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Abstract

Maximum and minimum principles for capillary surface problems with
prescribed contact angle are derived in a unified manner from canonical
variational theory. The results are illustrated by calculations for a liquid in
a cylindrical container with circular cross-section.

1. Introduction

The nonlinear boundary value problem described by the equations

d i v {W(<f>) g r a d <f>} = <f> i n V, (1.1)
with

n.W(«£)grad(£ = cosy on B, (1.2)
where

(1.3)

arises in the determination of an equilibrium-free surface S of a liquid that partially
fills a cylindrical container under surface forceSj gravitational forces and boundary
adhesion (cf. Adams [1]). Here <f> = <f>(x,y) represents the height of the capillary
surface S, y is the angle of intersection of S and the cylindrical container (measured
interior to the hquid) and n is the outward unit normal field on the boundary B
of the cross-section V of the cylinder. For boundaries B of class C4 and y>0, it
has been shown (Spruck [3]) that a solution of the problem exists and is unique.
We shall suppose that these conditions are satisfied, and turn to the question of
effective methods of solving such problems.
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Because of its nonlinear form, the boundary value problem described by
equations (1.1)-(1.3) cannot be solved exactly. Approximate methods are therefore
required and in this paper we develop extremum principles which can be used as
a basis for variational methods of solution. Our approach employs the canonical
theory of complementary variational principles which leads to maximum and
minimum principles in a unified manner.

2. Hamiltonian formalism

Since we want to use a canonical approach, we set

W(O)gradO = U, (2.1)

and then equations (1.1)-(1.3) may be written in Hamiltonian form

= U(l-U.U)-* = - ^ in V, (2.2)

riff
-<D = | | inF, (2.3)

n.U = cosy on B. (2.4)

A suitable Hamiltonian H in equations (2.2) and (2.3) is given by

H(V, $) = - (1 - U. U)i - |O2. (2.5)

The exact solution of this problem in (2.2)-(2.4) will be denoted by (u, <f>). From
the form of these canonical equations we see that we are dealing with an example
of a quasilinear Neumann-type probem.

3. Variational principles

The Hamiltonian equations (2.2)-(2.4) can be given a variational description
if we introduce the associated canonical action integral (cf. Arthurs [2]):

/(U 0) = f {U.g[3id®-H(lJ,®)}dxdy- f Qcosyds (3.1)
Jv JB

= f {(-dv/U)$-HQJ,®)}dxdy+ f O(U-ncosy).n&. (3.1)
Jv JB
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This is defined for spaces Qu and Q^ of continuously differentiable square-
integrable functions U and O and to keep H real we impose the further condition
onU

U.U<1, (3.3)

which is satisfied by the exact function u (see equation (2.1)). This action is stationary
at the exact solution (u,<f>) of equations (2.2)-(2.5).

To go further and obtain extremum principles we define two subsets of

(3.4)

and

Q2 = {(u2, ^2): d i v U 2 = $2 m v, n. 112 = cos y on E). (3.5)

These subsets intersect at the exact solution (u,<£) of the problem in (2.2) to (2.5).
Using the action and these two subsets we can define functionals J and G by

setting
/(^1) = /(u1)^1) via (3.1), with K , ^ in Qa, (3.6)

and

6(112) =/(u.,,^) via (3.2), with (112,̂ 2) in Q2- (3.7)

These lead to the expressions

• W = f {(1 +|grad&|2)i + ̂ f}<fr</j>- f facosyds (3.8)
jr JB

and

GCoa) = [ {(I-Uz.uji-Kdivuj^dxdy. (3.9)

It follows from these definitions that/(<£i) is stationary at <f> and G(v^) is stationary
at u. In addition we find that

- [H(u, fo - H(a, <f>) - ( ^ - <f>) dH/dffl dx dy (3.10)
and

G(u) - G(U2) = L ( ^ ( « 2 . <f>) - H(u, <f>) - (ua - u) . dH/da

(3.11)

Now the Hamiltonian H(\J, O) in (2.5) is convex in U for all functions U such that

l - U . U > 0 , (3.12)
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and strictly concave in $ for all functions O. Since u^fa) = W(<f>J grad fa auto-
matically satisfies (3.12), the expression (3.10) gives the global minimum principle

J(<f>)^J(fa). (3.13)

Also, if we impose condition (3.12) on u^, that is

expression (3.1!) gives the global maximum principle

G(u). (3.15)

Combining (3.13) and (3.15) we therefore obtain the global complementary
variational principles

G(U2) < G(u) = J(u, $) = JtfXJifo, (3.16)

equality holding when fa = <f> and u2 = n. The minimum principle for / in (3.16) is
just the Euler-Lagrange extremum principle for problems described by (1.1)—(1.3),
while the complementary maximum principle for G appears to be new.

4. Example

To illustrate these results we take the case of a liquid in a cylindrical container
with circular cross-section of radius one. We select two vectors (u^ fa) and (u2, ̂ 2)
in Qx and Q2 respectively:

and

fa = a^+a^+^+a^, 0<r^ 1, (4.1)

(4.2)

ncosy(ar+ 2lbkr
k+1\, 0 < r ^ l , (4.3)

I fc=i )
in V, (4.4)

where

In choosing these functions we have imposed extra symmetry properties, namely,
grad <£i = 0 and u2 = 0 at r = 0, which are satisfied by the exact functions <f> and u.
There are eight parameters which are optimised by minimizing J and maximizing G.
Taking the contact angle y equal to 77/3 we have carried out the optimization and
the resulting parameters are given in Table 1.
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The closeness of the functional J and G indicates that, in terms of the action

metric, the variational solution (4.1) provides an accurate representation of the

capillary surface S of the liquid in this case.

TABLE l
Variational parameters for y = v/3

0.886961 0.148485 0.108400 -0.013280 1.37425

0.104994 -0.038556 0.070206 0.006850
G

1.37413
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