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Abstract

For the (d + 1)-dimensional Lie group G = Zj Zj‘,’d, we determine through the use of p-power

congruences a necessary and sufficient set of conditions whereby a collection of abelian L-functions
arises from an element in K{(Z,[G]). If E is a semistable elliptic curve over Q, these abelian
L-functions already exist; therefore, one can obtain many new families of higher order p-adic
congruences. The first layer congruences are then verified computationally in a variety of cases.
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1. Introduction

Fix a prime p # 2 and a positive integer d. We also choose p-power free integers
Ay, ...,A; > 1 which are pairwise coprime, and write A for the product ]—[?:1 A;. The
d-fold false Tate curve tower

d 1/p" 1/p"
Q0 = J QU AV A
nx1

is normal over Q and has the structure of a (d + 1)-dimensional p-adic Lie extension.
Its Galois group is isomorphic to the semidirect product

G = Gal(Q, /Q) = T, x HY,

where Hf)f) is a free Z,-module of rank d, and X, = Gal(Q(u,~)/Q) acts on Hﬁf)
through the cyclotomic character. The Iwasawa algebra Z, [[Gg)]] is then given by the
projective limit liilp Z, [GY/P], where the inverse system of the P range over normal

subgroups of finite index in G?.
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For a ring R, we denote by K (R) its first algebraic K-group, in the sense of Milnor.
There are three main objectives in this article:

(I)  to describe the structure of K{(Z, [[Gfﬁ,l)]]) via p-power congruences;
(IT) to work out these congruences for a family of abelian p-adic L-functions;
(IIT) to numerically verify the predicted congruences in some explicit examples.

We should point out that (I) is already fully solved when d = 1 thanks to the results of
Kato [11], so our theorems here generalise his method to the d > 1 situation. There
already exists a large body of work due to Kakde, Hara, Ritter and Weiss [4, 9, 10, 16]
devoted to the study of nonabelian Iwasawa Main Conjectures. The extensions we are
considering differ from the ‘admissible extensions’ in [4] in two important ways:

(a) the full Lie extension ij)A is not a union of totally real fields;

(b) there is no subfield L C in?A such that L/Q is pro-p of dimension d + 1.

Part (a) obstructs the formulation of an Iwasawa Main Conjecture, as nobody has yet
constructed abelian p-adic L-functions in this setting. Part (b) is not so serious.

Another point of departure from [4] is that the congruences derived by Kakde, Hara,
Ritter and Weiss are described in terms of ideals inside completed group algebras,
whereas the congruences derived here (and by Kato in [11]) are p-adic in flavour.
While both approaches ultimately yield necessary and sufficient conditions, in terms
of checking congruences via a computer program, the latter is the only one that can be
easily implemented (and, even then, numerous computational headaches arise).

REMARKS.

(i) As no Main Conjecture can be formulated over in)A for Tate motives, the next
obvious place to look for examples is from the theory of elliptic curves. If
U™ = Gal(Q(up~)/Q(u,m)), then sequences of p-adic L-functions belonging to
the algebras Z,[U"][p~'] have already been constructed in [1, 5-7].

(i) Some weak congruences were established under technical hypotheses in [1, 5-7],
inspired by the numerical evidence of the Dokchitser brothers [8].

Following the seminal work of Kakde [4, 10], there is now a precise recipe that, in
principle, allows one to describe K;(—) of a noncommutative Iwasawa algebra. To
construct theta-maps, one needs a ‘dense enough’ family of subgroups for G2, In
Section 4 we build homomorphisms

O : K\(Z,[GL]) — K\(Z,[U™ x HL /p™]) ateach m >0,

by applying the appropriate norm map and then quotienting out the commutator. Given
any multiplicative character y : HY > C; of finite order p” with v < m, one next forms
the composition

X 00 Ki(Z,[G2]) — Ki(Oc, [U™]) = Oc, [U™]*.
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As we shall see subsequently in Sections 2 and 4, the coefficient ring for the image of
X © 6, is in fact Z,,, and the homomorphism y o 6,, depends only on J = Ker(y). We
therefore relabel y o 6,, simply with 6.

NOTATION.

(a) Letus denote by Z the finite set of subgroups J < H? such that the quotient
group H? /T is cyclic of order p*, and set Zo, = Uvso zv.

(b) If J =Ker(y) for a character y on Hfg), we write j: for the subgroup Ker( x?).

(c) The full theta-mapping then refers to the collection of homomorphisms
HJ €Zw O

For a fixed x € K1(Z, [[Gg)]]) and a subgroup J € ZY, each element ayq = 0(x)
belongs inside Z,[U W]*. One can then turn the situation on its head, by asking the
following question.

Question. Given a collection of the a, 4, under what conditions does there exist a
global element x € K,(Z,[G?]) such that a, & = 65(x) at each J?

If d =1, Kato provided a complete answer in [11, Section 3] by using p-power
congruences. For the case d > 1, we shall adopt a hybrid approach, mixing together
his original p-adic method with the powerful logarithmic techniques in [9, 10, 16].

First, we need some notation. For each m > 0, let¢ : Z,[U™] — Z,[U"*] denote
the extension of the p-power map on U?. Secondly, if v < m, we shall write

Ny : Z,JUV] — Z,[U™]

to indicate the norm map on algebras, induced from the natural inclusion U™ < U™,
Choose an integer m > 1. We introduce congruences (1.1),,, and (1.2),, as follows:

e  for a nontrivial cyclic subgroup (h) C HY /p™ of order p'®,

=l gezg), =l gezd,
b /p"HY Yeg/p"HS
(1. Dy
e similarly, at the trivial subgroup,
m
[TT] M)’ =1 mod pr+D, (1.2),,

=l gez¥
where, for each J € Z(O‘Q), one defines

(g = av,j/NO,v(ao,Hg)) X@o NO,V—](a()’Hg’l))/So(av_]’i)'

https://doi.org/10.1017/51446788714000445 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788714000445

4 D. Delbourgo and L. Peters [4]

The following statement constitutes the main algebraic result derived in this article.

Tueorem 1.1. A collection of elements ag = a, g € Z,[UV]* lies in the image of
K(Z, ﬂGg)ﬂ) under the theta-map if and only if, for all positive integers m:

(i)  the congruence (1.1),,, holds at each nontrivial cyclic subgroup (h) C H?/ P’
(i1) the congruence (1.2),, holds.

Furthermore, the kernel of the theta-map is trivial, that is, [ 65 is an injection.

There is a localised version of this theorem, which works in the following manner.
Let S denote a canonical Ore set in the sense of [13]. Then a necessary set of
conditions for a system of a, q € Z,,[[U(V)]]f;J to lie in the image of K;(Z,[G]s)
under the S-localisation of the theta-map [] 6 is that the associated cq satisfy the
congruences (1.1),,5 and (1.2),, form > 1.

ConsecTurE 1.2. The family of congruences (1.1),,, and (1.2),, is also sufficient to

determine whether the elements a, 5 € Z,[U (")]]gj arise from K(Z,[G¥] s).

As has already occurred with the d = 1 situation studied in [11], we have been
unable to establish the sufficiency of these p-power congruences, and unfortunately
the conjecture remains unresolved at this point (though almost certainly it is true).

For a fixed value of d > 1, the number of cyclic subgroups of Hf:,l)/ p" is of type
O(p™=1), so the system of congruences to be checked will grow rapidly with m.
However, if d = 1, the system of congruences grows only linearly as a function of m.
If d = 2, then we are dealing with the three-dimensional Lie group G? = Zj < Zf,, and
the result below has some surprising implications for Hasse—Weil L-functions.

CoroLLARY 1.3. Ifd =2 and m = 1, then (].]),,1_9 and (1.2),, are equivalent to:
@) (aiw)? = Noi(ag y)” mod p?; and
(i) [lgpo.q-p(@15)" = NO,I(“O,H&‘))F(FH) mod p3, respectively.

Suppose that E denotes an elliptic curve defined over Q, and let p # 2 be a prime of
good ordinary reduction. The Hecke polynomial of E at p factorises into

X*—a,(E)X+p=(X-u)(X-w), whereue Zy and w = p/u.

We shall write Q. € R and Q. € V-1 - R for the real and imaginary periods associated
to a minimal Weierstrass equation for E over the integers.

DeriniTioN 1.4. Given an Artin representation 7 : Gf,‘;l) — GL(V) of conductor f,, one
defines the algebraic L-value associated to h'(E) ® 7 through

Lv{pé(E, T, 1) Lp(T*a uil)

i . e (T) - —ord, (i)
(Qz)dlm(ﬁ)(gg)dlm(r*) »(7) L,(x, w1)

’

Lea(r) =

which is Q(7)-rational by a result of Bouganis and Dokchitser [2, Theorem 4.2].
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Henceforth, assume that E is semistable, that its conductor Ng is coprime to A and
fix an embedding ¢, : Q = Q,,. The next statement modifies [6, Theorem 1.1].

Tueorem 1.5. Each character y : HYD - Hp — C* extends uniquely to the group
Go,y) and there exists an element Ly(E,J) € Z,[UY][p~'], with T = T (x,v) :=
Ker( y), satisfying

U(Lp(E, T = ,(LeaW ®Ind3, (X))
at all finite order characters y : UY) — CX,

Note that every Artin representation 7 which factors through the Galois group G9
can be decomposed into a direct sum of the ¢ ® Ind( y), each of which is irreducible
(see [17, Section 8.2] for a nice discussion of this).

Remark. For simplicity, we now consider the case d = 2; over the first layer m = 1,
Gal(Qup, A7, A)")/Qwy)) = HS [p = F, @ F,.

If we define xa, : Gg - Gal(Q(up, A;"")/Qu,)) - u, by sending o - o(A[)/AL?,

the characters {,\/2l XIAQ | s,t € Z} form a basis of the dual Hom(Hg) /p, @). Moreover,

. .« . t . . . L Q t .
each individual )(Z] Xy, 18 anticyclotomic, so that Py xh, = Inde)(Xil XAz) will be
realisable over the rationals and thus LE,A(p)(Z v.)E Q.

- 1 2

ProposiTioN 1.6. If the family of elements {L,(E,J)}g belongs to []04(K, (Z,,[[Gg)]]s)),
their constant terms satisfy first layer congruences:

p-2
LGy, X ]_[LEA(wf)-P =1 mod p* fortef0,....p—1}, (L6.1)
j=0
p-2
Lealpy,) % [ [ Lea@)? =1 mod p*  and (1.6.2)
j=0

p-1 p P2 A
(Lot x [ [ Leater )] x| [Lea@) =1 mod p. (163
t=0 Jj=0

The congruences (1.6.1)—(1.6.3) follow directly from Corollary 1.3 and
Theorem 1.5, upon evaluating the p-adic avatars a5 = L,(E, J) at the trivial
character ¢ = 1.

By undertaking various computer calculations, we have numerically verified them
for the following elliptic curves and parameter choices:

e the elliptic curve E = 11A3, the prime p = 3 and (A, A) in the list

(2,5), @7, (2,13), (2,17, (2,19, (2,23), (2,31), (2,37),
2,41, (,7, (5,13), 6,17, (5,19), (5,23), (7,13), (7,17);
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e the elliptic curve E = 77C1, the prime p = 3 and (A}, A;) in the list
(2,5), (2,13), (5.13);

the elliptic curve E = 19A3, the prime p =5 and (A}, Ay) = (2,3);
the elliptic curve E = 56A1, the prime p = 5 and (A, Ay) = (2, 3).

The L-values themselves are calculated in Section 6 using the MAGMA package. We
should point out that the LSeries routine can take a very long time to run, especially if
the conductor of the motive h!'(E) ® p is large; in total these four examples represent
six months worth of computation. Moreover, we did not find any situations where the
congruences failed to hold, within the limitations of our search range.

Here is a brief plan of the article. In Sections 2 and 3 we define the additive version
of the theta-map, and describe its image fully using trace relations. Then in Section 4
we follow the method of Kakde et al., relating the multiplicative and additive worlds
via the Taylor—Oliver logarithm. The proof of Theorem 1.1 is completed in Section 5.
Lastly, Section 6 focuses on applications to L-functions of modular elliptic curves, in
particular the verification of (1.6.1)—(1.6.3) for the examples mentioned above, as well
as the proofs of Theorem 1.5 and Proposition 1.6.

2. The combinatorics of Gg)-representations

Throughout, we adopt the convention that (1 + p°Z)/(1 + p"Z) indicates the group
(Z/p"Z)*. Let us consider the finite semidirect products

G = (Z/p"Zy = (Z/p"2)* =%, < HP say,

where d > 1 is a fixed integer. Consequently, G(D‘j) = lim_, Gﬁld) and Hfg) =~

HY.

In particular, an element o € £, acts on H,(ld) (through conjugation) by sending
(hi,....hg) = (0 X hy,...,0 %X hg). Furthermore, every element g € G,(ld) can be
uniquely expressed as

lim__,

g=0-h forsomeoeX,andhe H?.

Strictly speaking, the true binary operation on H,(fl) = (Z/p"Z)® should be ‘+’;
however, we often switch notation between + and the standard group multiplication
on G, provided the context is clear.

We start by discussing some basic representation theory of the finite group Gﬁ,d). For
an element « € (Z/p"Z)®?, consider the associated character Xa: Hﬁld) —> C* given by

d
2n VI
Xa(his ... ha) :=exp( 4 xzajhj) forall b = (hi, ..., hg) € HO.
=1

p

Note that every character on H,(,d) into C* has this form for an appropriate choice of a.

https://doi.org/10.1017/51446788714000445 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788714000445

[7] Higher order congruences amongst Hasse—Weil L-values 7

THEOREM 2.1.

() Ifx:H" - ., then Stabs,(x) = (1 + pZ)/(1 + p"Z).

(i1) Each character y extends to Stabs, (y) = H,gd) via the rule x"(o - h) = x(h).
(iii) All irreducible representations on Gﬁld) are of the form

p@ (. ) = Ind" ' ®v)
n ’ : Staby,, ()()KH,(,d) ’

where  : ¥, — C* is a multiplicative character.

(iv) Two representations pﬁld)( X, ¥) and pﬁld)( X', W) are isomorphic if and only if the

character ' lies in the T,-orbit of x, and ' agrees with y on Stabs, ().
Proor. Part (i) follows easily from the description of the stabiliser subgroup as
Stab, () = {0 € T, | xa(oho™") = xo(h) for all h € H?)
and the fact that )@(0’&0"1) = Xoo(h). Parts (ii)—(iv) are a corollary of [17,
Proposition 25]. O

Since the irreducible representations are already completely determined, let us now
compute the cardinalities of the various objects occurring in the theorem above.

ProrosiTION 2.2.

(@) In the previous notation, #Staby, (x) = ¢(p")/¢(p*) and dimc(p,({j)( X,¥) =
P(p).
(b) Fora fixed§, > 1, there are exactly

dfy — pdF=1) n
Hp € Rep(GY) | dime(p) = o(ph)) = Lo =P )X
T $(p)?

nonisomorphic irreducible representations pfld)( X> V) induced from the subgroup
(1+pM)/(1 + p'Z) =< H.

Proor. The statement (a) is an immediate consequence of the index formula

#2,

(d)
dimc(Ind®" t =[G : Stab H? = ———.
im¢(In (X' ®y) =[G, Staby, (x) < H,"] #Stabs ()

Stabg, (x)=<H

To show (b), let us first fix the exponent f,. Then the dimension of each induced
representation p must equal ¢(p'); furthermore,

d
by 2.1(v) #ichars x : HY - Hpic }

#reps of the form p,(fl)( X ) BT X #Stabs, (x)
by22@ (P! = (ph)?  p(p")
B $(p") $(ph)’
Note here that we have utilised the fact that the X,-orbit of a character y, with
order HO (@) = p'r coincides exactly with the set Yoo la € (Z/ pRZY*). O
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In order to calculate ranks for the group rings occurring in the additive theta-map,
we first need to calculate the rank (as a Z,-module) of its domain Z,[Con] (Gﬁ,d))].

Levvia 2.3. The Z,,-rank of Z,[Conj(G\")] equals

(d—Z)n_l d_l
p”‘lx(p x 2 +p—1) ifd >3,
p-1 " p-1
#Conj(G ) = p" I x (n(p+ D+ p—1) ifd=2,
-1
p +pn_pn—1 lfdzl.
p—1

Proor. Assuming initially that d > 1, the size of Conj(qud)) equals

M p10 ) X g(p")

n
#{irr. reps of Gﬁld), up to IM} by 22(0) #X, + Z (P

)2
ia $(p™)
P -1 X
= o x(1+ p-2eb)
(p—17 gg
X
The result then follows by summing up the geometric progression on the right,
according to the three cases d > 3,d =2 and d = 1. O
For each integer m < n, we now define a normal subgroup of fo) =2, x H,(,d) by
taking
:: 1+ p"Z < B
"1+ pZ "
Lemma 2.4.

(1)  The commutator subgroup [S,,, S,,] equals (H,(,d))”m.
=ab _

(i) Each quotient group C%) = G,,/[S,, S,] is isomorphic to the product
(1+ p"Z)/(1 + p"Z) x HY.

Proor. Note that 1 + p™ € X, acts trivially on the quotient H,(,f) = H,(,d)/ (H,(ld))l’m;
therefore, S,,/(H)" = (1 + p"Z)/(1 + p"Z) < H? is actually a direct product and
so must be abelian; it follows that [S,,, S,] € (HD)?".

However, if this were to be a strict inclusion, Hﬁld) /1S, S,,] would contain an
element by’ of order p™*!. The action of 1 + p™ on )’ would then be nontrivial, implying
that S,,/[S, S,,] is noncommutative, which is cl_early nonsense. O

By construction, the trace map Tr;w o - Z,,[Conj(G,(,d))] — Z,[Conj(S,,)] averages

a conjugacy class over the coset representatives of GE,‘Z)/ S,,; more precisely,

Trga g, « [8lgo = Z [ugu1,.

ueG? /@, ugu1€S,,
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Secondly, by quotienting an element of S,, modulo [&,,, S,,], one induces a map

d [S,Cm]

Z,[Conj(S,,)] " =5 z,,[COnj(i)] = Z,,[

1+ p"Z < H@
[Sns Gl

1+ p"Z "

where the last isomorphism arises because the conjugacy classes of an abelian group
are in one-to-one correspondence with its elements.

DEFINITION 2.5.

(a) We can now build the mth level of the additive theta-map

1 + me][H(d)]
1+pz|™ ™

6% : Z,[Conj(GP)] —> z,,[

by taking the composition 6;,([g]) := Trs@ /Gm([g]) mod [S,,, S,,.].

(b) Extending each character y : Hy' = um to the ring Z,[(1 + p"Z)/(1 + p"Z)]
[,

1+ p"Z

6; : Z,[Conj(G")] — Z, [,me][m

] is defined via 6, := x © 6,,.

As we will soon discover, both these 6*-maps play a fundamental role in describing
the image of Z, [Conj(Gf,d))] inside the direct product of its abelian factor rings. Let us
first see the effect of these homomorphisms on individual conjugacy classes.

Notation. We write v,,,(h) to denote the p-exponent for the image of 4 inside H,(,fl) =
Hﬁld) /p™, so that

n

Vm(h) = min{r > 0| k" € (HD)"").
For example, if m = n, then p® is just the order of A within the full group H'".
Alternatively, if m < n, one finds that v,,(h) = max{v,,, (k) — j,0} when j <n —m.
ProposiITION 2.6. Let ﬂHfS” (9) = de@,@z@[g] € ZP[H,(,'[!)]for each he H,(,‘,l); then:
®

0w

O ([0 - hgw) = { $(pn®)
0 otherwise;

[T+ przyj14prz) X JHH;?)(E) ifc=1 mod p",

(i1)
d(PMNola+przya+pzy  ifoc=1 mod p™ and h € Ker(y),

_Pm_l[0'](1+17'"Z)/(1+p”Z) ffo=1 modp”, h¢Ker(y)
but h” € Ker( ),

0 otherwise.

O;m([O' . ﬁ]ijd)) =
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Proor. Let g = o - h be an arbitrary element of Gﬁ,d). Since Gﬁ,d) /G = (Z/p"Z)*, a
simple calculation reveals that

[o-(uh)]s, ifoc=1 modp™,
TrG;m/gm([g]GLd)) — Jue@ipmzy* !
0 ifoc#1 modp™.

Suppose now that o- = 1 mod p™. Reducing the above equation modulo [S,,, S, ], one
quickly deduces that

On((8lgw) = [T la+przyiaepz) X Z [(uhi, ... uhg)]yo
ue@/p"2)*

#(p™) = =
= [0 )+ pmzy14prz) X H(py Z [(hy, ..., uhg)]lyo.
p= ue(z/ prmz)*

The last sum ranges over precisely the generators of the cyclic subgroup (h) C H?. in
which case (i) is established.
To show (ii), we simply appeal to the character-sum identities

¢(p" ¥ if h € Ker(y),
X Ao = > x®=3-p"®7 ifh ¢ Ker(y) but b’ € Ker(x),
ue(z/pmzy* 0 otherwise,

whose proof is a straightforward exercise in cyclotomy. O

CoroLLARY 2.7. The image of 6y, is naturally a free Z,[(1 + p™Z)/(1 + p"Z)]-module,

and
m(d—1) _ 1 d _ 1
o e e x P paza,
rankz, [(1+prz)/(1+przy IM(E;,)) = pit-1 " p-1
1 +m ifd=1.

Proor. Because the elements ﬂHm(b) are linearly independent over Z,[(1 + p"Z)/
(1 + p"Z)], the rank of Im(6},) must equal

(the no. of the ?IH(d)(b)) = Z (no. of cyclic subgroups (h) c H(d) of size pJ )
j=0

n (j=hd -1 & pu-d
=1+ Z Py =1+ P X P
o(
j=1

— -1 "
p’) p-1 & p

The stated formula is a direct consequence of evaluating this geometric progression.
For instance, if 0 <m <nand X’ = (1 + p"2Z)/(1 + p"Z), then

(@) = Z,[X'] ®z, Z,(SV),
where the set

S5V = {p(p™) - idyo) U {P" Y- Ay (h) 10 # () < HY). o
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REMARKS.

(i) To illustrate what happens in the familiar false-Tate situation d =1, by
Corollary 2.7 the rank of Im(6,) grows linearly with m, while 6] is a
surjection. Therefore, to recover Z, [Conj(G,(ll))] inside the finite direct product

n—oIm(6}), one would need only a single relation linking Im(6* ) with
Im (6}) for each m.

(i1) 1In his works [11, 12], Kato provided exactly these relations for finite quotients
12, 2,

of (Z(; 1”) and (0 1 Z,,), respectively. Our task will be to find analogues of these
00 1

relations on finite quotients of the (d + 1)-dimensional Lie group lim<_n G(d)

(iii) For general d > 1, a necessary condition for a sequence {y,,}m € [1},_ 6‘“’]
to originate from an element x € Z [COH_](G(d))] under []?
following lemma.

is glven by the

mOm

Lemma 2.8. If yim = 60;.(x) for each m € {0, ..., n}, then one obtains relations

m—1

= (d)\p
Ttz (1 2) e 2x i 12,10y (e przyxi®, | Om=1) = Y mod (Hy7)
that is, the elements {y,,}o<m<n are trace compatible.

Proor. Without loss of generality, one may assume that x = [0 - ], since the maps
in question are all Z,-linear. If o # 1 mod p™, both of the terms are zero. If
o = 1 mod p™, then, by Proposition 2.6(i),

Tr(ym—l)
o
= (D) Trz, a1+ pm12/04p 20z, 492y ) (T 12y prz) ) A o <h>

= ¢(P"No14przyi+prz) X ﬂ[.]f’i)l (hy,

1
¢(pvm—l (h))
whilst

1 —
¢(pvm (h)) ﬂHf’g) <h>‘

If viu(h) = 0, then (1/¢(p"" ) A (h) = lid] o =[]0 = (1/¢(p" ONAyw (D).
Alternatively, if v,,(h) = 1 so that v,,_1(h) = 0, then

1 — 1
— Al = —— Z (2] o = [id] 0 =
Vm(ﬁ) H,y' \— —_ 1 =H,y, Hm_
o) P z&(h)—{0} 1

m = QPO (14 przy )14y X

1
oy T, -

Lastly, if v,,,(h) > 2, the result follows due to the congruence
Ayyn¢h mod (H)"y - mod (H)"" = px Ayw (hmod (HY"")
together with the fact that
Vin(h) = 1+ Vi () > 1 = ¢(p"®) = p x ¢(p"'®). o
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12 D. Delbourgo and L. Peters [12]

3. The additive setting (I): describing the image of @*

This trace compatibility is not only necessary for a sequence to belong to the image
of the map [] 6;, but it also turns out be a sufficient condition, as evidenced below. In
fact, the remainder of this section is devoted to establishing the following result.

TueoreM 3.1. Defining

\Pgld) = {{ym}OSmsn such that Tf(mel) = ym}

to be the Z,-submodule of

n
1+ p"Z
[ 12| =22 ]
i 1+ p"Z
consisting of trace-compatible elements, there is an isomorphism
[ 165 : Zp[Conj(GiN] = ¥ c [ | Z, 121,
m=0

Thus, on an infinite level, a sequence {y,,} arises from Z, [[Conj(Gf,if))]] in this way if
m—1

and only if the relations Tr(y,,—1) = y,, mod (Héf))” hold at every m € N.

Norarion. Recall that (4) denoted the cyclic subgroup of H,(,d) generated by h.
Henceforth, we shall write

(Rygen := {0 € (hy < H® such that (&) = (h)}

for its set of generators; in particular, #(h)gen = ¢(p*"®).

Before giving the proof of the main theorem, we require some preparatory results.

LemmA 3.2. The conjugacy classes in G;,d) are represented by the sets

ordp (o-1)

[0 Bl ={o B | B € (h)gen + (HD)? } withoeX, heH?

and the individual class associated to g = o - h depends uniquely on:

(1)  the choice of element o;
ord,,((r—l)‘

(i1) the cyclic subgroup generated by h modulo p

Proor. It is beneficial to realise each element g =0 -h € X, x HY as a matrix

€ GL(d + 1,Z/p"Z). Indeed, if k = « - £,
0..0 hd
0..01
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k 0 ... 0 (o O ... 0 M~ k 0 0 1
0 « 0 5 0 o ... 0 h|]|0 « 0 5
kgh™! =1 : P : o :

0 0 k tg]10 O ... o hg|]O0 O K 1Ig
00 o 1J)\o 0 ... 0 1)\ 0 . 0 1

o 0 0 —oXtij+kXh +14

0 o 0 —oXth+kXhh+t

=|: : : =0-(kXh+({1-0)X0).

0 0 ... o0 —oXtg+kXhg+ty

0O 0 ... 0 1

The span of the elements « X & coincides with the subset of generators inside (h),
while one has {(1 — ) x 1| 1€ H"} = (p"Z/p"Z)® = (H")"" with v = ord,(c" — 1).
Therefore, the orbit of g under Gf,d)-conjugation is

[glgw = {kgk™" |k =« -t withk € Z, and t € H)
={o- (W' +h")| 0" €(h)gen and K" € (H,(,d))”v}, as asserted.

We should of course check that we have the requisite number of conjugacy classes.
Counting the number of classes using our description above,

Z #o €2, witho = 1(p"), o £ 1(p"*1)} x #{the (h) of order dividing p”}
v=0

n-1 (r Dd

(") (") (r )d
ZVZ_;‘(Z(;) B ¢q(§p[j“))( Zp ¢(p’) ) Z . ¢(p’) ’

which (after some manipulation) can be shown to equal the formula in Lemma 2.3. O

COROLLARY 3.3.

(a) A typical element x € Z,[Conj(G\™)] is of the form

n
X = Z Z AO-,V X [o - idH(d)]Gu)

v=0 o=1mod p”,
o#1 mod p**!

+ an 2 > Y Bopuw Xl hlgy.

v=1 r=1 (E)<H§‘”, o=1 mod p”,
oraer(ﬁ):pr o#l mod p*!
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14 D. Delbourgo and L. Peters [14]

(b)  Assuming that 0 < m < n, a typical element y,, € Im(6},) is of the form

Ym = ¢(p™) Z Yo X [Ol14przy (142 [1d] o
oe(l4+p"D)[(1+p"Z)

m
DD D Bewrmlolampaaipma Ay ).
r=1 (9)<H’(j>‘ oe(1+p"Z)/(1+p"Z)
#o)=p'

Here the scalars A, B Qo> Bor(oy,r,m Can be arbitrary elements of Z,,.

o (hy,ry’
Proor. The first statement follows because, by Lemma 3.2, the conjugacy classes of
fo) are indexed by pairs (o, (E)), where each o0 € X, = U)_, (1 + p"2)/(1 + p"Z) —
(1 + p™'Z)/(1 + p"Z) and, additionally, (E) < Hﬁd) generates a cyclic subgroup of
size p” with 0 < r <v. The second statement is easy, as Im(6}) is generated over
Z,[(1 + p"2)/(1 + p"Z)] by ST°. O

THE proOF OF THEOREM 3.1. There are precisely two assertions we need to establish,
namely the injectivity of [] 67, : Zp[Conj(G,(f))] — [1%_0 Z,[S] and secondly its
surjectivity onto ‘I’E,d). The former is relatively straightforward.

Letx = X cconjc) Mig1 % [g] be in the kernel of [T}, _, 6, To prove that x is zero, it

m=0"m-*
is enough to show that 7(x) = O for an arbitrary class function 7 = Tr(r) on G,(ld). From
Theorem 2.1(iii), all irreducible characters are of the form p = Tr(pﬁ,d)( X, ¥)), where
X: H,(,d) —» (pm say, and the multiplicative character i/ : Gﬁ,d) -» X, — C*. Consequently,

plx) = Z Mig) Z X @ulugu™) =y @y o Trgm,s (x) =406y (x)
[g1eConj(G;")  ueGy” /Sy,
ugu~'eS,,
and the right-hand term vanishes because x € Ker(6),) Ker(e;m) for each m.
Furthermore, any class function 7 can be decomposed into a Q-linear combination
of irreducible characters p as above; hence, the vanishing of 7(x) is a direct corollary
of the fact that p(x) = 0.
To demonstrate surjectivity, one must first study how the trace maps link together
the @ and S coeflicients associated to a compatible family of elements y,, € Z, @b,

Lemmva 3.4. Let {y,}o<m<n € ‘Pfld) be a trace-compatible system in [ Im(6},), with the
constants &y, and ﬂm@,nm associated to each y,, as in Corollary 3.3(b). Then, for

everym>0andkef{l,...,n—m},
k
T = Vomsk + D D Bty sk G4 D
=<,
#y")=p"
Bowrm= Do Boaiywems forall 9) < HY  with#b) = p". (342
<E+><H(zl)

m+k’

OMH+p"=(b)
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Proor. Let us suppose that m > 1. A short computation involving the trace map shows
that

Ty 11 pm12) /e pzxH® VZ, [0z 1z @ | Om=1)

m—1

= ¢(p™) Z Ao -1 X [Tl14pmz) /(14 p2)

oe(1+pmZ)/(1+p"Z)
m—1
+ Z P Z By rm=10 N +przyi4pzy A (D).
r=1 <E><Hz(:zl—)l’ oe(1+pmZ)/(1+p"Z)
#o)=p’

On the other hand, the element y,, is equal to

o(p™) Z Ao X [Tl (14 prz)/(14p72)
oe(l4+p" D) [(14+p"Z)

+ Z p! Z Bty tm X [Tl przy 42y A (h’)

<9/><Hf(f)’ oe(1+p"Z)[(1+p"Z)
#b')=p
m
+ Z Z P Z Bty y.sm X [T lquprzy1eprzy A (h’)
S22 (<, ce(l+pZ)/(1+p"Z)
#Y)=p*
= ¢(p™) Z Aom X [Tl (14+prz)/(14p72)

oe(1+p"Z)/(1+p"Z)

+ Z (p—Dp™! Z Bo,1m X [Tl pmzy/a4p12)

W)<H, oe(1+p"Z)/(1+p"Z)
#y)=p
m—1

—r-1
LD IID D VR e VR e
=1 (py<HD | (y)<HD, oe(1+p™L)/(1+p"Z)

HD)=p" ()+p" ' =(h)
X [cr](1+pMZ)/(1+p”Z)pﬂHf,§131 <9>

m—1

as a congruence modulo (H,(,f))p .
REMARKS.

(a) By assumption, each Tr(y,-;) =y, mod (H,(,f ))I’WH; furthermore, the linear
independence of [id] HO, and the ﬂH,(i) . (9) over Zy[(1 + p™Z)/(1 + p"Z)] implies
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16 D. Delbourgo and L. Peters [16]

that

Uom-1 = Agm + Z ﬁ(r,(lf),l,m and
"y<HS
#y)=p

Bowyrm-1 = Z Bo vy 1>
0" )<H,
") +p"=(b)
which are none other than Equations (3.4.1),,, and (3.4.2),,x, respectively.
(b) A straightforward inductive argument shows that the general equation (3.4.1),,x
follows by combining (3.4.% ) m+15 (3-4. %) ms1m+2s - - - s (345 mik—1.m+x together.
(¢) Anidentical induction works for the second set of equations, so we are done.

We are ready to establish the surjectivity of []8). Let {y,} € ‘I’ff) denote a trace-
compatible family, whose associated structure constants are ., and Bg () rm- One
next defines an element x € Conj(Gﬁ,d)) by

X = Z a’o—’o[O' . idHi,d)]Gifo

o€5,—(1+pZ)/(1+p"Z)

n

DI (a"’V[‘T'idHL‘“]fo”i 2. Boipnlo ‘ﬁ]Gﬁ””)'

v=1 o=1 mod [17/11 r=1 <E><f’5"”,
o#1 mod p order(h)=p”"

Then, repeatedly applying Proposition 2.6(1), at each m € {0, ..., n},

n
HL(X) = Z C(().m) X [O’](1+pn1z)/(1+pnz) + Z Z Dg.flg

o=1mod p™, y=m+1 o=1 mod p”,
o#1 mod p"+! o#1 mod p*+!

X [T la4pmzy 114 p72)5

where the group ring elements Cg"), DS,",1 3 €Z, [Hf,f)] satisfy

m
an) = ¢(p") Ay mlid] g+ Z Z P Ba,(ll),s,m ‘?{Hf,‘l” @)
=1 p)<Hyy,
order(h)=p*

and

v—m

Dg"v) = ¢(p")|asy + Z Z ﬁg-,@),r,v [id]H,(j)
r=1 <E><H$/d)’
order(ﬁ)z p"

m

LD IR I () DI M P )

=l (oy<Hy?, <",
order(h)=p* hy+p™ =(h)
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[17] Higher order congruences amongst Hasse—Weil L-values 17

Substituting in Equations (3.4.1),,; and (3.4.2),,, with k = v — m yields

m
DY) = g(p" g nlidlyn + Y D " By sm Ay (D).
=1 )<H;),
order(h)=p’

Therefore, we can simplify our expression for 67,(x), which neatly collapses down to

i Z (¢(pm)ao',m+i Z pm_sﬁo,@),s,mﬂp]g)<E>)[O- la+przy/14prz)-

v=m o=1 mod p, s=1 (py<HD,
o#1 mod p"*! oraer(h): P
The latter formula coincides with that of y,,, that is, 67,(x) = y,, for all m € {0, ..., n},
and the proof of surjectivity is now finished. O

4. The multiplicative setting

To translate back from the additive to the multiplicative world, one employs the
method of Kakde ef al. [4, 9, 10]. We begin with some short background on the
logarithm map over group algebras.

Let G be an arbitrary finite group (not necessarily a p-group) and O a complete
discrete valuation ring unramified at p. We use the notation Frob,, for the Frobenius
automorphism on O, and write ¢ : Frac(O)[Conj(G)] — Frac(O)[Conj(G)] to denote
the map sending 3, k¢[g]c to the group ring element 3., Frob,(k,)[g”]c-

The Taylor-Oliver logarithm TI'g : K{(O[G]) — O[Conj(G)] is defined by the
formula

1
I'g(x) := IOgO[G](X) - ;QOG(IOgO[G](X))v

where logy, indicates the unique extension of

Jac(O[G])® Q
[O[G]® Q,0[G] ® Q]

to the full K-group K;(O[G]) (we refer the reader to Oliver [14] for further details).
Throughout this article, we will take O = Z,, and need only consider subquotients G
of the finite group G,(fl) =¥, x Hi,d).

The following construction mimics the additive theta-maps in Definition 2.5.

log.. o167 : K1(OIG], Jac(R[G])) —

DeFINTTION 4. 1.

(@) If m < n, we build the mth-level multiplicative theta-map

On : K1(Z,[GP)) — K(Z,[CP]) = Z,[S2]
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18 D. Delbourgo and L. Peters [18]

by forming the composition 6,,(z) := Nr /3, (z) mod [S,,,, S,,], where we have

written Nr;w /3, " Ki(Z P[fo)]) — K(Z,[S,,]) for the norm homomorphism.

(b) Likewise, for each character y : H,, — u,», one defines the map 6, := y o 6,,.
We claim that 6, is surjective. To justify this assertion, note that the inclusion

1:2, =22, x{l} > X, x H,(ld) identifies X, with a nonnormal subgroup of Gﬁld), and
thus induces a map ¢, : K (Z,[Z,]) = K;(Z,[G'"]). Moreover, the projection

(@) mod HY . . @
w. > X, givesriseto 0y : K((Z,[G,"]) — Ki(Z,[Z,]);

because ¢ mod H,ﬂd) is the identity map, the homomorphism it induces, 6 o ., must
also be the identity (and therefore surjective) and hence our claim is true.

One should point out that the above construction produces a splitting of K; in the
following way. If x € K (ZP[G;‘D]), then define x% := 1, o Oy(x) and x¥ := x/x%. We
thereby obtain a direct product decomposition

Ki(Z,[G"]) — Ki(Z,[Z,]) x W' by sending x = (fp(x), x"),
where the complementary subgroup
W= {x - 1.(0(x) " | x € Ki(Z,[GD)).

REMARKS.

(i) Form < n, we write Ny, as an abbreviation for the homomorphism

1+ p"Z

Nrs, j(1+przyaprz) - Ki(Zp[Z,]) — Ky (Zp[m])
induced from the norm map on group algebras.

(ii) The natural inclusion 7™ : (1 + p"Z)/(1 + p"Z) = (1 + p"™Z)/(1 + p"Z) < {1} —
S yields

1+ p"Z
(m) P b
" Kl(Zp[ T p"Z]) — Ki(Z,[S)),

so the composition Ti’") o Ny, allows us to compare elements in K1(Z,[Z,]) with
those in K; (Z,,[@f,f’])—if the context is clear, we drop the superscript ™.
(iii) The twist map tw, : [T0_o Ki(Z,[S2]) — {1} X [T),_; K1(Z,[S2)) is given by
the formula
zZ
Mn((z(]s"'sZﬂ)) = (13"- _— )'

’ T*NO,m(ZO) Y

(iv) Lastly, for all x € K{(Z,[G"]), one easily checks the identities

tw, ([ Ten) = o, ([ Tomx) and s, ([ Tone) = 1o

(in fact, the second identity implies the first).
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[19] Higher order congruences amongst Hasse—Weil L-values 19

Now, if m > 2, the mapping P can be interpreted as taking values in Z,[S®];
indeed, one can form a sequence

_ d
1+ pm 1sz(d) g}l+pZ HO = 1+pmzx(@p22)_>6ab
1+ p"Z m=1 1+ p'Z 1 1+ p"Z Pz "

and we abuse notation by writing Coeab_l : Z,,[Gzl’_l] — Z,,[@ab] for the composition.
The vector logarithm log’ : {1} x [T, Ki (ZP[G;E’]) — {0} x 1,2, QIS b] is then
defined to be

_ Z
101 1,z1,....2, ::(0,10 w1(21), ..., 10 al (~—m)’)
log (1,21, 24)) Bzeti@h - 08z e G T

In particular, the vector logarithm can be composed with the twist map to yield a
homomorphism log' o tw,, sending vectors in K| to n-tuples of additive elements.
—_n h—

DermniTION 4.2. Let us define two subgroups of 1), ZP[S';‘;’]X by taking
Qitg,lgy =G .., TeNom(2)s - - Josm<n, Where z € Zp[zn]x}

Q(d? {Z ef{l}x 1_[ 1 + pZ,[&] such that log otw (7) € \p(d)}

m=1
. (d) n ab (d) (d)
and write Q" C []},-o K1(Z,[S};]) for the group generated by Q, ¢, and Q b

The connection between the multiplicative and additive settings is neatly captured
by the following result, which gives us a natural analogue of [4, Proposition 4.1].

THEOREM 4.3. For each integer n > 1, there is a commutative diagram

F s o(-)f
Ki(Z,[G]) ——Z,[Conj(G'")]
e e
]_[ Ki(Z S0 ]_[ QIS

and the kernel of ® := [] 6, is equal to S K\(Z,, [Gﬁld)]), while the image of ® coincides
with Q9.

Thus, the question as to whether a vector z arises from an element of K(Z, [G(d)])
under [] 6,, reduces to establishing whether tw, (z) belongs to Q(d) = Im([] 6,,), which
in turn is equivalent to checking if log" o tw, (z) lies in ‘Pffi) =Im ([T 6}).

The proof of the above theoremmnengthy and will occupy the rest of this section.
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4.1. Three technical lemmas. We begin by studying the interactions between the
various maps 6,,, ¢ and log. The results below describe how these homomorphisms
commute with each other, although the proofs themselves could probably be skipped
on a first reading.

LEmmA 4.4,
() Ifm=2andy e Q,[Conj(G)], then
O © 0 ) = P X @1 iz (Tigw e, (v) mod H,").
(i) Ifm=1andy e Q,[Conj(G)], then
67 o o (y) = Trs, /(14 pz)14p7) (@3, (05 (1))
Proor. By the Q-linearity of the maps involved, it is enough to check the formulae at

individual classes y = [0 - A] G € Conj(Gf,d)). Assuming that m > 2,

—p .
by 2.6(1) [Up](l+me)/(l+p”Z) X Z [l/tb ]H;;l) ifcP=1 mod pm,
9;; o ()DG@ (Y) = ue(Z/ pmzZ)y*
0 otherwise.

On the other hand,
d 1
Casprzyapani © Tz, () mod (H0)”

A D 1 il zypzeng) io=1 mod
ue@] p1z)*
0 ifo#1 modp"!

1 —p . _

— X Z [O-P . Llh ](1+p”’Z)/(1+p”Z)><H,(,§” ifo=1 mod pm 1,
ue(Z/p"zZ)*

0 ifoz1 modp™!,

which is exactly (1/p)th of the previous quantity, so the first statement follows. To
prove (ii),

9+ [¢] (d)( ) =
1o%GntY 0 otherwise.

by 2.6() {[0"’](1+p2)/(1+pn2) X(p=Dlid]yw ifo?=1 mod p,
However, g5, (6;(y)) = [07]s, as 65 () = [o]s,; hence,
[o”1a+pzya+pzy if o’ =1 mod p,

Trs, /14 pz)/(1+p2) (@5, (0 (V) = { ue@/pzy*
0 ifo” #1 mod p,

which means that both quantities above coincide. O
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Lemma 4.5.
(a)  The mutually inverse maps log: 1 + pr[Gf;l’] - pZP[Gf},’] and exp: pr[Gf}l’]
— 1+ pr[anb] restrict to yield isomorphisms
1
1+ p Im(@) —> p Im(67) —5 1 + p Im(G}).
(b)  For each pair of integers m,n > 2, there is an isomorphism

1+Im@)" ~ Im@6)"
—>
1+ Im(@;,)"! Im(@: )+

l+yy

induced by the p-adic logarithm.

Proor. Recall first that Im(d}) = Z,[Z'1 ®), Z,(SH"), where ¥’ = (I + p"Z)/
(1 + p"Z) and

SV = {p(p") - idya} U {p" "0 - Ay (D) |0 # (b) < HY).

If we define
. pm—vm(lj) A HO <§> if <§> #0,
P e idye i) =0,

then it is simple to show that

Gy, X @y, = Z @ v

te(Z/ pmzZy*

upon expressing each ay, as the sum ¢ z/,mzyx [b;] HO-
—J — m
In particular, the image of 6, is generated over Z,[X'] by the finite set of the ay

(which are closed under multiplication) and hence Im(6},) forms an ideal of Z,,[@f,'f].
The demonstration of (a) is then identical to that given in [4, bottom of page 106].

To prove statement (b), we first collect together four key facts describing Im(6;")
and assume throughout that m > 2.

Fact 1. 1f one of h,, h, € H\ has order < p™, then a, a5, € p Im(6},).
Fact 2. (a@)3 € pIm(6},) for every h € Hf,’,j).
Fact 3. y'/i € pti/pi-loe@/1oep) Im (@) at each y € Im(67}).

Fact 4. Tm (6)+@" =" 10"=0" < p Im(8}).

For instance, Fact 3 means that both the power series log(1 +y) = 3%, (=D*yi/i)
and (1 +y)™' = ¥2,(=1)'y" converge inside Im(6},), whilst Fact 4 implies that the
topology induced by the neighbourhoods {Im(6;,)’} jen coincides with the p-adic
topology.
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Proor ofF Fact 1. Since a Xay = 2z Ty A g1 by iterating,

N+1

m
ay Xy X-o-Xay = Z a o oy = MXZ%,

ZN+1 D, Dy Dy, Vin(h;)
etz T ¢(p™") beT N

where Ty =) . >gen(92>gen e <§N+ 1>gen. Note that the coefficient is divisible by

N+1 N+1
J=17m(b))=0 J=17m(h >0

In the special case N = 1, if either V(b 1) < m or Vm@z) < m, then this quantity must
itself be divisible by p; hence, ap, X ap, € p Im(8;"), as asserted. O

Proor or Fact 2. Some elementary calculations reveal that

((1@)2 =ap Xap = Z e = Z 1 + Z Q1+
€@ pz)< €@y €@p"n
pit+1 plt+1
pm—l pm—l
= ap + Z aprs = (p" — 2pm_1) X ay + Z Qpyss
€@/ "y =1 =1

pit+1

which is congruent to ) :;1 agry modulo p™'Im (6},). It follows that

m—1 m—1

p p
(aﬁ)3 =q; X (aﬁ)2 = Z ap X agrys = » 0 mod p Im(6,,)
s=1 s=1
because Fact 1 implies that a; X agr)s =0 mod p Im(6;,) has order ((h)%) < m. o

Proor oF Fact 3. Let us write y = 3, _p@ Ky X aj, where each k¢, € Zp[X']. Using
Fermat’s little theorem,

by Fact 2 _
W= Yk x@r U= S W x @) X0 mod p (@),

(W<H, (hy<H,;
which implies that y” € p Im(6;;,). Applying simple induction, one deduces that
y' € pli/PIm (6},), while 1/i € p= %07, c p~loe@/loe)7, ~and the estimate follows
immediately. O

Proor oF Fact 4. We essentially need to bound the length of the longest product
Qy X @y X Xay &p Im(G;,). Exploiting Fact 1 above, we know that if any of

the . has order <p™, then the product must automatically lie in p Im(6,,). Without
loss of generality, assume that order@j) = p™ for all j, in which case

aD[ X (192 X X CLDNH = Z (19, where 7y = <[21 >gen<122>gen e <9N+1>gen'
QETN
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There are precisely (p? — p™=D4)/(p™ — p™~1) cyclic subgroups of Hf,fl ) of size P
consequently, if N + 1 > (p"™ — p=Ddy/(p™ — p™=1), then at least one of the above
(9},)gen occurs twice or more, in which case ay Xy X-o-Xay €p Im (6}").

We conclude that the longest product of the O inside Im (6},) not divisible by p

must have length <(p™¢ — p™=D4)/(p™ — p™=1). Because the image of 6}, is generated

over Z,[X'] by the set S,(,,ﬂ ). our final Fact 4 has been established. O

We now return to the proof of Lemma 4.5(b). Since (1 + y)~! exists, the elements in
1 + Im(8;,) form a multiplicative group. In fact, the convergence of the formal power
series ), ((=1)"*1yi/i) yields a homomorphism log: 1 + Im(6;,)* — Im (6},)", and we
shall write
Im(6;,)"
Im(@;, )+ 1

for its composition with the quotient modulo Im (6})"*!.
Clearly, 1 + Im(8;,)"*! c Ker(log), but the reverse inclusion is trickier to obtain. We
claim that if m,n > 2 and p > 3, then

log(1 +y)=y mod Im(g})"*" forall y € Im(6})".

log: 1+ Im(g}))" —

Deferring the claim’s proof momentarily, we deduce that the map @ is surjective;
moreover, if y € Im (4;)" and log(1 + y) € Im(6;,)"*!, then one has y € Im(6;")"*!. The
latter is equivalent to the statement ‘log(1 + y) = 0 implies that y € Im(6})"*!"; hence,
one obtains the inclusion Ker(log) € 1 + Im (6})"*!.

It remains to justify the above claim. Recall that log(1 +y) =y + 252, (= 1)*1yi/i);
we express y € Im(6;,)" as the product y = a; X a, X - - - X a,, with a; € Im(6}}). If i > 2
and p 1 i, then

(_1)i+1yi B (_1)i+1
i

xdid,...d eTm(g;)" c Im(g})™".
Alternatively, if i = p, then a’l’ /p € Im (6;,) by Fact 3, whence

1 p
Y (1P x (a—l) X d...al € Im() 7D
p p

however, 1 + p(n —1)>n+ 1 if n>2 and p > 3, which means that (=1)?*'y?/p €
Im(@)"*!. Thirdly, if k > 2 and i = pF, then

k+1,,p¢ k
(_l)plj yp — yp"—pk X (y_p) e Im(gr-ir—l)n(p"—pk)+(n+l)k c Im(er-:—l)n+l'
p p

Finally, for a general index of the form i = p* x ¢ with p { c,

(_1)i+1yi ~ (_1)i+1 “ (yC)pk
i ¢ pk

e Im(g})™!

by the previous argument (with y replaced by y°). We may therefore conclude that
>, (=D)*yi /i) € Im(6};,)"+! whenever y € Im (6},)", and our claim follows. O

https://doi.org/10.1017/51446788714000445 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788714000445

24 D. Delbourgo and L. Peters [24]

Levivia 4.6. If m > 2 and x € K{(Z,[G"), then
G 010gzw On-100) = @1 iz 14 iz © 102NTgo,o  (x) mod (H)™).

Proor. Let us define G, := (1 + Pz /(1 + pZ) < H,(f), so that g{,’,m =+ p"2)/
(1+ p"Z) x (HY)? is isomorphic to a subgroup J of index p? in SP; we write

@ : Ghn - J &% for the corresponding injection. In particular, there is a
commutative diagram

Zp[gn,m]x —_— Kl (Zp[gn,m]) ﬂ) Kl(Zp[gg,m]) = Zp[gf:,m]x

l mod (Hy"™! l L @.
Pzab

Z,[G"  F —= K|(Z,[E® ) —=> Ki(Z,[CP]) = Z,[SP]*.

If z := Nrgw o (x) mod (H)" € K\(Zp[Gum]), then the element 6,,_;(x) coincides
with z modulo (H'?)?"™", in which case
~6:nb—l (gm_l(x)) = "NDB?:—l (Z mod (Hi(j))pm?]) =Ws % Pg,, (Z)

Taking the logarithm of both sides, and observing that the power series defining ‘log’
commutes with the action of both Frobenii ¢¢s and ¢g,,, the result follows. ]

4.2. A proof of Theorem 4.3. Let us start by establishing commutativity of the maps

in the fundamental square. This amounts to checking for all x € K(Z, [qud)]) that the
required formula

O ()
T Nou(00(x)) )

~ On—1(x)
Pe (T*No.m—l(ﬁ’o(x))

m—1

holds true. We subdivide its verification into the three cases listed below.

0;1(1"6@(96%)) = 1OgZp[G§’J’](

Case (I): m = 0. Noting that 6§ o ¢ = ¢y, o 6] and Op(x") =1,
0y o T (x") = 65 o log(x") — % X 05 (¢ © log(x"))
= log ofp(x") — % X s, (6] © log(x"))
= log ofy(x") — ;17 X s, (log 08p(x")) = 0 — 0 = log(1).
Case (I1I): m = 1. Following a similar argument,
0y o Lo (x") = 0 o log(x") — Il? X Hf(ng(nd) o log(x"))
= logo 6;(x") — % X Tts, /(14 p2)/(14p72) © @5, (65 © log(x"))

1

01(x) '
= Og(g1 (xcy)) =5 X Trs, j(14pzy/(1+pz) © ¢35, (102(00(x))),
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where the second line follows from Lemma 4.4(ii). Again 6p(x") = 1, so the last
summand is zero, whilst 8; (x%) = TS(I) o Np.1(80(x)); hence,

61(x) )

‘s ty = _ U G
0} © Fgo(xh) = og (01 (1) — log(x.No, (o) - Xo‘log(mvo,l(ao(x»

Case (11I): m > 2. This computation relies heavily on our technical lemmas. Firstly,
one has the equalities

) . 1
), o Lo (x") =6}, o log(x") - ; X HL(QOG(::) o log(x"))

1
= IOg [¢] Qm(_xT) - ; X p X ‘70(1+p””IZ)/(1+p"Z)><H£,ld)

x (Tr o log(x") mod (HP)"")

d) )~
GE‘I )/Cm—l

upon applying Lemma 4.4(i).
Now 6,,(x¥) = Tim)No,m(Ho(x)); thus, one deduces that 8,,(x") = 6,,(x)/ T No.m(6o(X));
furthermore, TrG’(:i) /3, © log =logo NrGE,‘” I whence

O o Tg(x") = 10g(6,(x)) = 10g(T.No,n(60(x)))

D
_ ‘P(Hpm-lZ)/(l+p"Z)><H£§”(log ONrGﬁf’)/sm,l(xT) mod (Hr(l )Py

by 4.6 ~ T
"= 108(6,(x)) ~ 10g(7.No,u(B0(x))) = P logas (Bt (x7)).

Exploiting the relation Op1(x") = 0,_1(x)/ 7.Nom-1(60(x)) once more,

. 0 G 0 Op-1(x)
e B
" 7. No,m(Bo(x)) Paiv 0 TulNom-1(00(x))
which is equivalent to the required formula.

Conclusion. Combining (I)—(III) establishes that @* o FGu)(x*) = logT otw, o O(x).
It remains to compute both the kernel and image of ®. Recall from earlier that

Ki(Z,[GP]) = L.K\(Z,[Z,]) x W',

where 1, was the section reversing the projection 6y, and ‘W7 is the complement. Since
the morphism ® maps ¢, K/ (Z,[Z,]) isomorphically onto the group fogy, the kernel of
® will coincide with

Ker(®]qy) o2 Ker(logi otw, o Oly) =Ker(®F o T'galyt),

which is precisely the kernel of I';w |4+ because O7 is injective. However, the latter is
well known to equal S K (Zp[Gﬁ,d)]), so the same must be true for Ker(®).
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Finally, as O Ki(Z,[Z,]) = Qﬁffgy, we must therefore show that @(WT) = Q;d;.

Clearly, ®(W*) {1} x [T}, 1 + pZ,[ &S] and moreover ©* o Ty (W) c W, By
Lemma 4.5(a) and the commutativity of our fundamental square,

log' o tw, 0 O(W) c ¥ ({0} <[] pz,,[ef‘,f]).
m=1

Conversely, every element z € Q(‘? can be written as z = ©(w) for some w € W', and
the proof of Theorem 4.3 is now complete.

5. The additive setting (II): evaluation at characters y

As we have seen in the previous section, a vector z € []/_, Z,[S]* arises from an
element of K; (Z,,[G( )]) via @ if and only if log o tw, () belongs to Im(®@"). For each
m € {0,...,n}, let us abbreviate the group (1 + p"’Z)/(l + p"Z) by using ¥/ ., so that
G = z;m) w Hy" and G =37 x Hy.

Applying Theorem 3.1, the image of ®* consists of the trace-compatible terms

(m)

m—1

Wi = {{ymbosmen such that Try, /e (Vu-1) = ym mod (Y ).

We will now seek an alternative description for ‘{‘5,) entirely through the use of
p-power congruences, in the same manner as the d = 1 situation studied in [11,
Section 3].

NOTATION.

(a) For each character y : H,(,‘f) - u,», we write J, for the kernel of y; thus, H,(,fl ) NP
is a cyclic group of order p” (in fact, J,» = g, for all ¢ coprime to p).
(b) Ateveryindex v € {0,...,m}, we introduce a family of subgroups

Z(V) = {subgroups J C H(d) such that H(d) /9 is cyclic of order p"}

and denote their disjoint union by Z,, = U/, v,

(c) Lastly, let us write charg for the characteristic function of J inside of H,(,f); n
particular, one easily checks that charj(gt) = chary(D) for each 7 coprime to p;

hence, the value of chars(])) depends only on the cyclic subgroup (b)) < HO.

Throughout, one fixes a finite integral extension O of Z, which contains the values
of all multiplicative characters y : H(d) = fUpe = CX (for example, the ring Z,[u,»]

suffices). For each character y on H(d) with0<v<m<n,ify,cZ [Z(m) X H,(qf)],
then one naturally obtains y(y,,) € O[%/ (m] by linearly extending y to the group ring.

QuesTion. Given a collection of a,, , € O[ng)] with m < n and characters y : H,(f) —
O, can one find necessary and sufficient conditions to determine whether a,,, = x (V)

at every pair (m, y) above, for a suitable sequence {y,,}, € ‘Pfld)?
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Let us work backwards—for the sake of argument, suppose that {y,,}o<m<n € ‘115,‘” gives
rise to these terms a,,, through evaluation at y.

By Theorem 3.1, there exists z € Zp[Conj(Gg,d))] such that y,, = 67,(2), in which
case dyy = X(Ym) = Q;m (z). Moreover, upon examining Proposition 2.6(ii), we further
deduce that:

e cach element G;m (z) belongs to pm‘IZP[ZEm)], so clearly has Z ,-coeflicients;
e the term 0; (z) depends only on , = Ker( x), not the individual character;

e if y factors through Hfle, then a,,,, = Trz(rmi]) /% (Am=1,x)-

In fact, the last statement is a consequence of the trace compatibility for the y,,.
Consequently, we can refine our problem by restricting solely to elements

af(;i =ay, €Zy[X(,)], where J, € ZY and O0<v<m<n.

The following result provides a purely p-adic answer to the question posed above.
THEOREM 5.1. A sequence (...,a(J,V_i, ...)E H)(:Hﬁf)*ﬂpv ZP[ZEV)] arises from a trace-
compatible system lying in ‘I’fqd) if and only if, for all positive integers m < n and all
nontrivial subgroups (h) C H,(,f ),

m
Try, s, @0) + > Y p ' Tryy sy (@) % (p charg, (b) - chary, (5))
! v=1 7,eZ
(5.1. 1)y

is congruent to zero modulo p’”(d“)’v’"al)Zp [Ezm)], whilst at the trivial subgroup

m
0) My — d+1
PTrsy @) + )0 D pHp =1 Trg sy (@) =0 mod p"“P. (5.1.2)0
y=1 (V)
TIy€Zm

In Section 5.2 we explain why the above result implies Theorem 1.1 in the
Introduction. However, we first use properties of characteristic functions to give its
demonstration.

5.1. The proof of Theorem 5.1. The initial step is to construct an inverse to the
mapping y,, — (..., x(Vm),...). Assume that we are given a collection of elements
Amy €Zp [sz)]; then one defines

Ym = Z C]()m)[E]HE:), where Cém) = p_md Z X_I(E)am,)( € @p [ng)]

EEH}nd) )(:H,(nd)—@;

As chary(x) = pmd 2y ,\f'(g) - x, it follows that y(Y,,) = a,, for all such y.
Furthermore, if at each character y we know a,,, = x(y,») for a fixed y,, € QP[Gamb],
then clearly Y,, and y,, must coincide.
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Lemma 5.2. Providing that each a,, , depends only on Ker(y) C Hf,fl ),

1 1
cgm) P, + Z s X (char:]X (H) - ” charg, (b ))am,X
TeeZn—tHPy K

and one may express Y,, as the summation ), ()<H® € ) x Ay (b).

Proor. Let us denote by X,, the group of characters y : H,(,f) — C}, so that

cg") =p™m Z X 'Oy = p™™ Z ag Z X'®

XEXn J€Zn XEXp,
Ker(x)=J
_ . —md -1 -1
s Y wf 3w Y )
—(H® Ker(x)2J Ker(x)2J,
JeZn—{Hy'} Ker(p)£T

where ag = ay,,. However, Y ke y)oq X‘l(g) will be equal to #H,(,‘f) J#T X charj@)
and moreover

> o= > 0= x > xor

POtk X:H [ T—C, XoH, | T—C;
erx order(y)#[H: 1

which is #H,(,‘,i )/#j' X (1/p) charj(gp ); the required expression for cgm) now follows
easily. -

Focusing on the second statement, if §)’ € <b>gen, then (b Y= (I)) and (b”’) = (I)p ),
in which case charg, (I) )= charjx(b) and charjX (b”’) = charJX (b" ) (since an element b
lies in a subgroup 7, if and only Qt does for all powers ¢ coprime to p). Consequently,

c;’,") = cg’") for all i’ € (h)gen, and one deduces that Y, equals
2 Wl = 2, el = ), ¢ D) Wy
yeH? O)<HD Y EDgen )<H? Y ED)en
Lastly, the term e, . [I)'] HO is by definition A Hm(f)), so we are done. O
As the image of 6, is generated over Z,[X;] by ¢(p") - idyw and the

PO A @ (b), it follows that ¥, will belong to Im(6},) if and only if:

e ifb#idyw, then p"~Y divides each c{";

m)
id (d)

Hyp

e ifh=id HD then p™~! divides each c;

Furthermore, by Theorem 3.1, the full ensemble {Y,,}o<m<, belongs to Im([] 6},) if and
only if:

e the elements Y, are trace compatible, that is, Tryy /5 m)(Ym_l) =Y,.

(m=1)
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To make the above conditions more explicit, we shall rewrite the coefficients c(m) Let

(m)

us henceforth assume that each a,,, depends only on 7, and set a 7, = dmy-

Decomposing Z,, into its constituent Z(‘)

™M = md a™
) H(‘”

1 m
- X (charJX M) - ; charg, (” ))a(J)
v=1 j EZ(V)

_ p—md( (m) +Z Z P ix(p charg, (h) — charg, (h” ))a(m))

H(d)
V= ljez(v)

In fact, the trace compatlblhty Ay = Trz(m ]) /z (am-1,) we mentioned earlier implies

(m)
(via simple induction) that a™ J Trz/ o (a )) atevery J, € Z(V)

COROLLARY 5.3. Under the assumptions of 5.2, each element p™® x cbm) equals

1 v)
Trs x,, () + Z D Py sy (@) X (p charg, (b) — charg, (5).
V= IJXEZf;)
Exploiting this new description for the coefficients of ¥,,, we see that if h # id,w,

(m)

then the divisibility of P ® into ¢y is equivalent to the congruence (5.1.1),,y.

(m)

Secondly, if ) =idw, then the diVis{bility of p™! into Ciq 0 is equivalent to the

Hy,

congruence (5.1.2),,iq.
Finally, one needs to verify that Try E
task amounts to establishing the 1dent1ty

m—1

(Y1) = Y,, modulo (HP)""™" . The latter

(m)

V(D)

n=1) - m PP 4
Z Trs;, x, (e D Ao B = Z Cy =Y, p2
<H?, e~ PP

whose proof is left as an exercise for the reader (or see [15, Section 6.1] for the full
details).

5.2. The proof of Theorem 1.1. Recall from our earlier discussion that the key
conditions unde 1nn1ng the main result collapse down to checking whether or not
log otw,(2) € ‘P , which can now be tested using the p-power congruences (5.1.1),,
and (5.1.2),.i0 of Theorem 5.1.

Fix a vector z € [}, p[Gf;l’]X. At each character y : H,gd) - U, We set a,, =
X(logz o tw,(2),); in particular, if v > 1, then

Zy Pam (T.No,y-1(20))
7No.v(20) 8 P (2-1) ))
X(2y) » ex;_ (Noy-1(20))
Noyv(zo) ez (XP(z4-1))
Similarly, if v = 0, then ag1 = loggs, (1) =0

ayy = X(IOgO[‘SﬁbJ(

log, z'”]( ) = IOgO[Z(’”](Cv,}() say.
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REMARKS.

(a) Substituting these a,, into the left-hand side of (5.1.1 )'"Jl ,

Trsy s, (@) + Y D P Trsy s (avy) X (p charg, () — chary, (1)
v=1 7.6z

m

— y—1

=0+ Zl Z( L logoyy, 1oNIy, /s, (6n,0) X (p chary, (b) - chary, (5))
V=l 9, €Zm

m
v—1 h _ch )
- logo[zzm](n l_[ Nvgm(cv,)()p (p charg, (b)—char, (i )))
v=l JX€Z1(7‘;)

m(d+1)=v,u(h)

is congruent to zero modulo p if and only if

m
l_[ 1_[ Ny (e, X)pv_l(l’ charg, (b)—charz, 0) = | mod pm@+D=Vm®)
v=1 JXEZL?

(b) Analogously, substituting the elements a,, into (5.1.2),, ;4 instead,

m
My = d+1
pTrsy i (ao1) + E E P'(p =1 Ty yx (dy)=0 mod p"@D
v=1 jxez(y:)

if and only if [T} [T 5,z Nun(6ry)”” = 1 mod p™ 0.

(c) Lastly, it is straightforward to check that the p-adic congruences outlined above

are equivalent to the congruences (1.1),,; and (1.2),, in the Introduction to this
article. B

It only remains therefore to pass from K (Z,,[Gﬁ,d)]) to the projective limit over n. The
procedure is identical to that described in Sujatha’s article in [4, pages 23-50]. Firstly,
the identification Z, [[G(o‘i)]] ~lim_, Zp[Gfld)] extends to yield isomorphisms

K(Z,[GS)) = lim Ky (Z,[G"])  and  K{(Z,[GL]) = lim K{(Z,[G")),

n n

where K7 denotes the quotient of Ky by S Ki. Applying Theorem 4.3, the diagram

n

d Hgm d ]_[)(
Kzlcy o S ][] e
v=0 g ez
ro‘,(,d) el loig;‘; otw, jav AFCuy
[, Iy !
. d d
Z,[Conj(G,)] = pO 1T 11 2otz
v=0 JXEZ(;)
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commutes and, taking lim,, yields a ®-mapping between K;(Z, [[fof)]]) and ng?.
Finally, the kernel of this @-homomorphism is SK(Z, [[GE,‘?]]), which can be easily
seen to vanish upon using [14, Proposition 12.7].

The proof of our main theorem is now complete.

6. An application to elliptic curves

Our initial task is to prove the two results mentioned at the end of the Introduction.
We first recall the situation of Section 1. Let E denote a semistable elliptic curve over
Q with good ordinary reduction at a prime p > 2. For a fixed number field F and
an Artin representation p : Gal(@/ F) — GL(V, C), its global g-factor over F can be
decomposed as an infinite product

er(p,s) = 1_[ &r,(py, @y, dx,; $).
all places v

Each local factor depends on a normalisation of additive characters w,, and of Haar
measures dx,.

(If F = Q, one sets €(p) = eg(p,0) and €,(p) = €g,(0p, @), dx,;0).)
The Artin L-function attached to p is then given by an Euler product
L(p, s) = ]—[ det(1 — Ngo(v)™ - Frob,' | Vi(p)™) for Re(s) > 0,
places v

where Frob, is an arithmetic Frobenius element for v and I, is the inertia group.
Likewise, if Re(s) > 0, the p-twisted Hasse—Weil L-function is given by the product

LE.p,s):= || det(l = Nijg)™ - Frob" | (H}(Eg, Zi(1) ® Vi(p))™).

places v
THE PrOOF OF THEOREM 1.5. We begin by making the following three assertions:
(a) each character y : Hgf) —» pup will extend to yield a character on
Gal(Q“, /Q(u,)), and the representation T, := Indg(y ,,(x) is irreducible of
oy P
dimension ¢(p");
(b) there exists a unique element L, (E) € Z,[U™][p~'], which interpolates at each
Y-twist the p-adic number
Ly, (E.y®7,,1) Ly ''er,ul)
L”( e W e =i
(€ Q) Q™ Ly®t,wl)

u—ordp(fmq))

for every character y : U — Q" of finite order;
(c) for each rational prime / dividing A, there exists an element ®)(E, 7)) € Z,[U M
satisfying
W@E ) = o[ | LB v o, 1)
vl
at all such ¢ above.
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Providing that all three claims are correct, if J = Ker( y), then, defining

Ly(E,J) =Ly E)x [ [oE ) x || @k 7)™,

1A ey %P

this element belongs to Z,[U™][p~'] and interpolates the required L-value data.

It therefore remains to prove these statements. Beginning with the claim (a), the
character y extends to a character on Staby, (y) H,(,d) by Theorem 2.1(ii), where n is
any chosen integer >v. The latter group is precisely (1 + p*Z)/(1 + p"Z) = HY/ 2
hence, taking the projective limit over n, we naturally obtain a character on the group
(1+p"Z,) < Hgf) = Gal(Qii) A/ Q(up»)). Moreover, the induced representation down to
Q has degree [Q(u,) : Q] :,gfb(pv), and is irreducible by Theorem 2.1(iii).

In order to establish (b), observe that y yields a Hecke character over Q(u,); by
the work of Serre, there is a corresponding parallel weight-one Hilbert modular form g

over Q(u,»)", whose L-series coincides with that attached to Ind%&i ‘;
to E is a classical cusp form fz € S>(I'o(Ng)), and its base change f to the totally
real subfield Q(u,»)* has parallel weight-two and square-free conductor. The proof
of [6, Theorem 1.1] then yields a C,-valued bounded measure on U", interpolating
the prescribed data in statement (b). However, as the Hecke character y is purely
anticyclotomic, each Artin representation 7, is self dual and Q-rational, in which case
the bounded measure takes values in Q, ().

Finally, proving (c) is straightforward: at each place v | A, we form the polynomial

+( X)- Associated

Pol, (x) := det(1 — x - Frob, ' | (Hy(Eg, Z,(1)) ® V,(z,))"),

which has rational integer coefficients; if y, € U corresponds to v € Spec Z[,]
under the reciprocity map of class field theory, then the group ring element

Oy(E,7) = | ] POl ()l y, At o
v|l

by construction interpolates the same values as in statement (c), so we are done. O

THE PROOF OF ProPOsITION 1.6. Let us assume that the elements a, g = L,(E, )
satisfy the nonabelian congruences. From Corollary 1.3:

()  Ly(E,Ker(x))” = Noi(L,(E, HY))? mod p? for every y : HY — u,;
(i) Tl 010y Lo(E TV = Noa(Ly(E, HS))P"*D mod p’.

Any character on H? is of the form le X'y, for appropriately chosen integers s and ¢.
If we take as representatives

T = {XAIXIAZ W]th 0 S IS p - 1} U {XAz}v

every subgroup J € ZY of index pin H? arises as the kernel of x for some y € 7.
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Therefore, it is sufficient to check (i) at characters in 7, that is, to check:
(i) Ly(E, Ker(XA]X’AZ))” = No,1(L,(E, H?))” mod pPwith0<t<p-1;
()" Ly(E,Ker(xa,))" = No(Ly(E, HZ)” mod p?.

Evaluating the above pair at the trivial character ¢ = 1 and applying Theorem 1.5,
one obtains the congruences (1.6.1) and (1.6.2), respectively.

Focusing now on condition (ii), the product over subgroups J € ZY with [H? -
J1=p is identical to the product over J = Ker( y), where y ranges over elements
from 7. In particular, we obtain the equivalent condition:

(i) [Tyer Lp(E.Ker(x))” = Noj(Ly(E. HS)"*D mod p’.
Lastly, evaluating at y = 1 and applying Theorem 1.5 again, the final congruence (1.6.3)
falls out immediately.

The proof of the proposition is complete. O
6.1. Numerical results for d =2 and n = 1. Recall that each representation
Py v, = Indgw )( )(ZI )(’Az) was of degree p — 1. The goal is to numerically verify the

1 2 P

congruences (1.6.1)—(1.6.3) in Proposition 1.6, but, due to computational limitations,
these are only checked for p = 3 and p = 5. We have tabulated the following L-value

information in Tables 1, 2, 3 and 4:
L(E, pyypry - D) X [discqqazayimy

QQLQ;) D

o LF = L*(E’pXZIX/AZ) = ’

P2 i LEA(pXA;XA'Z)
— LD

( LE’é(pXAiXAE) )p (LE’é(p)(Az) X I—[tp:_Ol LEvé(pXAlXA’z )’
° = .
st -EE,A(@;:; w’) L A(@fj wl)PP+D

The first quantity is a rational number (in fact, it turns out to be an integer in every case
considered here), while the latter four quantities are p-adic numbers whose coefficients
have been expressed below to an accuracy of order O(p°).

RemARK. In particular, congruences (1.6.1)—(1.6.2) hold at each pair (s, ) provided

that
LE,A(pXA;XAfZ) (1 lel 7
-5 = ,... €1 +p po
Lo @ wi)
whilst congruence (1.6.3) is true if and only if
( LEsA(p)(A;'XAIZ)
51 -EE,A(@;:; w’)

The data below confirm that these hold for all examples calculated in this article.

U 3
) =[1,0,0,...] € 1 + p’Z,.
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34

3, E = 11A3 with equation y*> + y = x> — x.

TaBLE 1. p

U )

2
2 .
J
ow)

‘LEA('O)(A;XA
LE,A(@]I:

)

p-2
(D«
J=0

Lea

)

XAS XA

Lealp

L*

t
2

K
1

AS

1

2

[1,0,0,0,2,1,1,2,2]

[1,0,0,2,1,2,2,1,1]

[1,0,0,0,1,0,1,1,2]

Bdw/)

1

1

1

L,
[1,0,0,0,2,0,1,2,2]

(1,2,2,1,2,1,0,0,0]

(1,1,0,2,1,0, 1,2,2]

[1,0,2,0,1,0,1,0,0]

1

2

0]

—

. L
2
1

0
0
0

>

2
0
2

>

1

0
0
1

(1,

1

0
0
0

2]
0]

o~

s Uy &y
s Us 1y

>
>

1
2

s
s

1
[

1
1

[1,0,0,0,0,1,0,1,2]

[1,0,2,1,1,0,2,0,0]

(2,1,2,0,1,2,0,2,2]

(2,1,0,0,1,2,1,0,0]

1

2

— ==
(=]

.2,1,0,0,
.2,2,0,1,
.1, 1,0, 1,

1
1
0

S =i

]
]
s

(1,2
(1,2
(1,2

SESES
SRS

0,
0,
0,

>
s
s

2
2
2

[1,0,0.1,2,0,2,0,1]

[1,0,2,1,1,0,2,0,0]

[1,2,2,2,2,2,2,0,0]

(1,2,1,2,2,1,1,2,2]

1

2

0]
0]
2]

>

,2,2,2,0
,1,0,0,0
.0,0,2,2,

2
2
0

R =}

. 0,
, 1
)2,

1
[
[

oo o
SS S

,2,
, 2,
)2,

2
2
2

(1,
(L,
(L,

1
4
1

62
124
31

[1,0,0.2,2,2,2,2,2]
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[35]

Table 1. Continued.

1

2

[1,0,0,0,2,1,0,0,0]

[1,0,0,0,0,0,2,0,0]

(1,1,0,1,1,2,1,0,0]

(1,2,0,1,1,1,1,0,0]

(1,0,0,0,0,2,1,2,2]

4

>
s
s

2
1
2

>
>
>

0
1
2

>
>
>

1
2
0

LE,A(ps,t)

[1,0,0,1,2,1,2,0,0]

Lea(®w)

5,1

[1,0,0,2,1,2,2,2,2]

[1,0,0,0,2,0,0,1,0]

[1,0,0.0,0,2,0,2,2]

(2,2,0,0,1,2,1,2,2] [1,2,0,2,2,2,0,0,0]

(2,0,0,0,2,0,2,1,2]

1

7

——_r—

aNOoO A

,2,2,1,1,1,2,
,1,1,0,2,1,0,
,2,0,2,1,2,2,

1,2
1,2
1,0

s

1
1
1

,2
,2
2

1
1
1,

s

2,
2,
2

1
64
1

91
637

[1,0,0,1,1,0,1,0,0]
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0
2
0

-2 .
J
0“’)

AJX AL )

(@

X,

Lealp

Lea

[1,1,0,0,0,0,0,2,2]

[l
[
(1

1
1
1

>
>
>

1
1
1

2
2
2

@w/‘

p-2

1
1
1

[1,0,0,1,1,0,2,2,2]

LEea

[1,0,1,1,2,2, 1, 1, 2]

Table 1. Continued.
77C1 with equation y> + xy = x> + x> + 4x + 11.

D. Delbourgo and L. Peters

)

3,E
XA;)(A

[1,1,1,2,0,2,1,2,2]
Lea(p

TABLE 2. p

1

L

t
2

7
A

s
1

A

36

SRR RS SRR SRR
“ S S “—Ssa SRR} e Rkl
of =i — Sl ol =i | St
ame e scaa s-<ea ) RS A v e
AN — A S oA AN AN m\. @ 3,0,2,2,2,2,
A= S S Al — S A — — . At/IA,\O,3,2,2,2,4,
NS =a P S o= G| JlFSSS=+
dS =< S—=dac S—=dac N Sl S =S
—— —— — - — — - - — = —_ - = - -
b . e e et b + [[[[[[
e Y N & e 2
o oo — oo oo ™ AN AN o\l 1l A R S S 2,
SSSS = |83 = |adddda S ~ Nadaaa ~
deadd = [ = |dadd S 1 i ed i e e ed o
SSSS 9 |daddad — |02 —2o2 S Plame |lSSssss @
daddad O lcscss 9 |csss S g DI |edmma o
dadd Z |SSSS I |SssS I §| 7 |dddddd G
°cceS = 12<2<e< = |Z2Zn = g cesesses 2
ceceee Teceee To|eesee I = o oaoaa o
i/ e/l Aol Al = QAN N,

—_— —_— —_—— —_

315 315 315 < G- )
Sacodlg|laaad g|g|lacoa (g = TSYSTS a8
SIS~ ~d = T |ad =S Sa T I . ol =i S e = Al
S Sq|G | TS JlG(S S| I R R RIS
— N oA A~ S a3 “ = a9 —~a =
Sac=[CHosca~ [Hs—=dc 3 | & |deidas= 3
TS Sd T [ Sdd T [ Sdsg — Al T S SdS e
NS =l =S Al a =S w N SSaidad
oo ~c Sa~o Sa—~o 2 S S —
) o of of of o of of of £ ol ol ol of of o

-l

a8 ARSI 5@%8 5 NPV AR
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TaBLE 4. p = 5, E = 56A1 with equation y* = x> + x + 2.

P2 LeA(Pypry)

AL Leaeugr) Lea( D) —

2 =0 -Eblé(@/;:o w./)
2 16 (243,22 1444 [21,0,3021,0,00 (14444442 4]
18 36 [22.0.1,1,3,0.3.4] [2.1.0,3.0,2,1,0,0] [1,3.3.4,0,2,3.0,0]
6 36 (244020 1,34 (210302100 [1,4223,041,0]
12 16 [21.3.2.1,1.3.3.4] [21,0,3,0,2,1,0,0] [1,0.4,2.1,0,4,0,0]
48 36 [24,4,0,2,0,1,3,4] [21,0,3,0,21,0,0] [1,4,2,23,0,4 1,0]
3 4 [21.3.21,1.33.4 [21,0,3.0,21,0,0] [1.0,4,2.1,0,4,0,0]

(ﬂ LE‘é(p”))p: 1,0,0,1,4,3,2,1,0]
Tes@on) ~ OO LASSL

We conclude by discussing what one might expect if the y-invariants are nonzero.
Recall that S Cc Z,, [[Gfi)]] denoted a canonical Ore set; let us define S* := |50 P"'S.
Burns and Venjakob [3, Proposition 3.4] established the existence of an isomorphism

K1(Z,[G¥9]s) = Ki(Z,[G9]s) ® Ko(F,[GL])

and the right-most module is free of finite rank (encoding all the u-invariant data).
Therefore, one expects that, in addition to the congruences (1.1),,; and (1.2),,
holding, there should be a system of exact relations amongst the p-invariants of
L,(E,J). As an illustration, if (d,m) = (2,1) and the u-invariant of L,(E, ®w’) is
positive, we suspect that the numerical congruences above should hold higher than just
the third power of p. This is a computational question worthy of future investigation.
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