave and
convex configurations, and involves vibration of low amplitudes, typically around 0.1
diameters, and flow/body frequency ratios ranging from 1.1 to 1.4.

The colour code introduced in figure 9 is used in the backgrounds of figures 4, 5, 7 and
8, to track the different regimes. As in figure 9, a lighter yellow colour is employed to
designate the locked 1 : 1 regime out of the significant vibration regions. This continuous
monitoring of the interaction regime shows that, within a significant vibration region, the
kinks in the evolution of structural response properties, especially vibration amplitude,
are generally linked to the passage from one regime to the other. This phenomenon is
illustrated by the transition between the locked 1 : 1 and unlocked regimes in figure 4(e–j).

The distribution of the interaction regimes in the (κ, U�) parameter space is visualized
in figure 10. In this map, the areas associated with the different regimes are delimited
by plain black lines and the colour code follows the nomenclature introduced in figure 9.
The boundaries of the three regions of significant vibrations identified in figure 6(b) are
indicated by dark grey dashed lines. Within these regions, to ease description, the areas
associated with distinct regimes are specifically designated (Ia, Ib, IIIa, IIIb and IIIc). The
regime names are also mentioned. Two regimes are encountered in region I (locked 1 : 1
and unlocked), a single in region II (locked 2 : 1) and three in region III (locked 1 : 1, locked
3 : 1 and unlocked). This map highlights the pronounced asymmetry of regime distribution
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Figure 9. Curvilinear displacement amplitude as a function of the ratio between the flow frequency and
vibration frequency. Distinct symbols are used to designate the concave and convex configuration cases. A
dark grey dashed line represents the threshold of the significant vibration regions (ζ̃max = 0.05). The integer
values of the frequency ratio are specified by black dashed-dotted lines. Plain background colours denote
the three regimes where the flow and the body are synchronized, with a frequency ratio of 1 (locked 1 : 1
regime; yellow/light yellow within/outside the significant vibration regions), 2 (locked 2 : 1 regime; orange)
and 3 (locked 3 : 1 regime; red). The unlocked regime where the flow and the body are desynchronized is
denoted by a grey striped area.

relative to the κ = 0 axis, i.e. concave (κ > 0) versus convex (κ < 0) configurations.
Some symmetry can however be noted for large curvature magnitudes, typically |κ| > 13,
beyond U� = 20. As mentioned in § 3.1, the reconfiguration of the oscillator (denoted
by black dots in the map) tends to transform the convex configuration into a concave
arrangement in this region (θ̄ ≈ 180◦), which leads to comparable behaviours for κ > 0
and κ < 0. The locked 1 : 1 regime is found to develop over the entire curvature and
U� ranges investigated. As previously noted, this is the only regime encountered out
of the significant vibration regions. The locked 2 : 1 and 3 : 1 regimes appear close
to κ = −6 (r ≈ 0.17) and κ = −10 (r ≈ 0.1), for U� ∈ [17, 26] and U� ∈ [15, 23],
respectively. The unlocked regime occurs for U� > 9, and is not observed beyond |κ| ≈ 15
(below r ≈ 0.07).

The locked 1 : 1 and unlocked regimes arise both in the absence of, or after
reconfiguration. This is not the case for the other regimes. The locked 2 : 1 regime is
systematically associated with a reconfigured arrangement, while the locked 3 : 1 regime
is found to coincide with the island of symmetry recovery detected in the peak-amplitude
part of region III (figure 6b). A corollary aspect is that the periodic responses appearing
in the locked 3 : 1 regime are strictly symmetrical (odd harmonics only) whereas those
developing in the locked 2 : 1 regime are asymmetrical (odd and even harmonics). Both
asymmetrical and symmetrical periodic oscillations are encountered in the locked 1 : 1
regime, depending on whether the oscillator is subjected to reconfiguration or not. In
the unlocked regime the presence of incommensurable frequency components breaks the
oscillation symmetry, regardless of the occurrence of reconfiguration.
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Figure 10. Flow–body system regime as a function of the signed curvature and reduced velocity. The areas
associated with distinct regimes are separated by plain black lines and the regime names are specified. The
colour code used to denote the different regimes is the same as in figure 9. Dark grey dashed lines delimit the
significant vibration regions (ζ̃max ≥ 0.05), which are designated by Roman numerals (I, II, III). The dotted
area represents the region where the oscillator is subjected to reconfiguration, i.e. ζ̄ /= 0. The cases considered
in figure 3 are indicated by blue points.

The examples selected in figure 3 are localized by blue points in the map. They cover
the different regimes observed in the significant vibration regions, including the locked
1 : 1 regime with and without reconfiguration.

The vibrations encountered in the locked 2 : 1 and locked 3 : 1 regimes present
similarities with the galloping oscillations observed for non-axisymmetric bodies
(Païdoussis et al. 2010), in particular their relatively large amplitudes, low frequencies
compared with flow unsteadiness and the high values of U� where they arise. Some
substantial differences can however be noted. The present vibrations develop over finite
intervals of U� and their amplitudes exhibit bell-shaped evolutions, which contrasts with
the typical unbounded growth of galloping oscillation amplitudes. The local occurrence
of flow–body synchronization was shown to induce kinks in the evolution of galloping
response amplitudes (e.g. Zhao et al. 2014). Yet, such synchronization is not required for
galloping oscillations, since they are driven by a quasi-steady mechanism, decoupled from
flow unsteadiness. Here, flow–body synchronization is found to persist, at a subharmonic
level, throughout the locked 2 : 1 and locked 3 : 1 regimes and a quasi-steady modelling of
fluid forcing fails to predict the present responses, as discussed in Appendix A.

The organization of the wakes associated with the different interaction regimes is
investigated hereafter.

3.2.2. Wake organization
In order to shed some additional light on the interaction regimes identified in § 3.2.1,
focus is now placed on the flow patterns encountered downstream of the vibrating body.

954 A7-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.980


Flow-induced vibrations of a cylinder along a circular arc

2

0y

y

x x x x

–2

2

0

–2

0 2 4 6

0 2 4 6

2

0

–2

0 2 4 6

2

0

–2

0 2 4 6

2

0

–2

0 2 4 6

8 10 12 14 16 18 20 22 24 26 28 30 32 34

(a)

(b) (c) (d ) (e)

Figure 11. Instantaneous isocontours of spanwise vorticity for (r, κ, U�) = (0.5, 2, 6.5) (locked 1 : 1 regime;
case considered in figure 3a,b): (a) general visualization of the wake (ωz ∈ [−0.5, 0.5]); (b–e) visualization
of the near-wake region (ωz ∈ [−2, 2]) at four instants over one period of body oscillation, i.e. one period of
vortex shedding. The trajectory of the cylinder centre is indicated by a black line. Positive/negative vorticity
values are plotted in red/blue. In panel (a) a dashed grey line encloses the vortical pattern formed over one
oscillation period and a black dashed-dotted line separates the vortices shed over each half-period. Part of the
computational domain is shown.

Throughout the parameter space, regardless of the interaction regime, the dominant
frequency of flow unsteadiness (fv) is associated with the formation of a pair of
counter-rotating vortices, as in the fixed body configuration. The typical flow patterns
observed in the three synchronized regimes, i.e. locked 1 : 1, 2 : 1 and 3 : 1 regimes,
are visualized in figures 11, 12 and 13, through instantaneous isocontours of spanwise
vorticity. For each selected case, a general view of the wake is presented in the upper panel
to show the global structure of the flow and snapshots of the near-wake region, collected
every 1/(4fv) over one period of body oscillation (1/fζ ), are plotted in the lower panels, to
track vortex formation process. Body trajectory and instantaneous position are indicated
in each panel. The vortical pattern formed during one oscillation cycle is enclosed by a
dashed grey line in the upper panel and the vortices shed over each half-cycle are separated
by a black dashed-dotted line.

One pair of alternating vortices is formed per oscillation cycle in the locked 1 : 1 regime,
versus two and three pairs in the locked 2 : 1 and 3 : 1 regimes, respectively. In the locked
1 : 1 regime without reconfiguration (figure 11) and in the locked 3 : 1 regime (figure 13),
the vortices shed over each half-period of oscillation exhibit anti-symmetrical structures,
i.e. a reflection symmetry about the wake centreline, similarly to the von Kármán street
observed downstream of a fixed cylinder. The anti-symmetry of wake topology is marked
by the absence of even harmonic components in the spectrum of the cross-flow component
of flow velocity sampled on the wake centreline, as illustrated in figure 3(b,h). Such
organization of the wake coincides with the cross-flow symmetry of cylinder vibrations,
i.e. odd harmonics only in the displacement spectrum. The strict anti-symmetry of the
locked 1 : 1 regime wakes is perturbed when the body oscillates along an asymmetrical
path, due to reconfiguration: slight differences can be noted in the magnitudes and
shapes of the positive and negative vortices, even though the overall topology remains
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Figure 12. Same as figure 11 for (r, κ, U�) = (0.175, −5.714, 22) (locked 2 : 1 regime; case considered in
figure 3e, f ). In panels (b–i) the near-wake region is visualized at eight instants over one period of body
oscillation, i.e. two periods of vortex shedding.

close to anti-symmetrical. The six vortices shed over one period of oscillation in the
locked 3 : 1 regime tend to regroup into two triplets, which closely resemble the 2P + 2S
pattern reported by Williamson & Roshko (1988) under forced rectilinear oscillations near
St/3. In the locked 2 : 1 regime, two comparable pairs of counter-rotating vortices are
formed, one over each half-period of oscillation (figure 12). In contrast to the patterns
described above, the vortices shed over each half-period do not present anti-symmetrical
structures. In this regime, the body vibrates about a reconfigured position, along an
asymmetrical path, and, therefore, no specific symmetry of the wake is expected. It can
be noted that the asymmetrical responses (locked 1 : 1 regime with reconfiguration, locked
2 : 1 regime) are not accompanied by major distortion or inclination of the wake, as
illustrated by figure 12(a) where the vortices remain globally aligned with the x axis. In
the subharmonic synchronization regimes (figures 12 and 13), the rows of the lower panels
place side-by-side the two/three successive periods of vortex shedding occurring during
one cycle of body oscillation. Even if the vortex formation process is comparable from one
shedding period to the other, some subtle differences can be identified, in relation with
body motion. For example, in the case depicted in figure 12, the red shear layer developing
as the positive vortex is formed appears to be longer in the first period as the body moves
upstream (figure 12d,e) than in the second period as it moves downstream (figure 12h,i).

In the unlocked regime, vortex formation and body motion are not synchronized. Based
on the flow/body frequency ratio (fv/fζ ), between 2.2 and 2.8 vortices are shed per
oscillation cycle. The wake resembles that observed downstream of a fixed cylinder, except
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Figure 13. Same as figure 11 for (r, κ, U�) = (0.111, −9.001, 20) (locked 3 : 1 regime; case considered in
figure 3g,h). In panels (b–m) the near-wake region is visualized at twelve instants over one period of body
oscillation, i.e. three periods of vortex shedding.

that its anti-symmetrical organization is slightly altered, as expected in the presence of
incommensurable vibrations of the body.

The description of the spatial organization of the wake shows that the typical patterns
associated with the different interaction regimes are essentially variations about the von
Kármán street occurring in the fixed body configuration. In particular, as previously
mentioned, the dominant frequency fv always coincides with the shedding of a pair of
counter-rotating vortices. Figures 7 and 8 indicate that the shedding frequency can clearly
depart from the Strouhal frequency once the body is subjected to significant vibrations and
that the magnitude of this departure depends on the interaction regime. To further examine
this aspect, the amplitude of the body curvilinear displacement is plotted in figure 14 as a
function of the relative deviation of fv from St, for all studied cases. Distinct symbols are
used to distinguish the four interaction regimes and the colour code employed is the same
as in figure 9. The limit of the significant vibration regions is denoted by a dark grey dashed

954 A7-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.980


R. Bourguet

0.6

0.5

0.4

0.3

0.2

0.1

0
–20 –10 0 10 20

ζ̃
m

ax

Locked 1 : 1

Locked 2 : 1
Locked 3 : 1

Unlocked

fv – St
St (%)

Figure 14. Curvilinear displacement amplitude as a function of the relative deviation of the flow frequency
from the Strouhal frequency. A dark grey dashed line represents the threshold of the significant vibration
regions (ζ̃max = 0.05). A black dashed-dotted line denotes the absence of deviation (fv = St). Distinct symbols
are employed to designate the interaction regimes, with the colour code introduced in figure 9. Green dotted
lines delimit the region of synchronization reported by Koopmann (1967) under forced, cross-flow oscillations.

line. In the locked 1 : 1 regime, the relative deviation of the shedding frequency is found
to vary from −25 % to +20 %, approximately. A pronounced departure from St can be
observed both in the concave and convex configurations. A monitoring of the deviation
versus path curvature shows that the largest differences are encountered for |κ| < 10
(r > 0.1). The frequency range tends to widen as the vibration amplitude increases, up
to 0.2 diameters. It follows a global V shape that roughly matches the boundaries of
the wake synchronization region identified by Koopmann (1967) for forced rectilinear
oscillations, at the same Re (green dotted lines). On the other hand, the locked 2 : 1 and
3 : 1 regimes are associated with specific, narrow ranges of vortex shedding frequencies,
slightly lower than St, typically −2 %, and larger than St, around +7 %, in the former
and latter regimes, respectively. In the unlocked regime the shedding frequency is also
restrained to a limited range, with a typical deviation of −4 % relative to St. Prior studies
concerning forced oscillations have reported comparable deviations towards values lower
than St in the absence of synchronization (e.g. Cheng & Moretti 1991). This phenomenon
could be attributed to the larger apparent diameter of the body seen by the flow, when
the cylinder vibrates. A scaling by the effective transverse length covered by the body,
instead of D, results indeed in a reduction of the frequency but the values are lower than
those actually measured, for example, close to 0.85 St (−15 %) in the case depicted in
figure 3(i,j).

The system exhibits four distinct regimes characterized by different forms of
synchronized or unsynchronized interaction between the flow and the vibrating cylinder.
Each regime has been associated with typical properties of the structural response and
wake organization. Another facet of the interaction relates to fluid forcing, which is
addressed in the next subsection.
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Flow-induced vibrations of a cylinder along a circular arc

3.3. Fluid forcing
The description of the system behaviour establishes a close connection between the
emergence of vibrations and flow unsteadiness. A quasi-steady analysis of fluid forcing
where the effect of flow unsteadiness is neglected is presented in Appendix A. As
expected based on the above observations, this approach fails to predict body responses.
Some insights can however be obtained from this analysis, concerning, for instance, the
modification of the oscillator natural frequency, as discussed in the appendix.

Two elements of fluid forcing are examined in this subsection: the time-averaged in-line
force and its amplification once the body vibrates in § 3.3.1, and then, the tangential force,
its phasing with body motion and the associated energy transfer in § 3.3.2.

Some additional observations concerning the contributions of the in-line and cross-flow
forces to the tangential force are reported in Appendix B. Another complementary
aspect, which was documented in tethered body studies (Ryan et al. 2007), concerns
the appearance of a time-averaged component of the cross-flow force, when the cylinder
oscillates along an asymmetrical path. Both positive and negative values of C̄y are
measured across the reconfiguration area, with mainly negative values in the significant
vibration regions, down to a minimum close to −0.04. The magnitude of C̄y remains
limited compared with C̄x. This aspect will not be further investigated here.

3.3.1. Time-averaged in-line force
The time-averaged value of Cx across the (κ, U�) parameter space is represented in
figure 15(a). The range of C̄x values is indicated on the right axis of the colourbar and
the corresponding range of relative deviations from the fixed body case value (C̄ f

x = 1.32)
is specified on the left axis. The limits of the significant vibration regions and distinct
regime areas are denoted by white dashed and plain lines, respectively. The different zones
of the parameter space are identified as in figure 10. The cases considered in figure 3 are
localized by blue points.

The time-averaged drag exhibits a peak in region Ia, where the locked 1 : 1 regime is
established. The peak appears in the area of large path radii, with a shift towards positive
curvatures (concave configurations). In this region, C̄x is amplified by 55 % compared
with the fixed body case value. The location of the peak closely coincides with the peak
of vibration amplitude depicted in figure 6(b). Such a coincidence was often emphasized
in previous works (e.g. Khalak & Williamson 1999). To visualize this connection, the
deviation from the fixed body case value is plotted as a function of the curvilinear
displacement amplitude in figure 15(b). The significant vibration region limit is indicated
by a dark grey dashed line and distinct symbols are employed to designate the different
regimes (same colour code as in figure 9). The time-averaged in-line force is also enhanced
in the locked 2 : 1 and 3 : 1 regimes (regions II and IIIc), even though to a lesser extent,
typically around +6 % and +10 %, respectively. It can be noted that the amplification is
much less pronounced in the locked 3 : 1 regime than in the locked 1 : 1 regime (region
Ia), whereas the response amplitudes are comparable and even larger in the former regime.
In spite of the dispersion observed between the different regimes, it appears that for a
given locked regime, C̄x tends to globally increase with vibration amplitude. A slight
reduction, down to −5 %, is however encountered in some regions of low to moderate
vibration amplitudes in the locked 1 : 1 regime. A minor reduction of C̄x is also noted in
the unlocked regime.

The above observations indicate that C̄x alteration is not strictly determined by the
response amplitude. It should be mentioned that the dispersion persists if the cross-flow
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Figure 15. (a) Time-averaged value of the in-line force coefficient as a function of the signed curvature and
reduced velocity. The range of C̄x values is indicated on the right axis of the colourbar and the associated range
of relative deviations from the fixed body case value is specified on the left axis. White dashed lines delimit the
significant vibration regions and the areas associated with distinct regimes are separated by plain white lines;
the area names are those introduced in figure 10. The cases considered in figure 3 are identified by blue points.
(b) Relative deviation of the time-averaged value of the in-line force coefficient as a function of the curvilinear
displacement amplitude. A dark grey dashed line represents the threshold of the significant vibration regions.
Distinct symbols are employed to designate the interaction regimes, with the same colour code as in figure 9.
The areas of the significant vibration regions associated with each regime are indicated in the legend. Open blue
symbols, with the same shapes as those reported in the legend, represent the results issued from quasi-steady
modelling ((A2) in Appendix A).

projection of the displacement is considered, instead of ζ . Prior studies have shown that
the response frequency may also play a role (e.g. Carberry, Sheridan & Rockwell 2005).
Here, a slightly better collapse of C̄x can be achieved by considering the product of the
response amplitude and frequency, i.e. a typical velocity of the moving cylinder, or the
time-averaged relative velocity seen by the body.

For comparison purposes, the time-averaged values issued from the quasi-steady
modelling of Cx ((A2) in Appendix A), based on the structural responses obtained via
the unsteady simulation approach, are plotted in figure 15(b) (open blue symbols). The
quasi-steady modelling predicts an increase of C̄x with vibration magnitude, with lower
amplifications in the locked 2 : 1 and 3 : 1 regimes than in the locked 1 : 1 regime, as also
noted in the unsteady simulation results. The enhancement of the time-averaged force is
however not captured, as the maximum amplification only reaches +10 % compared with
the fixed body case value.

3.3.2. Tangential force, phasing with displacement and energy transfer
The reconfiguration of the oscillator in the locked 1 : 1, locked 2 : 1 and unlocked regimes
is accompanied by the emergence of a time-averaged component of the tangential force,
which vanishes otherwise. In the locked regimes the tangential force is periodic and
synchronized with body motion/flow unsteadiness. Several components may arise in its
spectrum but they are all harmonics of the vibration frequency fζ , which represents
the fundamental component. Only odd harmonics are encountered when the cylinder
vibrates along a symmetrical path. In particular, the projection of the in-line force,
which is composed of even harmonics, on the tangential direction (2.1), results in odd
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Flow-induced vibrations of a cylinder along a circular arc

harmonics only. Both odd and even harmonics appear once path symmetry is broken by
the reconfiguration. The higher harmonic contributions represent a moderate fraction of
the first harmonic magnitude in the locked 1 : 1 regime, typically around 20 %, except
near the force–displacement phase difference jump where the first harmonic vanishes and
the relative magnitude of the higher harmonics is consequently very large; this point will
be discussed later in this subsection. They represent a significant fraction of the first
harmonic magnitude in the locked 2 : 1 regime, around 70 %, and are even larger in the
locked 3 : 1 regime, from 2 to 10 times the first harmonic magnitude. In the unlocked
regime both vibration and flow frequency components, which are incommensurable,
appear in the spectrum of the aperiodic tangential force, as well as their higher harmonics.
The higher harmonic contributions are small in this regime, typically lower than 5 %
of the fundamental component magnitudes. These different elements are visualized in
figure 3, where the time series of C and corresponding spectra are plotted for each
selected case.

The statistics of the tangential force are further examined in figure 16. The r.m.s. value
of C fluctuation and its relative deviation from the r.m.s. value of Cy fluctuation in the
fixed body case ((C̃ f

y )rms = 0.23) are represented over the parameter space in figure 16(a).
The cross-flow force coefficient is chosen as reference since C = ±Cy in the absence of
vibration and reconfiguration. A major amplification of the tangential force fluctuation is
observed in all the significant vibration regions (delimited by white dashed lines), not only
in the locked regimes but also in the unlocked regime (regions Ib and IIIb). Peak values
are encountered in region Ia (locked 1 : 1 regime), where the fluctuation may become
six times larger than in the fixed body case. They occur for convex configurations and
do not coincide with the peak of the time-averaged drag identified in figure 15(a). A
complementary visualization is proposed in figure 16(b) where the deviation from the
fixed body case value is plotted as a function of the vibration frequency, normalized
by the natural frequency of the oscillator in vacuum. This plot depicts more precisely
the typical ranges of force fluctuations associated with the different regimes: a wide
dispersion in the locked 1 : 1 and unlocked regimes where the deviation ranges from
−100 % to 650 % and from 0 % to 250 %, respectively, a narrower dispersion in the locked
2 : 1 regime, from 150 % to 300 %, and a concentration around 300 % in the locked 3 : 1
regime.

Figure 16(b) shows that the vibration frequency crosses the natural frequency of the
oscillator in vacuum in the locked 1 : 1 and locked 3 : 1 regimes, while it remains larger
than fn in the locked 2 : 1 and unlocked regimes. The frequency ratio fζ /fn is closely
linked to the phasing between force and displacement, and to the relative contributions
of the different harmonics in the force spectrum (e.g. Gsell, Bourguet & Braza 2016). The
phase difference between the components of C and ζ occurring at the dominant vibration
frequency fζ is denoted by ϕ. For periodic responses in the absence of structural damping,
the system may exhibit two possible states where the force is either in phase with the
displacement (ϕ = 0◦), when fζ < fn, or in phase opposition (ϕ = 180◦), when fζ > fn.
The phase difference jump occurring during the transition between these two states is
accompanied by the disappearance of the force component at vibration frequency. Such a
binary behaviour is verified in the three locked regimes, which are periodic: both phasing
states are encountered in the locked 1 : 1 and locked 3 : 1 regimes, and ϕ = 180◦ in the
locked 2 : 1 regime. In the aperiodic, unlocked regime the phase difference is always equal
to 180◦, as illustrated in figure 3(i).

The locations of the force–displacement phase difference jumps as well as the values
of the phase difference are indicated in the map of figure 16(a). A jump crosses the area
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Figure 16. (a) Same as figure 15(a) for the r.m.s. value of the tangential force coefficient fluctuation and
its relative deviation from the r.m.s. value of Cy fluctuation in the fixed body case. The values of the
force–displacement phase difference (ϕ = 0◦ or ϕ = 180◦) are specified in grey and grey dotted lines denote the
phase difference jumps. (b) Relative deviation of the r.m.s. value of the tangential force coefficient fluctuation
as a function of the vibration frequency normalized by the natural frequency in vacuum. A grey dashed-dotted
line denotes the frequency ratio of 1. The values of the force–displacement phase difference are indicated on
each side of this line. Distinct symbols are employed to designate the interaction regimes, with the same colour
code as in figure 9. The areas of the significant vibration regions associated with each regime are mentioned in
the legend. A light green area delimited by green dotted lines depicts the drop of force fluctuation amplitude
occurring close to the phase difference jump in the locked 1 : 1 regime. Open red triangular symbols represent
the contribution of the first harmonic of the force (i.e. at fζ ) in the locked 3 : 1 regime. Part of the parameter
space is shown to ease visualization of the phase difference jump region.

of the parameter space associated with the locked 1 : 1 regime and another delineates a
small portion of region IIIc, associated with the locked 3 : 1 regime, where force and
displacement are in phase. In figure 16(a) a drop in the magnitude of the tangential
force fluctuation can be noted near the phase difference jump in the locked 1 : 1 regime,
especially in region Ia close to κ = 0. In contrast, no drop appears in region IIIc, in the
locked 3 : 1 regime. These distinct behaviours are visualized in figure 16(b), where the
frequency ratio of 1, which coincides with the phase difference jumps, is denoted by a grey
dashed-dotted line; the values of ϕ are specified on each side of this line. The contrasted
trends noted in the locked 1 : 1 and locked 3 : 1 regimes are connected to the relative
contributions of the higher harmonics in force fluctuation. In the locked 1 : 1 regime, even
if higher harmonics exist in the force spectrum, their magnitudes remain small and the
first harmonic (fundamental component at fζ ) generally dominates. Therefore, when the
first harmonic contribution decreases near the phase difference jump, the magnitude of
force fluctuation also drops. This drop is depicted by the light green area in figure 16(b).
In the locked 3 : 1 regime the contributions of the higher harmonics dominate. This is
emphasized in figure 16(b), where the contribution of the first harmonic is indicated by
open red triangular symbols. The first harmonic contribution indeed vanishes near fζ = fn,
but its evolution has only a negligible impact on the force fluctuation magnitude, which
does not substantially change during the jump of the force–displacement phase difference.

The energy transfer between the flow and the moving cylinder is quantified by the power
coefficient e = Cζ̇ , as previously defined. The time series and spectra of e in figure 3
illustrate the typical evolutions observed in the different interaction regimes. In the time
series the intervals over which the flow excites/damps body motion, i.e. positive/negative
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Flow-induced vibrations of a cylinder along a circular arc

values of e, are denoted by yellow/grey areas. For regular vibrations, as those reported here
and in the absence of structural damping, the time-averaged power coefficient vanishes.
More precisely, the power coefficient averaged over one oscillation cycle is equal to
zero in the locked regimes (periodic responses). Zero averaged energy transfer is only
reached over a number of oscillation cycles in the unlocked regime (aperiodic responses).
As expected from its definition, the spectrum of e is composed of even harmonics of
the fundamental vibration component (fζ ) in the locked regimes without reconfiguration,
essentially the second and fourth harmonics in the present cases (figure 3b,h). Odd and
even harmonics participate in the energy transfer after reconfiguration (figure 3d, f ). In
the unlocked regime the spectral components occur at 2fζ , 2fv , fv ± fζ , and other linear
combinations of the fundamental components of body response and flow unsteadiness
(figure 3j). Once the permanent behaviour of the system is reached, except for large
radii close to the rectilinear path configuration, the energy transfer is dominated by the
contribution of the time-averaged in-line force, C̄xζ̇x, where ζ̇x = −ζ̇ sin(θ + θ0) is the
in-line projection of body velocity (the contributions of the in-line and cross-flow forces
to the tangential force are discussed in Appendix B). This explains why body excitation
tends to occur at a comparable phase of the oscillation cycle, i.e. when the body moves
downstream, regardless of the interaction regime at play.

This subsection has shed some light on the general properties of fluid forces and
emphasized specific features associated with each regime, concerning their amplification,
frequency content and phasing. The principal findings of this work are summarized in the
next section.

4. Conclusion

The vibrations of an elastically mounted circular cylinder, free to move along a circular
arc under the effect of a cross-current, have been examined at Re = 100 on the basis of
numerical simulation results. The impact of trajectory curvature on the flow–body system
behaviour has been explored over a wide parameter space, by considering, for the concave
and convex configurations, path radii ranging from 0.05 to 10 body diameters and reduced
velocity values up to 30.

The cylinder is found to vibrate across the entire parameter space investigated. Path
curvature results in a major alteration of the VIV observed for rectilinear displacements
and in the emergence of novel interaction regimes. Substantially different evolutions
are noted in the concave and convex configurations. Rectilinear VIV are driven by a
synchronization mechanism where the frequency of body motion coincides with the
frequency of flow unsteadiness associated with vortex shedding. In spite of the distortion
of the structural response shape, this lock-in mechanism persists over a range of U�

values, for all path radii in both configurations. In addition to this harmonic mechanism,
two subharmonic forms of synchronization, at half and one third of flow unsteadiness
frequency, are uncovered in the convex configuration, in the range of low path radii. The
three synchronized regimes, named locked 1 : 1, 2 : 1 and 3 : 1 regimes in reference to the
flow/body frequency ratio, coexist with a desynchronized regime where the body and the
flow oscillate at incommensurable frequencies. This regime, called the unlocked regime,
appears in the higher-U� range in both configurations.

The main characteristics of the four interaction regimes are gathered in table 1 and
some salient elements are summarized in the following. The three locked regimes exhibit
contrasted properties but they share a common feature that is the periodic nature of the
system behaviour, as opposed to the aperiodic dynamics observed in the unlocked regime.
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In the convex configuration, due to mean fluid forcing, the oscillator may be subjected
to a reconfiguration (abbreviated as reconf. in the table), i.e. a shift of the time-averaged
displacement from the equilibrium position in quiescent fluid. A reconfiguration breaks the
cross-flow symmetry of the system since it introduces an asymmetry in cylinder trajectory.
It is thus closely connected to the different symmetry properties of the system behaviour.
The locked 1 : 1 and unlocked regimes develop both with or without reconfiguration,
while the locked 2 : 1 regime always arises for a reconfigured arrangement. The locked
3 : 1 regime occurs in the reconfiguration region of the parameter space but the oscillator
is found to recover its quiescent-fluid position, a phenomenon referred to as symmetry
recovery (symmetry recov. in the table).

A wide range of vibration amplitudes is encountered in the locked 1 : 1 regime. The
other regimes are associated with more specific amplitude ranges. The largest amplitudes
of curvilinear displacement, with a peak value of 0.58 body diameters, are measured in the
locked 3 : 1 regime. The vibration frequency crosses the natural frequency of the oscillator
in vacuum in the locked 1 : 1 and locked 3 : 1 regimes, which corresponds to a jump in
force–displacement phase difference. The vibration frequency remains larger than fn in the
locked 2 : 1 and unlocked regimes. After reconfiguration, the structural response presents
an asymmetry that is reflected by the emergence of even harmonic components in vibration
spectra, as typically observed in the locked 2 : 1 regime.

The flow patterns reported in the different interaction regimes are essentially variations
about the von Kármán street occurring in the fixed body configuration, with, in the
locked regimes, an integer number of alternating vortex pairs formed per oscillation
cycle. The anti-symmetrical organization of the wake is however perturbed when the body
vibrates about a reconfigured position and in the unlocked regime. The different regimes
are characterized by distinct deviations from the Strouhal frequency. They also exhibit
contrasted trends in terms of fluid forcing, in particular concerning force amplification,
illustrated by mean drag alteration in table 1, and regarding the contributions of the
higher harmonic components, which are found to become prominent in the subharmonic
synchronization regimes.
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Appendix A. Quasi-steady modelling of fluid forcing

Assuming a decoupling of the flow and moving cylinder time scales, a quasi-steady model
of the tangential force can be obtained by considering the projection of the time-averaged
force aligned with the relative velocity seen by the body. This time-averaged force can
be expressed as the time-averaged in-line force coefficient in the fixed body case (C̄ f

x ),
modulated by the squared magnitude of the relative velocity. The components of the
relative velocity, normal and tangential to the trajectory of the cylinder located at an angle
θ with a velocity ζ̇ , are equal to Vn = cos(θ + θ0) and Vt = ζ̇ + sin(θ + θ0), respectively.
The angle β between the relative velocity and the tangential direction satisfies tan(β) =
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Flow-induced vibrations of a cylinder along a circular arc

Regime name locked 1 : 1 locked 2 : 1 locked 3 : 1 unlocked

(flow–body
synchronization and
frequency ratio if locked)

Parameter space

- Configuration concave/convex convex convex concave/convex

- Path radius (≤10) all ≈0.17 ≈0.1 >0.07

- Reduced velocity (≤30) all 17–26 15–23 >9

System behaviour

- Periodicity periodic periodic periodic aperiodic

- Reconfiguration possible always symmetry recov. possible

Structural vibration

- Amplitude 0–0.56 ≈0.3 ≈0.5, peak 0.58 ≈0.1

- Frequency <fn or >fn >fn <fn or >fn >fn

- Cross-flow symmetry yes/no (reconf.) no yes no

Flow physics

- Vortices per cycle 1 pair 2 pairs 3 pairs/2 triplets 2.2–2.8

- Pattern anti-symmetry yes/no (reconf.) no yes no

- Deviation from St −25% to +20% −2% +7% −4%

Fluid forcing

- Time-averaged drag −5% to +55% +6% +10% slight reduction

- Force-disp. phasing 0◦ or 180◦ 180◦ 0◦ or 180◦ 180◦

- Higher harmonics moderate large very large small

Table 1. Principal properties of the different regimes identified in this work.
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Figure 17. (a) Quasi-steady modelling of the tangential force coefficient (A1b) as a function of the angular
position and curvilinear velocity of the body. Plain lines represent the evolutions of the position and
velocity issued from the unsteady simulations for three selected cases, (r, κ, U�) = (0.5, 2, 6.5) (locked 1 : 1
regime), (r, κ, U�) = (0.175, −5.714, 22) (locked 2 : 1 regime) and (r, κ, U�) = (0.111, −9.001, 20) (locked
3 : 1 regime). (b) Tangential force coefficients issued from the unsteady simulations (dotted lines) and
quasi-steady modelling (plain lines), as functions of the angular position, for the three selected cases depicted
in panel (a).

Vn/Vt. A quasi-steady model of C, identified by the superscript qs, can be expressed as

Cqs = −C̄ f
x (V2

n + V2
t ) cos (β) (A1a)

= −C̄ f
x

(
ζ̇ + sin (θ + θ0)

) √
ζ̇ 2 + 2ζ̇ sin (θ + θ0) + 1. (A1b)

The value of C̄ f
x depends on the Reynolds number associated with the relative velocity

magnitude, which ranges from 73 to 133 across the parameter space, based on the unsteady
simulation results. Over this range, C̄ f

x exhibits a slightly decreasing trend, from 1.35 to
1.31, which is taken into account in the subsequent analysis. The quasi-steady model of C
is expressed in terms of the angular displacement and curvilinear velocity, i.e. θ and ζ̇ , as
path radius (r) vanishes in this formulation and the different cases can thus be visualized
on a single map. The evolution of Cqs as a function of θ + θ0 and ζ̇ is represented in
figure 17(a). A comparison of Cqs and C is proposed in figure 17(b), where the force
coefficients are plotted as functions of θ + θ0 for three selected cases, representative of
the three locked regimes. The value of Cqs is based on (A1b) where θ and ζ̇ , depicted
in figure 17(a) for each selected case, are issued from the unsteady simulations. Some
significant deviations can be noted but it appears that the global trends of C are roughly
captured by the quasi-steady model.

A comparable quasi-steady model can be derived for the in-line force coefficient, i.e.

Cqs
x = C̄ f

x
(
ζ̇ sin (θ + θ0) + 1

)√
ζ̇ 2 + 2ζ̇ sin (θ + θ0) + 1. (A2)
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Flow-induced vibrations of a cylinder along a circular arc

The time-averaged values of Cqs
x , where θ and ζ̇ are issued from the unsteady simulations,

are compared with C̄x in figure 15(b), for all studied cases (open blue symbols). The
quasi-steady approach predicts that the time-averaged in-line force increases once the body
vibrates, yet the magnitude of force amplification is not captured.

To further assess the validity of the quasi-steady modelling, additional simulations
where the force coefficient C on the right-hand side of the dynamics equation ((2.2) in
§ 2.1), originally issued from the unsteady flow simulation, is replaced by Cqs have been
carried out across the parameter space. No vibration is predicted based on the quasi-steady
approach. Such discrepancies are expected in the locked regime regions, since flow–body
synchronization is not taken into account in the quasi-steady model. They also suggest that
the interaction with flow unsteadiness is important in the unlocked regime.

In spite of the above mentioned discrepancies, some insights can be gained from the
quasi-steady modelling of the tangential force. A first-order approximation of Cqs, about
an arbitrary position θa and for a small curvilinear velocity, can be expressed as

Cqs (
θ ≈ θa; ζ̇ ≈ 0

) ≈ −C̄ f
x sin (θa + θ0) (A3a)

− C̄ f
x cos (θa + θ0) (θ − θa) (A3b)

−
[

C̄ f
x (sin2(θa + θ0) + 1) + Re

dC̄ f
x

dRe
sin2 (θa + θ0)

]
ζ̇ . (A3c)

The first term on the right-hand side (A3a) corresponds to the right-hand side of the
static equation employed to predict the equilibrium position (θeq) and its possible shift
due to the mean in-line force ((3.1) in § 3.1.1). The second term (A3b) is used to derive
a modified natural frequency taking into account the effect of the time-averaged force for
θa = θeq ((3.3) in § 3.1.3). The magnitude of the negative gradient of C̄ f

x relative to Re is
small (−7 × 10−4 at Re = 100) and the term in square brackets on the third line (A3c)
remains positive. It acts as a damping term through which the force tends to oppose body
motion. This suggests that no vibration should develop. As previously noted, such a stable
behaviour is indeed observed when C is replaced by Cqs in the dynamics equation.

Appendix B. Contributions of the in-line and cross-flow forces to the tangential force

The tangential force coefficient defined in (2.1) combines contributions from the in-line
and cross-flow forces. For large radii of curvature in the absence of reconfiguration,
i.e. small θ , the contribution of the cross-flow force is expected to dominate and, thus, lead
to responses comparable to those encountered in the rectilinear path configuration. This
is actually observed, as illustrated by a comparison of figure 4(a) (rectilinear path) and
figure 4(b) (r = 10). Once the curvature magnitude is increased, the in-line force is also
expected to contribute to the tangential force. To examine the structure of the tangential
force, three distinct contributions are considered,

Dm = −C̄x sin (θ + θ0) , D = −Cx sin (θ + θ0) and L = Cy cos (θ + θ0) ,

(B1a–c)

which represent the mean in-line force contribution, the in-line force contribution and the
cross-flow force contribution, respectively. The symbols D and L are chosen in reference
to the drag and lift forces. This decomposition of the force is presented in figure 18(a,b)
for two typical cases of significant vibrations, a case of large radius of curvature and a
lower radius case. For each case, the time series of C, Dm, D and L are plotted together
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Figure 18. (a,b) Selected time series of the tangential force coefficient, time-averaged in-line force
contribution, in-line force contribution, cross-flow force contribution and angular displacement, for (a)
(r, κ, U�) = (10, −0.1, 5.5) (locked 1 : 1 regime) and (b) (r, κ, U�) = (0.111, −9.001, 20) (locked 3 : 1
regime). The time series are plotted over two periods of body oscillation. (c) Histogram of the error made
by estimating the tangential force coefficient by the time-averaged in-line force contribution (E(C,Dm)), as
a function of the curvature magnitude. The histogram is normalized by its peak value and the colour levels
range from 0 (black) to 1 (white). For comparison purposes, the error (location of histogram peak) made by
estimating the tangential force coefficient by the cross-flow force contribution (E(C,L)) is represented by a
white dashed line. The statistics are based on all the simulated cases where ζ̃max ≥ 0.05 (significant vibration
regions). The values of E(C,Dm) in the two cases visualized in (a,b) are indicated by a triangle and a point,
respectively.

with the time series of the angular displacement, over two oscillation periods. In the first
case, the tangential force is essentially determined by the cross-flow force contribution. In
contrast, C seems mainly driven by the in-line force contribution, more precisely by the
contribution of the mean in-line force, in the second case. This observation, reported here
for a typical example of the locked 3 : 1 regime, is verified regardless of the interaction
regime.

To further visualize the role of Dm for curved trajectories, a relative approximation error
of a signal s by ŝ is defined as E(s, ŝ) = (s − ŝ)rms/(s)rms, and the histogram of E(C,Dm),
gathering all the significant vibration cases (ζ̃max ≥ 0.05), is represented as a function
of the curvature magnitude in figure 18(c). The approximation errors for the two cases
depicted in figure 18(a,b) are indicated by a triangle and a point. The location of the
peak of E(C,L) histogram is also plotted, for comparison purposes. The approximation
errors associated with the mean in-line force and the cross-flow force contributions exhibit
opposite trends, with abrupt variations in the range of low curvature magnitudes. In
particular, E(C,Dm) rapidly drops between |κ| = 0.1 and |κ| = 0.3. Then, it remains at
relatively low levels throughout the curvature range investigated. Some modulations can
be noted but C appears to be principally governed by Dm, while the contribution of the
cross-flow force (L) plays only a minor role.
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