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A De Rham—Witt approach to crystalline rational
homotopy theory

Minhyong Kim and Richard M. Hain

ABSTRACT

We give a definition of the crystalline fundamental group of suitable log schemes in
positive characteristic using the techniques of rational homotopy theory applied to the
De Rham-Witt complex.

1. Introduction

Throughout this paper, k will denote a perfect field of characteristic p > 0, W,, = W, (k) the ring
of Witt vectors of k of length n, and W = @Wn In addition, K denotes the fraction field of W.

We wish to present a relatively direct approach to the unipotent crystalline fundamental group
of a variety over k using the De Rham-Witt (DRW) approach [Blo77, HK94, Hyo91, Hyo88, I1179]
and constructions that come from rational homotopy theory [Che77, Hai87a, Hai87b, Mor78, Nav87,
Qui69, Sul77]. In the process, to a smooth connected proper fine log scheme Y over k of Cartier
type, we will associate a canonical commutative differential graded algebra that deserves to be called
the unipotent crystalline rational homotopy type. The zeroth cohomology of the bar construction on
this algebra will then give us the coordinate ring of the unipotent crystalline fundamental group.
The use of the DRW complex allows us to easily endow the crystalline fundamental group with
natural expected structures such as Frobenius and monodromy operators and, importantly, a weight
filtration.

In the influential paper [Del89], Deligne outlined a motivic theory of the fundamental group.
Given a variety V defined over a number field F', one should have a unipotent algebraic funda-
mental group corresponding to each cohomology theory associated to V', Betti, étale, De Rham,
and crystalline, together with suitable comparison isomorphisms between them. Following up on
this idea, Deligne gave a Tannakian definition of a crystalline fundamental group using the theory
of the De Rham fundamental group for a variety with good reduction. That is, if v is a prime of F,
the De Rham fundamental group over F, together with a Frobenius action was taken to define the
crystalline fundamental group of the special fiber. This definition was reasonable in the context
of Deligne’s paper since he was primarily interested in varieties over number fields and, of course,
one could have started from a variety defined over F;, in this construction. This corresponds to the
viewpoint that for a variety over F),, the crystalline cohomology is just ‘extra structure’ on De Rham
cohomology. However, it is evident that this definition is not quite satisfactory. The most important
problem is that the crystalline fundamental group is not defined intrinsically for a variety in positive
characteristic. Another problem is to deal with the case of bad reduction.

In [CLS99, Shi00, Shi02], Chiarellotto and Le Stum, and independently Shiho, gave an intrinsic
definition of a crystalline fundamental group 7{" of a proper log smooth variety over a perfect field
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of positive characteristic p which is equipped with a comparison isomorphism to 7" in a ‘lifted’
setting. In Shiho, for example, the crystalline fundamental group was defined as the fundamental
group of the category of unipotent isocrystals, and the comparison theorem was effected through
the intermediary of a ‘convergent’ fundamental group, interesting in its own right.

In the present paper, we use an approach to the crystalline fundamental group suggested by the
work of Wojtkowiak [Woj93] where the De Rham rational homotopy groups were constructed over
an arbitrary ground field using cosimplicial schemes. Shiho’s announcement [Shi98] also indicates a
similar approach using a category of ‘complexes’ of schemes. The idea of both authors is to construct
a model for path space purely in the context of algebraic geometry out of which one can extract
the homotopy groups via cohomological techniques.

On the other hand, we exploit the fact that a formal algebraic model already exists for the
cohomology of path space, namely, the bar construction, provided one has a commutative differ-
ential graded algebra (CDGA) which is a ‘purely algebraic’ analogue of the smooth differential
forms. The problem here, as in rational homotopy theory, is that the usual resolutions which one
uses to compute various cohomology groups of sheaves of CDGAs do not give rise to a CDGA
in general, even though they are equipped with a multiplication which is homotopy commutative.
However, it turns out that a CDGA model with the right properties is available from the work
of Navarro-Aznar [Nav87] (already used in [Woj93]), where a derived ‘Thom-Whitney’ functor is
constructed that associates in a canonical fashion a CDGA to a sheaf of CDGAs on a topologi-
cal space. Although the setting for Navarro’s work is the Hodge theory of complex varieties, it is
clear that there is actually a powerful technique that applies to quite general topoi underlying his
constructions. More precisely, all one needs to apply his machinery is a topos with enough points.

The CDGA we use for our definition is the algebra of De Rham-Witt (DRW) differential forms,
considered as a pro-sheaf on the small étale site of a variety. This is very natural since, in many senses,
the DRW differentials are the ‘correct’ analogue of algebraic differential forms suitable for crystalline
constructions. This approach has the added advantage that the definition of 7{" is quite elementary
and the comparison with the De Rham fundamental group requires only existing cohomological
techniques.

But perhaps the main interest in the approach we present is the natural definition of a weight
filtration on the cohomology of the bar construction, and hence, on the coordinate ring and the Lie
algebra of the crystalline fundamental group. For this, we use a variant of the Hyodo—Steenbrink
complex introduced by Mokrane [Mok93], modeled on the complex underlying the ‘limit mixed
Hodge structure’ for homotopy groups [Hai87b].

Referring to the following sections for precise terminology, we state now the main theorems of
the paper.

Let Y be a connected proper smooth fine log scheme over k of Cartier type, where k is endowed
with some fine log structure, and let Wwy be the pro-sheaf of CDGAs consisting of the De Rham—
Witt differential forms of Illusie-Hyodo—Kato.

The crystalline rational homotopy type Ay of Y is defined by the following formula:

Ay = STW mP(G(Wwy))
K
The notation, which will be explained below in detail, is that given a pro-sheaf L, G(L) is its canon-
ical cosimplicial Godement resolution, lln X is the operation which associates to an inverse system
of (cosimplicial) W,-modules the (cosimplicial) W-module obtained by taking the inverse limit,
and then forms a tensor of it with K, and finally, sTw is Navarro-Aznar’s ‘simple Thom—Whitney

algebra’ functor. A choice of a point y determines an augmentation for Ay, and we can form the bar
complex, which we denote by B(Y,y). Then Cr(Y,y) := H°(B(Y,y)) has the natural structure of a
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commutative Hopf algebra filtered by finitely generated Hopf algebras. The crystalline fundamental
group is defined by
71" (Y, y) = Spec Cr(Y, y).

When k is equipped with the log structure of a ‘punctured point’ and the point gives an exact
embedding of log schemes, we will see below that 7{"(Y,y) is naturally equipped with a semi-linear
Frobenius as well as a monodromy operator, which is interpreted as a vector field on 7{", and that
they satisfy the usual relations.

When Y is semi-stable, the weight filtration on the DRW complex induces one on the bar complex
and on Cr(Y,y). An obvious formalism of ‘mixed Frobenius complexes’ then yields our main result,
as follows.

THEOREM 1. Assume that k is finite and that Y is globally the union of smooth components that
meet transversally. Then the spectral sequence for the weight filtration degenerates at Ey and gives
Cr(Y,y) the structure of a mixed isocrystal.

This structure is compatible with the Hopf algebra structure, and hence, also induces the struc-
ture of a mixed isocrystal on Lie(n{"(Y,y)).

If X is a log smooth variety over a field F' of characteristic 0, we associate to X its De Rham
rational homotopy type by the formula

Ax = strwl'(G(Qx/F)).
Given an augmentation associated to a point x, one then forms the bar complex B(X, x) and defines
the De Rham algebra
DR(X,z) := H°(B(X,z)).
The De Rham fundamental group is given by [Woj93]
(X, ) = Spec(DR(X, x)).
As mentioned previously, one advantage of our approach is that Berthelot—Ogus-type comparison

theorems are within the scope of crystalline cohomological techniques.

Let A be a complete discrete valuation ring of mixed characteristic with fraction field F' and
perfect residue field k. Let W be the ring of Witt vectors of k£ with fraction field K.

THEOREM 2. Suppose X is a proper connected smooth scheme over A with a relative normal
crossing divisor D. Equip X with the log structure associated to the divisor D. Denote by X* the
generic fiber of X (with the induced log structure), x a point of X* — D with reduction y € Y — D.
Then

Ax- ~ Ay Q) F,
K
where the isomorphism is in the homotopy category of commutative differential graded algebras
over F. Furthermore,
Cr(Y,y) Q) F ~ DR(X*, x)
K
as commutative Hopf algebras over F'.

COROLLARY 1. With the assumptions of the theorem,

i (X7, 2) > 7 (V) Q) F.
K
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Although the main emphasis in this paper is on fundamental groups, the crystalline rational ho-
motopy type can be used to define higher crystalline homotopy groups in the simply connected case.
In particular, we also get some interesting consequences of the Artin—-Mazur type for the higher
rational homotopy groups of simply connected varieties over number fields from this comparison
theorem.

COROLLARY 2. Let X and X’ be smooth proper connected varieties over a number field F' equipped
with normal crossing divisors D and D' (respectively). Let v be a prime of F where both (X, D) and
(X', D) have good reduction in the sense that both varieties extend to smooth proper schemes over
Or, and the divisors extend to relative normal crossing divisors. Suppose the pairs are isomorphic
mod v and both X — D and X" — D’ are simply connected in any embedding of F into the complex
numbers. Then the higher rational homotopy groups of X — D and X' — D’ are isomorphic for any
embedding of F into the complex numbers.

Wojtkowiak [Wo0j93] had earlier shown that these groups are also independent of the embedding.

One issue that is completely ignored in this paper is the comparison with the Tannakian view.
That is, we do not show that the crystalline m; we define classifies unipotent isocrystals. We hope
to carry out this comparison in a subsequent paper. Another topic we hope to deal with is relative
completions of crystalline fundamental groups with coefficients in an F-isocrystal, the crystalline
analogue of the completion of the fundamental group of a smooth variety relative to a variation of
Hodge structure, which is considered in [Hai98|. For a related but different approach, the reader is
also referred to the paper of Vologodsky [VolO1].

In a forthcoming publication, we will present a generalization of the comparison isomorphism
to incorporate the ‘Hyodo—Kato case’ of semi-stable reduction over a ramified base. This will be
achieved by using an ‘infinitely twisted telescope’ construction and the ideas of [Ogu95]. These ideas

will also be applied to a proof of a p-adic analogue of Oda’s good reduction criterion for curves
[Oda95].

2. Review of Hodge—De Rham theory for homotopy groups

The unipotent De Rham fundamental group ﬂfr(X ,x) of a space X, say with coefficients in C,
can be defined as the complex pro-unipotent completion of the usual fundamental group (X, ).
That is, Wilr(X ) is the initial object in the category of inverse systems of pro-algebraic unipotent
groups U over C equipped with group homomorphisms 1 (X, z) — U.

Assuming the space has finite-dimensional H', one realization is constructed by considering the
group algebra R = Cmy(X, ) together with the augmentation ideal J, and then the completion R
of R with respect to the augmentation ideal. R naturally has the structure of a Hopf algebra induced
by the comultiplication ¢ defined on the image of elements of 71 by ¢(g) = g®g. This comultiplication
extends uniquely to R and the complex points of U can be realized as the group-like elements in ];?,
i.e. u € R such that ¢(u) = v ® u.

More precisely, U is defined by the inverse system given by group-like elements in R/ J". The Lie
algebra of the De Rham fundamental group can then be realized as the primitive elements inside R,
i.e. those elements t that satisfy ¢(t) =t ®@ 1+ 1®1t.

Another way of understanding this construction is to consider the dual ind-Hopf algebra
R" :=lim Homc(R/J",C).

The remarks above correspond to the fact that R* is the affine coordinate ring of ©{* (X, x).

If X is a smooth complex variety, ﬂfr(X ,x) is also the Tannaka group of the category of unipotent
vector bundles with flat connection associated to the fiber functor of evaluation at x.
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The point of view of this paper comes from the construction of the complex (or real) De Rham
fundamental group via iterated integrals of differential forms. That is, if X is a manifold, consider
the CDGA Ax of C° differential forms on X with the augmentation a, given by pull-back to the
point x.

In Chen’s approach [Che77], one constructs locally constant functions on the loop space at =
via iterated integrals, which suffices to construct the coordinate ring. This process is conveniently
formalized using the bar complex B(Ax,a;) associated to the augmented algebra. The detailed
definition will be reviewed below, but we note that the essential part of the zeroth-degree term is
given by

o S
D (@)
s=0
Given a tensor product a; ®- - -®ag from this vector space, we get a function on loop space according

to the rule
fy»—>/a1a2---as,
¥

where the last quantity is the iterated integral defined according to the following prescription:
Write v*(a;) = fi(t) dt. Then

/ G0z G = / Fi(t) falts) - Fulta) dty dty - di..
o 0<t <ty <1

The elements of H%(B) then correspond to locally constant functions on the loop space.

We will see below that B(Ax,a,) also has the structure of a Hopf algebra which induces a
commutative Hopf algebra structure on H%(B).

Chen’s theorem [Che77] says that
F?r(Xv w)(C = SpeC(HO(B)),

provided we interpret the right-hand side suitably as a pro-algebraic group. (This is done using the
bar filtration, also reviewed below.) In the simply connected case, we can also recover the higher
complex homotopy groups from the higher cohomology of the bar complex.

One advantage of this approach as opposed to Sullivan’s theory of minimal models is that the
transparent relation between Ax and the bar complex enables one to carry over extra structure
from the differential forms naturally to the bar complex. In precise terms, the bar complex is
functorial in Ax, while the minimal model is functorial only in an appropriate homotopy category.
This allowed, for example, the construction of natural mixed Hodge structures on the coordinate
ring of 7" (X, ) [Hai87a] as well as on Lie({" (X, z)) for general varieties over C. Equally important
is the fact that the bar construction is completely algebraic, once one is given Ax. Thus, it can be
built on an arbitrary CDGA over any field of characteristic zero.

3. Algebraic prerequisites: the Thom—Whitney functor and the bar complex

We will quickly review the definitions of [Nav87] and [Hai87a).

Given a category T, we denote by AT the category of cosimplicial objects in 7" and by A™T the
category of augmented cosimplicial objects in T' [Del74].

Let Y be a scheme over k.

Denote by Aq(Y’) the category of pro-objects in the category of sheaves of (graded-)commutative
differential-graded W-algebras (CDGAs) ‘up to isogeny’ on the small étale site of Y. So an object
of Aq(Y') consists of a sequence A = (A,)p>1, where each A,, is a W,-algebra and we are given
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transition maps A, 11 — A, which we assume to be a surjection. Morphisms from A = (A,) to
B = (By,) are given by

Hom(A, B) = lim lim Hom(A;, B; ] ®Q
] 7,
We do not distinguish notationally between the ring W and the pro-sheaf W regarded as an object
of Aq(Y') for various Y. Also, the scheme Y will often be suppressed from the notation if the context
makes it unnecessary.

Note that an object A of Aq also carries a superscript corresponding to the complex degree and
an object G of AAq carries two superscripts G**, the first denoting cosimplicial degree and the
second complex degree. These superscripts will usually be suppressed from our notation. In other
contexts as well, we will avoid making scripts explicit unless necessary for clarity. (In fact, it is our
experience that it enhances clarity most of the time to avoid thinking about scripts.)

A word about our convention: When referring to various (pro-)sheaves with extra structure,
we will often suppress the ‘sheaf’ in their designations unless forced upon us by considerations of
clarity, and similarly we will be somewhat careless with localization up to isogeny. So an object
of Aq(Y') will usually just be called a CDGA on Y. Also, unless explicitly stated otherwise, an
algebra will refer to a W-algebra. On the other hand, when we put k into the argument of one of
our categories, such as Aq(k), we will be referring to actual objects and not sheaves. Thus, in the
previous sentence, we mean the category of inverse systems of CDGAs over W, and not the category
of sheaves on the étale site of Spec(k). Various constructions will be described in the sheaf case and
can be modified in an obvious way for objects over k.

In a manner analogous to Aq(Y"), we define Shyy,q(Y"), the category of pro-sheaves of W-modules
up to isogeny, and Cy,q(Y"), the category of pro-complexes of sheaves of I¥-modules up to isogeny,
with similar conventions of reference as explained in the previous paragraph. Finally, DGAq(Y’)
will be the category of pro-differential graded W-algebras up to isogeny. Thus, Aq(Y) is a full
subcategory of DGAq(Y') which, in turn, is equipped with a natural forgetful functor to Cyy,q(Y).

Given an object C of Cyy.q, its cohomology sheaves are by definition H'(C) := (H*(Cy,)). In what
follows, of particular importance will be the situation where the H*(C') are objects of Shw,q, that
is, where the transition maps are surjective. Sometimes, we will denote by H(C') the direct sum of
the H'(C) considered as a complex with zero differential. Thus, if A € Aq and the transition maps
for cohomology are surjective, then H(A) is naturally an object of Aq with zero differential. We will
circumvent some foundational annoyances by passing to cohomology sheaves only in situations where
they belong to Shy q. In that case, given two objects C' and C’ of Cyy,q, we say they are quasi-
isomorphic (QI) if there is a map f : C'— C” in Cy,q which induces an isomorphism (in Shy,q) of
cohomology pro-sheaves. We say A and A’ of Aq are multiplicatively QI if they are QI as objects
of Cw,q but via a map in the category Aq.

The homotopy category of Aq is obtained by keeping the same objects and inverting all the
multiplicative quasi-isomorphisms. We will say two objects in Aq are quasi-equivalent (QE) if they
are isomorphic in the homotopy category.

Denote by C(K) the category of complexes of K vector spaces and A (K) the category of CDGAs
over K, equipped with the natural forgetful functor to C(K).

The functor lim - from Cy,q(k) to C(K) takes a pro-complex of W,-modules to its inverse limit,
which is a W-module, and then forms a tensor of it with K. The limit lim  takes Aq(k) to A(K).
We use the same notation for the functor induced on ACw,q(k).

As explained in [Nav87, pp. 13-14 and p. 23], given an object G of AA(K) there is the ‘usual’
way of giving to s(G), the associated simple complex, a multiplication, making it into a DGA over K,
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depending on the choice of ‘Eilenberg—Zilber transformations’. We will use the notation s(G) for
this DGA, whether or not we are remembering its multiplicative structure. This multiplication will
not be graded-commutative in general. On the other hand, the multiplication induced on H (s(G))
is commutative, and it can be considered as an object of A(K).

To construct the Thom—Whitney algebra requires a choice of an algebraic model for differential
forms on the standard simplices. Let E, be the algebra of global differential forms relative to
Spec(K) on the variety A,, := Spec(K|[to,...,t,]/(O_t; —1)). The A,, form a cosimplicial scheme
in the usual manner via coface maps 6° : A,, — A, ;1 given by

(t07"'>tn) = (tov"'ati—lyovtiv"'tn)
and codegeneracy maps s; : A1 — A, given by

(to, S ,tn+1) — (to,. ot i, .tn+1),

so that the F, form a simplicial CDGA over K that we will denote by E. A standard computation
shows that s(FE) only has cohomology in degree 0 of dimension 1.

Now, the Thom—Whitney algebra stw(G) of G is by definition the simple CDGA associated to
the end [Mac98] of E @ G considered as a functor from Af,, X Ayon to commutative differential
bi-graded algebras over K. Here, Ao, refers to the subcategory of A where the morphisms are
strictly increasing maps. Thus, it is an object of A(K). We elaborate a bit on this definition
(using scripts): Elements of £ ® G will be of the form

(M chwgm)
n,m
where n is the simplicial degree, m is the cosimplicial degree, and p,q are the complex degrees.
The elements of the end are compatible sequences (indexed by n € N)

[Taer,

where compatibility refers to the equality:
9 ® 1[Zeﬁ+1 ®g"+1’q} =1 ®5i[2eg ®g”"1] € E,®G"!

for all n. Since we still have the complex degrees p and g left, the result is a commutative differential
(CD) bi-graded algebra. One then takes the associated simple complex to get the CDGA stw(G).

Readers unfamiliar with the notion of ends should apply it to the bifunctor £ ® S as an
exercise, where S* is the cosimplicial algebra (not the complex) of singular cochains with K-values
on a topological space X. (One gets Sullivan’s polynomial differential forms on X with values in K.)

We note that both s and stw define functors s, stw : AA(K) — C(K). By using an integral
version of the simplices, we could define sTw also for cosimplicial W-algebras so that the construction
commutes with l&nK On the other hand, the comparison with s, to be discussed below, will not
work at the integral level.

Given choices of geometric points over all the points of Y, we can construct cosimplicial Gode-
ment resolutions in the usual fashion level by level [God58] for a pro-sheaf. So from an object
C € Cw,q(Y) we obtain an object of ACw,q(Y"), which we will call the Godement resolution of C
and denote by G(C). If A € Aq, then G(A) € AAq. Applying the global section functor I' and
the associated simple complex functor s, we get an object s(I'(G(C))) in Cw,q(k) which represents
RT'(C). When we write RI'(C), therefore, we will mean this explicit pro-complex. More important
for our purposes is

FIK(C) = lims(T(G(C) = s<1%n<r<a<c>>>).
It is a standard fact that if C' is quasi-isomorphic to C’, then Rk (C) is QI to Rk (C”).
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As mentioned above, if we start with A € Aq(Y), RI'x(A) will only be a DGA over K, not
necessarily commutative. On the other hand, we can construct the object

TW(A) := sTw<1%nF(G(A))>7

which lies in A(K).
The proofs of the following are in Navarro-Aznar’s paper [Nav87].

LEMMA 1 [Nav87, Theorem 2.14]. There is a natural transformation of functors on AAg(k),

I':srwolim — solim
K K

which induces quasi-isomorphisms when evaluated on objects of AAq(k), and furthermore induces
an isomorphism of CDGAs at the level of cohomology.

COROLLARY 3 [Nav87, (4.4)]. Given A € Aq(Y'), there is a QI of complexes
TW(A) ~ RT'g(A)
which induces an algebra isomorphism on cohomology.

COROLLARY 4 [Nav87, (4.6)]. If A is QI to A" in Aq(Y'), then TW (A) is QI to TW (A") as CDGAs
over K.

LEMMA 2 [Nav87, (3.7)]. Let C* be an object of At Aq(k) with CT™~1 = A and C = CT|A.
Thus we have two maps of complexes

lim A — sTw lim(C),  lim A — slim(C).
K K K K

The natural transformation I gives rise to the following commutative diagram.
stw lim  (C)

T

fm, 4 s {m

C)

K

Thus, if the second map is a QI, then the first is a multiplicative quasi-isomorphism.

It will be convenient to have the Thom—Whitney functors also defined for cosimplicial sheaves
of CDGAs. This is easily achieved by applying stw twice: If A is a cosimplicial CDGA on Y,
then each TW(A™) is a CDGA over K and they fit together to form a cosimplicial CDGA over K.
Applying sTw to this gives us a CDGA that we will denote by TW(A"). The following is easily
deduced by integrating twice.

LEMMA 3. We have that
TW(A') ~ Rl (s(A)).

Similarly, suppose Y is a simplicial scheme and A is a CDGA over Y. We see then that the
TW(A,) are objects of A(K) and they come together to form an object of AA(K). We simply

apply sTw again to get
TW(A) == stw({TW(An)}n)-

The usual RT' i on such an object can be constructed as s({ RI'k (Ay) }n) so applying the integration
functor twice gives us a QI.
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LEMMA 4. We have that
TW(A) ~ RI'k(A).

COROLLARY 5. Let p: Y — Y be a simplicial hypercovering which satisfies cohomological 1-descent
for the étale topology. Let A be a CDGA on Y, A a CDGA on Y., and suppose we have a QI
p*A ~ A . Then this induces a QI

TW(A) ~ TW(A).

There is a version of the functor TW for filtered CDGAs [Nav87, § 6].

Denote by AFq(Y') the category of filtered pro-CDGAs on Y up to isogeny. So an object is a
pair (A, F') where A is an object of Aq(Y) and F is a multiplicative decreasing filtration of A.
Thus, we are given subobjects F! A,, for each i € Z and each level n such that F't1A4, C FﬁAn and
the transition maps send Fﬁ;An surjectively to Ffl_lAn_l. Furthermore, we have FﬁFﬂL - Fﬁﬂ at
each level. Finally, the morphisms are defined by

Hom s v (A, F), (A, F')) o= [Lm lim Hom((4,. F,). (4, F,)| @ Q.

m n

Let (A, F) be an object of AAFQ(Y). Then we can define the filtered CDGA TW (A, F) over K.
in a manner entirely analogous to the previous discussion: One takes the simple filtered CDGA
associated to the end of E®lim I'(G(A, F))) where the filtration on the tensor product is induced
by the given filtration F' on A and the trivial decreasing filtration € of E defined by

. E, i<0,
6Z(E):{oj z'>0

We also have the functor s which associates to (A, F) the filtered DGA (s(K),s(F)).
When applied to objects of AAFqg(k), we can again compose with inverse limits to end up with
cosimplicial filtered CDGAs over K.

LeMMA 5 [Nav87, Lemma 6.3, (6.7)]. The natural transformation

I':srwolim — solim
K K

of functors on AAFq(k) discussed previously also gives a filtered quasi-isomorphism which induces
in cohomology an isomorphism of filtered CDGAs.

If we denote by RI'k (A, F) the filtered DGA

(RFK(A), s<@r(G(F))>>.

K

Then we have the following corollaries.
COROLLARY 6. There is a filtered QI
TW(A,F) ~lim RU'k (A, F)
of complexes of K-vector spaces which induces an isomorphism of filtered CDGAs in cohomology.
COROLLARY 7. TW takes filtered QIs to filtered QIs [Nav87, (6.14)].
We now give a brief discussion of the bar complex.
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Let A€ A(K) and let a : A — K be an augmentation. Assume throughout this discussion that
A has connected cohomology, that is, H’(A) = K, and has no cohomology in negative degrees.
Define the bar complex B(A,a) € C(K) by the formulas in [Hai87a, pp. 275-276]: Let I be the
augmentation ideal and

bt~ (@1).

where the outer superscript ¢ denotes the subset of elements of degree t. We denote the element
a4 @ @ ag
of B™%!(A,a) by [ai|-- |as].
There are two differentials do and d; (the ‘combinatorial” and ‘internal’ differentials),
dC . B—S,t N B—S-i—l,t dI . B—S,t N B—S,t+l

given by the formulas:
s—1 '
do([ar] -+ las]) == D (1) [Jar| -+ |Jai 1| Jai A aggr]aival - |ag]
i=1
where J(v) = (—1)9€8vy and

di(far] - as]) = (=D Jar| -+ |Jai1|dailaisr|aigal - - |ag).
=1

These differentials make the direct sum of the B~%! into a double complex and we denote by
B(A,a) the associated total complex.

There is a filtration B on B given by

B~ = B wt
D

called the bar filtration.

Denote by

BoH(B(A,a)) C BiH(B(A,a)) C BoH(B(A,a)) C ---

the filtration induced on the cohomology, where one notes that the signs of the indices have been
reversed with respect to the bar filtration. That is,

B.H :=Im(H(B™")).

Let E, be the spectral sequence, the Filenberg—Moore spectral sequence, associated with the bar
filtration and converging to the cohomology of the bar complex. We have for the E-term,

By~ B (H(4)),
the terms of the bar complex on the cohomology of A regarded as an augmented algebra.

In particular,

B[ = ® H(A).

In any case, we see that if A has coherent cohomology, that is, if all the H? are finite-dimensional
K-vector spaces, then the B, H"(B(A,a)) are also finite-dimensional for all n. We note that for co-
herence of B,H(B(A, a)) we just need the coherence of H'(A). If A has coherent cohomology which
furthermore occurs only in bounded degrees, we also see that B,H(B(A,a)) is finite-dimensional
over K for each r.
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There is a multiplicative structure on B(A,a) given by the formula [Hai87a, p. 27§]

lax| - [ar][aria] -+ larrs) = e(@)anm)] - laa(ris),

where o runs over all shuffles of type (r,s) and € : X, — {£1} is the representation of the
symmetric group obtained by giving a; weight —1 + dega;. That is, transpositions contribute a
minus sign only when switching two elements of even degree.

We also have the comultiplication:

S

las] -+ las) = [aa] -+ [ai] @ [aiga] -+ |as]
i=1

that combines with the multiplication to give B(A,a) the structure of a differential graded Hopf
algebra over K. This induces a commutative Hopf algebra structure on H°(B(A,a)). The bar
filtration on B(A,a) is preserved by the comultiplication and hence we get a filtration of B(A,a)
by sub-Hopf algebras B,.(A,a), defined to be the subalgebra generated by the rth level of the bar
filtration. We will be mostly interested in the induced filtration of H(B(A, a)), which we will denote
by H,.(B(A,a)). If H(A) is coherent with bounded degree and H(A) = K, we see that this induces
a filtration of H(B(A,a)) by finitely generated subalgebras. Similarly, if H' is finite-dimensional,
then HY(B(A,a)) is filtered by finitely generated subalgebras HY(B(A, a)).

We will need an algebraic fact about the bar complex to compare fundamental groups to ho-
mology. The following result is of course well known (cf. e.g. [Sul77]), but we were unable to locate
a proof involving the maps that we need for our purposes. Therefore, we include one here.

As mentioned, with our assumptions, H(B(A, a)) has the structure of a non-negatively graded,
commutative Hopf algebra. Each closed element f € A! determines a closed element [f] of
H°(B(A,a)). Since [df] = d[f] for all f in the augmentation ideal, [f] depends only on the class
of fin H'(A). There is therefore a well-defined linear mapping

¢: H' (A)1] — H°(B(A,a)).

Denote the bicommutative Hopf algebra generated by the vector space V by SV. Since H(B(A4,a))
is commutative, ¢ induces an algebra homomorphism

¢ S(H'(A)[1]) — H(B(4,4a)).
Since each [f] is a primitive element of H°(B(A,a)), ¢ is a Hopf algebra homomorphism.

PROPOSITION 1. The homomorphism
¢ S(H'(A)1]) — H(B(4,a))
is the inclusion of the unique maximal cocommutative Hopf subalgebra.

Proof. First note that S(H!(A)[1]) is naturally graded by the symmetric powers of its primitives:
S(H'(A)[1]) = @ s*(H (A)[1)]).
520

If we set

B.S(H (A)1]) = @ S'(H (A1),

t<s

then S(H'(A)[1]) is isomorphic to its associated graded object and also the homomorphism ¢ is
filtration preserving. One therefore has a homomorphism

GrP¢: S(H'(A)1]) —» GrPHY(B(A,a)) = P E>*.

s>0
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When 1 < r < 7’ < oo, we have inclusions

@ET_S’S ) @E;s,s ) @Eo_os’s‘

520 520 520

Define 55,« to be the composite

SEA)]) P B — @ B

s=20 s=20

Since each FE, is a connected, graded Hopf algebra and since qu is injective on primitives, each
qﬁr, 1 < r < oo, is injective. Since Gquﬁ is injective, qﬁ is also injective.

It remains to prove maximality. First, the dual of
@El—s,s

is the tensor algebra on the dual of H'(A)[1]; its Hopf algebra structure is characterized by the
fact that the dual of H'(A)[1] is primitive. This has, as maximal commutative quotient, the free
bicommutative Hopf algebra generated by the dual of H'(A)[1]. It follows that 1 is the inclusion
of the unique maximal bicommutative sub-Hopf algebra of &E; *°. But since

OE; ™ 2 ®E, " 2 0E; ™" 2 --- D Ex",

it follows that qg,n is the inclusion of the unique maximal bicommutative Hopf subalgebra of ®FE, *°
whenever 1 < r < oco.

The result now follows as <;300 = GrP (;AS and since

H°(B(A,a)) = | | B.H(B(A, a)). O
520

4. Review of the De Rham—Witt complex

We will work in the setting of log schemes, and make extensive use of the theory developed by
Kato [Kat89], Hyodo [Hyo91, Hyo88], and Hyodo-Kato [HK94]. The reader should consult these
articles for precise notions and notation. Furthermore, a number of important gaps in the literature
have been filled in the recent preprint of Nakkajima [Nak02]. We will cite the necessary results as
we proceed.

Denote by Sy the scheme Spec(k) endowed with a fine log structure L. Unless the context makes
it necessary to be careful with the distinction, we will denote by the same letter the scheme without
the log structure. L determines a canonical log structure on W = W (k) induced by the pre-log
structure that composes L. — k with the Teichmiiller lift. One has a similar construction for any
log scheme Y over k. By W(Y'), we denote the system of log schemes (or ind-log scheme) with
underlying space the same as the space of Y, but with structure sheaves W, (Oy) and the log
structures lifted with the Teichmiiller character. This definition extends naturally to simplicial
log schemes Y. over k to give simplicial ind-log schemes W (Y)).

Denote by S the scheme Spec(W), again with and without the log structure. Let Y be a smooth,
fine log scheme over Sy of Cartier type. For each n > 1, Hyodo and Kato define a level n De Rham—
Witt complex Wyowy (with respect to S,) which is a (sheaf of) commutative differential graded
algebra(s) on the small étale site of (the underlying scheme of) Y equipped with projections 7, :
Whw — Wy, _qw. The log-De Rham complex Qy/ s, occurs at the bottom level (that is, Wiwy ), and
in degree zero, we have ang)/ = W, Oy, Serre’s sheaf of Witt vectors. There are also operators,

F:W,w! — Wy, V:W,w!— W, wi,
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extending the usual Frobenius and Verschiebung on WO and satisfying the identities
F(ab) = F(a)F(b), V(F(a)b) = aV(b)
and
FV =VF =p, FdV =d,
which implies
dF = pFd, Vd=pdV.

Here and henceforward, ¢ denotes the Frobenius map of W or W, for all n.

We denote by Wwy the object of Aq(Y'), therefore, a pro-sheaf of CDGAs, given by the system
of W,wy. It should also be noted that F'is multiplicative and agrees with the usual Frobenius on
W,,Oy . The Frobenius of Y itself induces a map ® of Wwy which is p'F in degree 1.

For the purposes of defining the weight filtration, it will be useful to recall the various different
constructions of the DRW complex.

One definition of an§} is as

RZUY/Sn,*(OY/Sn,CryS)a
where uy /g, is the map from the crystalline site of Y with respect to the base S, to the étale site of
Y and Oy/g, crys is the crystalline structure sheaf. That is, W,wj- is the ith crystalline cohomology
sheaf. Note here that the cohomology is taken with respect to the log structure on S,, induced by L.

To ‘compute’ this sheaf, one chooses an embedding system (Y., Z) for Y/S, that is, a simplicial
log scheme p : Y — Y which is a proper hypercovering for the étale topology together with
a closed embedding Y <7, where Z is a simplicial log scheme smooth over S. Let D. be the
divided power (PD) envelope of Y in Z and let 2p be the associated De Rham complex. That is,
Qp, =Qz,/5 &0, Op, viewed as a pro-sheaf on Y;,, and these come together to form a simplicial
pro-sheaf on Y. denoted Cy/g = Cy/g(Y,.Z.) and called the crystalline complex for this embedding
system. Note that Cy g is actually a simplicial pro-sheaf of CDGAs. We will denote by p the map
from Y to Y viewed as a structure map for an augmented simplicial scheme and use the same
letter for the maps from the individual components of Y. Rp*(Cy/ g) is then a cosimplicial object
in the derived category of Cy,q(Y). If we use the natural notation s(Rp.(Cy/s)) for the complex
associated to this cosimplicial object, then according to [HK94, Proposition 2.20],

RUY/S,*(OY/S,cryS) = S(Rp*(OY/S))
canonically as pro-complexes. So
Wi = H'(s(Rp«(Cyys)))-

To see in this description the independence of the embedding system, one merely notes that any
two embedding systems (Y, Z) and (Y',Z’) are dominated by a third (Y”,Z"), which induces
quasi-isomorphisms

Cys(Y,Z) — Cys(Y", Z") — Cys(Y', Z)).

It is worth noting that the DRW complex is a local object, and that, locally, the embedding
system can just be taken as Y—Z, a lifting of Y to a smooth log scheme over S (which exists by
[Kat89, Proposition 3.14]). Then we get the simpler formula

ng; ~ ﬂl(Qz)

These formulas just follow from the definitions, but a harder theorem [HK94, Theorem 4.19] says
that

p*(Wwy) =~ Cy/s
1257

https://doi.org/10.1112/50010437X04000442 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000442

M. Kim AND R. M. HAIN

as pro-sheaves of CDGAs on Y. if we take an embedding system which admits a map W(Y)) — Z
(for example, if Z admits a Frobenius lift).

This is [HK94, Theorem 4.19] except that reference does not mention the multiplicative structure.
However, the compatibility of this isomorphism with the multiplicative structure is contained in the
proof. More precisely, the map from Cy/g to p*(Wwy) is determined by pulling back differentials
via the map W(Y) — Z to the quotient of Qy(y)/s by the differential graded ideal generated
by elements of the form d(all) — al""Yda, where a € Ker(W,(Oy) — Oy ), and then mapping
this quotient algebra to p*(Wwy) by another algebra map. This composed map is proved to be a
quasi-isomorphism.

So we get

TW(Wuwy) ~ TW(Cyys),
which is a QI of CDGAs over K.

Henceforward, assume that Spec(k) is equipped with the log structure of the punctured point,
determined by the map N — k of monoids that sends 1 to 0.

In the construction of the monodromy operator on the crystalline cohomology of Y, a key role
is played by the exact sequence:

0 — Wwy[-1] - Woy — Wwy — 0. (1)

It is constructed as follows:

Equip Spec Wt] with the log structure that takes 1 — t. Let W (t) be the PD envelope of the
ideal (¢) in Wt] equipped with the inverse image log structure. We have the maps

Spec(k)—Spec(W)—Spec(W (t)),

which actually are exact embeddings of log schemes. Thus, we can consider the crystalline coho-
mology of Y with respect to W or with respect to W (t). On the other hand, we have the smooth
structure map Spec W[t] — Spec(W)g where we use the last subscript 0 to denote the fact that W
is being considered with the trivial log structure. Let p: (Y, Z) — Y be an embedding system for
Y when we view it as a log scheme over Spec W[t].

Thus, Z can be viewed as a smooth simplicial log scheme over Spec W[t] or over Spec(W)o.
We will abuse notation slightly and denote by the same Z the base change of Z/W|t] to W {(t).
Therefore, we get a PD pro-De Rham complex €27 for the PD envelope of Y in the smooth log
scheme Z — Spec(W) (‘the De Rham complex of the total space’), and the pro-De Rham complex
Qp for the PD envelope of Y in Z — Spec W (t) (‘the relative De Rham complex’), which give rise
to an exact sequence of pro-sheaves on Y:

0— Qpl[-1] - Q5 — Qp — 0.

The first map takes the differential a to o A dt/t. Taking the tensor product with W preserves the
exactness [HK94, Lemma 2.22|, giving us

0— Qp[-1] QW — Q5 QW — Qp (X)W — 0.
W) w(t) W)

Also, Qp @y @ W is a crystalline complex for Y/S. Now, W& is by definition Rip, (£ 5w @ w).
We remark that W& carries operators F,V,d, 7 satisfying the same relations as and compatible
with those of Ww: One just repeats the construction of [HK94, p. 246-249] using the W flatness of
Q pe® Ww.
To elaborate a bit on the local description, assume that we have a single smooth log scheme Z
over W(t] such that X := Z @y W is a smooth W lift of Y. Equip W[t] with the Frobenius which
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is the usual Frobenius on W and such that ¢ — tP. Also assume that Z admits a Frobenius lift ¢
(compatible with the Frobenius on W{t]) and that Z is a lifting of Z @);, k which is of Cartier type.
In particular, we are assuming that Zy<—Z is an exact closed immersion of log schemes. Such liftings
always exist locally. In this case, Qz/y and Qg both carry operators F which by definition is
(1/p")¢* on the i-forms (p’-divisibility of ¢* on i-forms follows from the exactness of the immersion).
Also, the exact sequence above becomes

0 — Qxw[—1] = Q7w QW — Qx/u — 0.
Wt]

Here, we have used the fact that, for example,

Qo = Qzyw QW (1)

Wit
We have the following important formula:
d- ( ncz—i-l Z kan k Cz Z Fk Cz 1 (2)
0<k<n 0<k<n—1

where C is either 27y, or Qy /. The proof is exactly as in [[I179, Proposition 0.2.3.13], where we
substitute the Cartier isomorphism (4.1.2) and the definition (4.3) of [HK94] for Illusie’s discussion
starting in 0.2.2.2 and up to Proposition 2.3.13. This was pointed out by Jannsen in commentaries (6)
and (11) to Lemma 1.4 of [Hyo91].

Formula (2) implies that

H' <QZ/W (09 Wn> — H'(Qx/w,)
Wit

is surjective for each n: Let a € QZX W be closed mod p™. Then

Z kan—k(ck) + Z ka(dbk)

0<k<n 0<k<n—1

for some c* and b*. Lift these to C* and B* in Qz/w. Then

0<k<n 0<k<n—1

is an element of €27 which is a cocycle mod p" and maps to a. Now take the image of a’ in
Qz/w @ W to get the required surjectivity. Hence, we get the exactness (1) that we want, as soon as
we know that the sequence is independent of the embedding system. (It also shows that the transition
map between levels is surjective.) The proof that Woy and this sequence are independent of the
embedding system proceeds exactly as the proof of the independence of the crystalline cohomology:
Any two embedding systems can be dominated by a third, and the two sequences possess maps to
the third which are isomorphisms. That is, once we know that the sequences are exact and we have
isomorphisms for the maps on either end, the middle map is also an isomorphism.

It has been pointed out to us by the referee that the papers [Hyo91] and [HK94] do not deal
with the question of whether the exact sequence which is defined at each level is compatible with
the projection maps. This issue was remedied carefully in [Nak02, § 6]. Also, in [Nak02, § 10], the
Frobenius compatibility of the exact sequence is checked.

The monodromy operator in crystalline cohomology is the coboundary map H*(Ww) — H'(Ww)
arising from this exact sequence.

An alternative construction of the monodromy operator goes as follows: Define a CDGA Wou]
by adjoining to W& the divided powers of a variable u in degree zero. That is, Wu] is the
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CDGA generated by W& and variables ull, 0,1,2, ..., satisfying the relations dull = (dt/t)uli=1]
and ul% = 1. Thus, W[u] is a ‘divided-power’ Hirsch extension.

Consider the natural map r : Wo[u] — Ww obtained by composing the two maps Wolu| —
Wo — Ww.

LEMMA 6. The map r is a quasi-isomorphism.

Proof. Clearly r is surjective. We can regard Wa|u] as a double complex whose squares look like
—  Woiull - Wit -

! !

— Woitlyli-l o Witz i1l
and we need to prove that the columns are exact for ¢ > 2. However, the map
WoIull — Wiyl
takes aul’l to a dt/tul'~1 and the exact sequence (1) implies the exactness of the sequence
- Wo—-Wo—-Wo—

where each horizontal arrow is given by wedging with dt/t, and the columns of our double complex
come exactly from this sequence. This proves the lemma. ]

W&[u] also carries an F-operator by defining F(ull) = piul?,

Now define the monodromy operator on W&[u] to be the W&-linear map that takes ul? to uli=1.
The quasi-isomorphism above allows us to transfer this to Ww in the derived category which hence
gives us a monodromy operator in cohomology. These identities and F'(dt/t) = dt/t give us the
relation

p®N = NO,
where @ is the operator on Ww(u] and W&[u] equal to p'F in degree i.

LEMMA 7. Viewed as an endomorphism of RI'(Ww) in the derived category of pro-complexes of
W -modules, this monodromy operator agrees with that given by the coboundary map of the exact
sequence (1).

Proof. To compute N on a cocycle a of RI'(Ww), one lifts it to a cocycle ag + aull +... ¢
RT(W®&)[u], that is, an element satisfying [ag] = a and d(ag 4 ayull +---) = 0, applies N to get
a1 +aull+- - - and projects back to RT'(Ww) to get [a;1]. The closedness gives us dag = a; dt/t. Thus,
[a1] is the second component of a cocycle (ag, [a1]) in the cone of the map RI'(Ww[—1]) — RI'(W®)
from (1) which maps to [a1] via the projection of (1). This proves the claim. O

To get the monodromy operator on the homotopy groups, we need a slight modification of W& to
accommodate augmentations. For this, it is important to assume that y € Y is a point such that the
log structure on Y is locally of the form f*L near y, where L is the log structure (of the punctured
point) on k and f : Y — Spec(k) is the structure map. That is, we assume that y : Sy — Y is an
exact embedding of log schemes.

Let I be the kernel of the natural augmentation map of sheaves Ww — y,W. Then I can be
resolved by an ideal in Wa(u] as follows: Let Z be a local lifting (around y) to a smooth log scheme
over W{t] as above and let X = Z ®W[t] W. Lift y to a point & of X. As above, we have the exact
sequence

0—>QD®W[—1]—>QD®W—>QD®W—>0
and we have Qp @ W ~ Qx.
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There is a natural DG ideal J C p @ W defined to be the kernel of the evaluation at z in
degree 0, equal to Q% ® W for i > 2, and in degree 1 consists of the ‘1-forms whose coefficient of
dt/t vanishes at x’. Only the degree-one part requires explanation: Since the log structure on Z is
locally of the form ¢*(N) near x, where g : Z — Spec(Wt]) is the structure map and N is the log
structure defined by the divisor ¢ = 0, an element of Q}) ® W can be locally written as

adt/t+b
near x where b is a ‘usual’ regular differential form near x. Therefore, a(z) is well defined, as is the

subsheaf of 1-forms for which a(z) is zero.

Also, denote by J the augmentation ideal in 2x corresponding to evaluation at x. Then an easy
local calculation gives us an exact sequence

0— J-1]—J—J—0.

The cohomology sheaf of J (regardgd as a pro-sheaf on Y') is naturally identified with the augmen-
tation ideal I C Wwy. Denote by I the cohomology sheaf of J.

LeEMmMA 8. We have a map of exact sequences as follows.
0 - I-1] —- I — I =0

! ! i
0 — Wwyl-1] — Way — Wwy — 0

Proof. We need only check that the sequence
0—=I-1]—=1—-1-0
is exact. But this follows by the same argument as for the complex without augmentations. U

Now, we can form the complex I [u] by adjoining divided powers of log(t) as above, which gives
us a resolution of I. Then I[u] carries an operator N again defined by differentiating with respect
to w.

5. The crystalline fundamental group

Let f:Y — Sy be as in the previous section, except we further assume that Y is connected and
proper. Let y € Y be a k-rational point which is an exact embedding of log schemes.

Let Ay := TW(Wwy ), which we will call the crystalline rational homotopy type of Y. This is a
CDGA over K. It is equipped with a Frobenius ® and a monodromy operator N as described in the
previous section. The point y gives rise to an augmentation map a, : Ay — K as follows: There is
a map I'(G(Wwy)) — G(W) induced by the map that evaluates elements of WOy at y and sends
higher-degree elements to zero. (Here, the Godement resolution G(W) can be taken to be that on
the Zariski site of W.) Note that this is the map induced by the map of sheaves

Ww — y.(W).
This induces a map Ay — Ay, where A, consists of compatible collections of forms on the
algebraic K simplices A, or in other words im I'(Q24,, ). Evaluating at the zero-dimensional simplex

induces a QI Ay — K, which gives us our augmentation. From the definition, we see that the
augmentation ideal is QI to TW(I), where I denotes the kernel of the map Ww — y.(W).

We have that B(Y,y) := B(A(Y),ay) is a DGA over K while H(B(Y,y)) is a K-CDGA. Now
define the K-algebra Cr(Y,y) by the formula

Cr(Y,y) := H(B(Y,y)).
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Thus, Cr(Y,y) is a K-Hopf algebra and has a natural filtration Cr.(Y,y) = H?(B(Y,y)), r =
0,1,2,... by finitely generated subalgebras. (Recall here that H?(B(Y,y)) is the subalgebra gener-
ated by the r-level of the bar filtration. This is also clearly closed under the comultiplication.)

DEFINITION 1. The crystalline fundamental group 7{*(Y,y) is the pro-algebraic group defined by
the inverse system

ﬂfr (Y’ y)T‘ = SpeC( C’rr (Y) y))

The K-points of n{"(Y,y), are therefore the group-like elements in the dual Hopf algebra
Cr, (K y)* :

Now assume that Sy has the log structure L of the punctured point and that the log structure
N on Y satisfies N, = f*(L),. Recall that we have a quasi-isomorphism from TW (I[u]) to TW (I).
Thus, we can also compute the crystalline 7 using the bar complex on the first algebra, which we
will denote by B(Y,y). Since the monodromy operator clearly induces a derivation on TW (I[u]),
we see that it extends naturally to the tensor product derivation on B(Y, y), which commutes
with the differential, and hence on HO(B(Y,y)) ~ Cr(Y,y). Thus, N is naturally realized as a
vector field on w§"(Y,y). Directly from the formulas for the comultiplication and the fact that N
is extended to the bar complex via tensor products, we see that N is compatible with the Hopf
algebra structure, and hence induces a K-linear map of Lie(n{" (Y, y)), since this last is just the dual
to the indecomposables

Q Cr(Y.y) == HB(Y,y))*/[H(B(Y,y))"H'(B(Y.))*].
Here, the superscript (+) refers to the positively graded part. Again because it is defined by a
tensor product, N is also compatible with the bar filtration, hence induces vector fields on all of
the 7" (Y, y),.
On Cr(Y,y) as well, the Frobenius and monodromy operators satisfy the relation
pPN = NO,
since this holds at the level of the CDGA Wa|u].

By Proposition 1 of § 3, we get the relation between the crystalline fundamental group and
crystalline cohomology: There is a natural isomorphism

HE(Y,K) ~ 7%(Y, y)®

where the left-hand side denotes the dual of H..(Y, K), the degree-1 crystalline cohomology with
coefficients in K, and the right-hand side is the abelianization of the crystalline fundamental group.
Since the isomorphism is induced by the inclusion

I[1]—=B(Y,y)

of the augmentation ideal of TW (Wwy ) into the bar complex, it respects the actions of ¢ and N.
One can also phrase this relation in terms of the crystalline Lie algebra as

Hy (Lie(n{' (Y, y))) ~ H{'(Y)",

since the first homology of a Lie algebra is its abelianization.

6. The weight filtration in the semi-stable case: proof of Theorem 1

We give a few definitions preliminary to our discussion of the weight filtration. For this discussion,
let k& now be a finite field with ¢ = p? elements and let M be an F-isocrystal over k, i.e. a vector
space over K equipped with a o-linear bijective map F': M — M. We say M is pure of weight i if
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M is finite-dimensional, and the K-linear map F¢ has an integral characteristic polynomial whose
roots all have absolute value ¢*/2. We say M is mixed [Fal90] if it has an increasing (weight-)filtration
whose associated graded objects are pure. We will denote the weight filtration by P (‘poids’) because
the letter W is used for the DRW complex.

A mized Frobenius complex is a triple (M, N, P) of complexes of F-isocrystals M and N, where
N is equipped with an increasing filtration P which is degree-wise exhaustive and separated (P;Ng =
Ny for i > 0 and P;Ng = 0 for i < 0) and a quasi-isomorphism M ~ N of F-isocrystals, such that
for the spectral sequence associated to the filtration P,

EP = H"P(Gr,N)

is a pure F-isocrystal of weight ¢. In particular, the spectral sequence degenerates at Eo. Morphisms
between any of the previous objects are required to respect all structures: that is, the Frobenius,
the filtration and the map between the two complexes M and N.

The proof of the following is an easy consequence of the definitions and the Kiinneth formula.

LEMMA 9. Let (My, Ny, Py) and (Ma, N2, Py) be two mixed Frobenius complexes. Then
(M1 ® My, Ny @ Na, P @ Py)

is a mixed Frobenius complex.

Define a mixed Frobenius algebra to be a mixed Frobenius complex (M, N, P) where both M
and N are DGAs with multiplicative Frobenii, the QI M ~ N respects the algebra structure, and
the filtration P is multiplicative. We will also assume that all DGAs have connected cohomology.

An augmentation on (M, N, P) is a map of mixed Frobenius algebras to (K, K, t), where K is the
pure crystal of weight zero with o as Frobenius, and ¢ is the trivial filtration such that ¢o(K) = K and
t_1(K)=0.1If (I, J, P) denotes the pair of kernels of an augmentation with the induced filtration,
it is clear that I is still quasi-isomorphic to J. Also, since the filtration on J is induced, we clearly
have an inclusion of Eg-terms EF(J) ¢ EL(N). Now, suppose we have [j] € Gri(J) such that
[7] = [dn] for some n € N. Since d is K-linear, we can always subtract from n its image under the
augmentation. Hence we get [j] = [dn/] for n’ € J.

Thus, we conclude that the Fy of J is a sub-F-isocrystal of the E; for N. Therefore, (I, J, P) is
a mixed Frobenius complex.

Given an augmentation on the mixed Frobenius algebra (M, N, P), we can construct the bar
complexes (B(M), B(N), B(P)), where the filtration B(P) is the convolution [Zuc85, A.2] of the
filtration P and the increasing bar filtration, that is, B, := B™".

LeEMmMA 10. If (M, N, P) is a mixed Frobenius algebra, then (B(M), B(N), B(P)) is a mixed Frobe-
nius complex. If (M, N, P) is furthermore commutative, then the bar complex is a mixed Frobenius
algebra with a comultiplication which is a morphism of mixed Frobenius algebras (from the given
algebra to the tensor product).

Proof. Let I be the augmentation ideal for N. We examine the spectral sequence for the filtration
on B(N). By the convolution formula [Zuc85, A.2], we see that

GrnB(N)= @ Gr{ GrPB(N),

s+t=n
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where GrP refers to the graded objects for the bar filtration. So
E;M = @ GrfGrPB(N)T"
s+t=n

= @ GrfB(N) et

s+t=n

- @ ot (®1)
s+t=n
s —t
= @ Grf<®[>q )
s+t=n

Also one checks readily that the combinatorial differential is zero on Ej, so one gets

B = P Hq—t<Grf<®I>>.

s+t=n
Since @° I is a mixed Frobenius complex, we see that this last object is a pure crystal of weight ¢
as desired.

The second sentence follows directly from the formulas for the multiplication and the comulti-
plication on the bar complex (that is, the fact that they preserve tensor degrees). O

The weight filtration in log-crystalline cohomology was studied by Mokrane [Mok93].
The non-trivial issue of compatibility of the weight filtrations with the projection maps was proved
in the paper [Nak02] of Nakkajima.

For the purposes of this section, Sy = Spec(k) is equipped with the log structure L of the punc-
tured point and we assume that (Y, M) has a log structure which locally fits into a Cartesian diagram

Y, M) — X < (Z,N)
l l !
So — S < Spec(W][t], No)

where Z is a W{t] scheme which is smooth over W with the property that the divisor X over
t = 0 is of normal crossing with special fiber Y and N is the log structure associated to the divisor
E = X 4+ H where H is a divisor which is relatively of normal crossing meeting X transversally.
That is, in étale coordinates,

Z = SpecWlt1,...,ts],
X = Spec Wty ... tn]/(t1 - ta).
Here E is defined by tity-- -t = 0 for some b > a, and the map Z — Spec(W[t]) is given by
t— titg - tg.
Also, Ny is the log structure associated with the divisor t = 0. Assume also that Z has a Frobenius

lift " such that F'(t) = tP(unit). Such a (Z, N) is called an ‘admissible lifting’.

We also assume that Y itself is globally the union of smooth components Yi,...,Y. which
intersect transversally.

At this point we again remind the reader of our convention: Various pro-sheaves of W-modules
will occur in the following discussion. We will treat them as though they were ordinary sheaves unless
serious confusion is likely to result. This is especially important to remember in the discussion of

various cohomology sheaves, since, for example, if C' = {C,,} is a pro-complex, so that each C), is a
W,,-module, then H(C') will mean the pro-system {H (C),)}.
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Choose a local admissible lift as above. Use the notation & = Qz(log £) ®, Ox and w :=
w/(dt/t) so that Ww = H(w) and Ww = H(w). Then Qz(log F) is equipped with the usual weight
filtration P’ given by the number of log poles, so that @ receives a weight filtration defined by

Plo =Tm((PjQz(log E)) ® Ox — @).
Therefore, W@ is naturally equipped with a weight filtration:
PW& :=Im[H(Pjw) — W&
In fact, Mokrane proves that the map
E(P]{QZ(log E) Y Ox) — Wo

is injective. In [Nak02, § 6], it is shown that the weight filtration defined in this way for each level
is actually compatible with the projection maps, thereby showing that the filtration is well defined
on the pro-complex.

Let E' denote the disjoint union of the (i 4 1)-fold intersections of the fiber over Spec(k) of the
components of E. That is:
E'= [ njer(EinY).
[I|=i+1
In Mokrane [Mok93], where the horizontal component is not considered, we had

GrP'Wao = Wwgn[—n](—n).

Here, [—n] refers to a shift of complex degree while (—n) is a Tate twist for the Frobenius action.
It is important to note here that the E° are proper smooth varieties over k and that the graded
pieces are the usual DRW complexes for smooth varieties.

The Hyodo—Steenbrink complex is the simple complex associated to the double complex
WAY .= Wo it  Pwa it i >0,

where the differential d’' : WAY — W A™1J is induced by (—1)7d, d being the differential of W,
and d” : WAY — W A+ is multiplication by dt/t.

The map

Wo—- WA a— adt/t
factors to a map
Ww — WA

which is proved to be a quasi-isomorphism. (The proof in Mokrane is completed in [Nak02].)
Unfortunately, this complex is not a CDGA, so we cannot use it to compute the fundamen-
tal group. We also need to take a little care to incorporate the contributions of the horizontal
component.

An alternative construction in the Hodge-theoretic context was given in [Hai87b], and we will
use a De Rham—-Witt analogue of that construction. It is based on the simplicial scheme obtained
from the components of Y, as occurs often in mixed-Hodge theory.

Let Y denote the disjoint union of the (i 4 1)-fold intersections of the components of Y. That is:
Yi= [ njery;
[I|=i+1

For the local admissible lift, we also get the components X; of X and the corresponding
(i + 1)-fold intersections X*. We also use the obvious notations Y; and X; for intersections of
components indexed by 1.
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Regard the Oy as forming a cosimplicial pro-sheaf on Y.

LEMMA 11. The associated simple complex
OXO — OXI —>
gives a resolution of Ox.

Proof. By localizing in the étale topology, we may assume that the sequence with Ox appended at
the left end is given by

Wit ot/ (- ta) = [T Wl tal /() = T Wt -l /(i) — -+
i i<j

We have canonical isomorphisms

o~

Wt st/ (tiys o tiy) = Wt oty bins e ),
where the * indicates omission of a variable. Therefore, the complex
Wits, . ta] = [[ Wit tal/(6) = [T Wt -t/ (tis ) — -+
i i<j
becomes isomorphic to the tensor product (over W) of the complexes
Wlti] — Wti]/ (t:)

for i =1,...,a and the single term complex Wty i1,...,t,]. Therefore, the Kiinneth formula tells
us that the only cohomology for this tensor product complex occurs at the leftmost end, and is the
image of the map (t1) ® (t2) ® - -+ ® (to) in Wlty,ta, ..., ], i.e. the ideal (¢1---t,). This finishes
the proof of the lemma. O

COROLLARY 8. Let J; be the ideal defining X; and J = Jy ---J, be the ideal defining X. Then we
have an exact sequence of sheaves in the étale topology:

T dyeJo = ®J; = @i+ Tj) — -

1<J
Proof. Consider the following diagram:
0 — J — Oz — Ox — 0
! ! l
0 — @Ji — @(’)Z — Oxo — 0
! ! l
0 — @(Ji+e]j) — @Oz — Ox2 — 0
1<j 1<j
! ! l

All the rows are exact. The last column is exact by the previous lemma. The middle column
is exact for combinatorial reasons: The ith level down is Oz tensored with ¢ copies of the acyclic
complex Z — Z. Therefore, the first column is exact. U

Since Qz(log E) is flat over O, we see that the pro-sheaves

Wxi =wx & OXi = QZ(logE) ®0X1
Oz

1266

https://doi.org/10.1112/50010437X04000442 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000442

CRYSTALLINE RATIONAL HOMOTOPY THEORY

also give a cosimplicial resolution of @. Here, we say a map from a sheaf F' to the degree-zero term
of a cosimplicial sheaf C' is a cosimplicial resolution if it yields an exact complex

F — s(C).
The lemma is saying that
W—Wxo — Wx1 — -+
is exact.

We once more remind the reader that in proofs like that of the previous lemma, one should
actually be arguing level-by-level, e.g. with the rings W,,[t1,t2, ..., ty].

LEMMA 12. Denote by C(W&x) the cosimplical CDGA on 'Y associated to the collection W& i =
H(©Qp, Ox:), and let s(C(Wwx)) be the associated simple complex. So this is the simple complex
associated to the double complex

Woxo — Woxr — ---
Then
Wo — s(C(Wax))

is a quasi-isomorphism.

Proof. Let J; again be the locally principal ideal defining X; in Z and J = [] J;.

First, we note that the (inverse) Cartier isomorphism for Qz(log £') &), k induces one on Wy @,
for each i. To see this, note the following diagram obtained from that of the previous corollary by
forming a tensor with Qz(log E):

0 — JQz(log E) — Qz(log E) - w — 0
! ! !
0 — P 70z (log E) — PzlogE) — wxo — 0
B T !
0 — P+ J)%(lgE) — PQslogE) — dx1 — 0
i<j 1<j
! ! !

The horizontal sequences are short exact and remain so after reducing mod p. So we need
only show that the Cartier isomorphism on Qz(log E') @y, k induces one on JQz(log E) @y k and
(Jiy +---+ Ji,)Q2z(log E) ® k for each collection of indices i1,. .. 4.

One sees this for the complex J;Q2z(log F) @ k by writing it étale locally as the tensor product
of the complexes

(t;) — E[t;] dt;,
klt;] — Klt;] dt;/t;,
for 1 <j<b,j#1, and
klt;] — klt;] dt;,
for j > b, noting that the Cartier isomorphism holds for each term separately (the only new

computation is for the first complex), and using the Kiinneth formula. Exactly the same argument
implies the Cartier isomorphism for the cohomology of the complex

Jil A Jimﬁz(lOgE) & k
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for any collection of indices, and hence for J2z(log E') ® k. For the complex (J; + J;)2z(log E) ® k
we get the result by putting it into an exact sequence

0— J;iJjQz(logE) @ k — (JiQz(logE) ® JjQz(logE)) @k — (J; + J;)Qz(log E) ® k — 0

and using the isomorphism for the first two terms. One can extend this argument to an arbitrary
sum

(Jil 4 Jim)QZ(log E) ® k

by induction on the number of ideals. That is, the same argument as in the previous lemma and
corollary gives us an exact sequence

0— Jiy - Ji, H@Jik H@(Jik—FJil) — = Jy iy +-+ Ji, — 0,
k k<l

and all the terms before the last involve < m ideals. Since the inverse Cartier map is an isomorphism

for each of them, it is an isomorphism for the last term.

Now we can repeat the definitions of [Hyo91, p. 245] verbatim to define the maps p : W,ox —
Whi1wx and p : Wy0xi — W10y for each i and the argument of [Hyo91, (2.2.2)] shows that
they are injective. Furthermore, a repetition of the argument in [Hyo91, (2.4.1)] gives us that
Wh@x /p(Whox) is QI to @x @y k and Wy 1@ i /p(Whwxi) is quasi-isomorphic to @i @y k.
Furthermore, both p and the quasi-isomorphisms Wy, 110y /p(Wp@xi) ~ ©xi Qy k are compatible
with the restrictions from the complexes on X* to that on X*t1. That is, we have an exact sequence
of double complexes:

0 — Wn‘:)X - Wn—l—l‘:}X - Wn-{—l‘:}X/p(Wna)X) — 0

l l !
0 — Wyoxo — Wypwxo — Wipwxo/p(Whoxe) — 0
| l !
0 — Wyox1 — i1yl — n1@0x1 /P(Wrpox1) — 0
l l !
Therefore, the assertion of the lemma is reduced to the case of n = 1, in which case it follows
again from the Cartier isomorphism. O

We will see below in the proof of independence of the weight filtration that this resolution also
is independent of the admissible lift.

A proof identical to Mokrane’s shows that
PiWaoyi = H((Pj(® ® Ox:))),

where the P’ inside the cohomology is again the image of the filtration on Qz(log E), injects
into Wy If one tensors the short exact sequence in [Mok93, Lemme 1.2] with Op, where D;
is one of the components of the divisor over ¢ = 0 (which in our notation would be one of the Xj;),
one gets

0= Pi1(Qz/5(0g(D)) ®o, Op,) —  Fj(§lz5(log(D)) o, Op:)
—  GriQy5(log(D)) ®p, Op, — 0.
Then the retraction used in the proof works equally well for this sequence to show that the cobound-
ary maps of the associated cohomology sequence are zero.

For any fixed set I of indices, the filtration P]’ on wy, is the convolution of an ‘internal’ weight
filtration P’(I) involving log poles coming from components X; for ¢ € I, and an ‘external’ filtration
P'(E) coming from contributions of X for k& ¢ I and the horizontal divisors H;. Hence, on all
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of Wy we can break up the filtration into these two parts. The graded pieces for the two filtrations
are calculated separately using the residue formula as usual:
(i+1

.

P/(I) ~
Gr; ( )sz- = Wy

On the other hand, for each indexing set I C {1,...,a}, we have
P'(E
G?”k ( )WXI - @ QXIUJ/S[_k]J
JC{1,...b}—1,|J|=k

so we get that
Grf (E)in ~ @ QXK [—k]
K

for various indexing sets K of cardinality i+ 14k (allowing multiplicities). Therefore, combining the
convolution formula for the graded pieces together with the injectivity above, we see that the terms

/ ~
Grf Wi

are isomorphic to a direct sum of Wwg, [—j](—j) for indexing sets T' of cardinality i+ 1+ k where k
runs between 0 and j. Note here that the Wwg,, are De Rham-Witt complexes for smooth varieties
(without log structures).

We can also follow Mokrane essentially literally to show that the weight filtration P’ on each
W&y is independent of the admissible lifting. For this reason, we just give a brief sketch: If (Z, X, E)
and (Z', X', E') are two different lifts, the comparison is effected by constructing the blow-up of
Z Xspec(w) Z' along the subscheme ) F; x E; and removing the strict transforms of each Z x E;
and E; x Z'. Denote the resulting scheme by Z” and the exceptional divisor by E”. Denote by X"
the total transform of just the vertical components X; x X/. Finally, let Y be the intersection with
Z" of the total transform of Y, embedded diagonally in Z x Z’. Thus, the local picture looks as
follows:

Z =SpecW(ty,... ,ty], Z' =SpecW|[t,... ,t],
X =SpecWlty,...,ty]/(t1--ts), X' =SpecWIt},...,th]/(t --t.).
Here E is given by t1---t, = 0 and E’ by t| ---t; = 0 for some b > a. Then

Z" = SpecWltt, ...ty th, ..o th, vt o i /() — vite, ...t — upty)

ybmoy
/ TS =3 | +1
= Spec Wty, ..., toystyy, -ty 0 o0

The exceptional divisor E” is given by

t oty = (HUZ>Ht; =0,

X by
oty = <Hvl> [[t=0
=1

while Y is given by the ideal

(ti — ti,t,p)i=1,...n-
Let D’ be a pro-sheaf consisting of the divided power envelope of Y in Z” and let J (respec-
tively J’) be the smallest sub-PD ideal of D’ containing the ideal defining Y in Z (respectively Z');
then D'/J = D’/J and we denote that quotient by D”. So D" locally looks like

OZ// ® W<¢]_7'-'7¢b77—b+17"‘77—n>7

W[¢17"'7¢b77—b+17"',7—n]

where y; = v; — 1 and 7, = t; — t..
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We wish to compare cosimplicial resolutions of the three pro-sheaves wx, @'y and
wxrr = QZ///W(log E”) ® Oxn.

If we give the last sheaf as well the filtration P’ induced by the filtration on Qn yy (log £”) by the
number of log terms, the above local description shows that we have natural inclusions

PJ{@X‘_’PJ{@X” ® D” — P]{@X’
Oz
and hence also inclusions
P]{(:)Xi‘—>P]{(:)(X//)i @D — P;@(X/)i,
where the superscripts on X’ and X" are the obvious ones referring to tensor products with the

structure sheaves of i-fold intersections of the components of X’ and X”. But as in [Mok93],
the local description gives us

‘F}/&}(X”)Z ® D” = ‘F}/&}XZ ® QW<¢17"'7¢b7Tb+17""Tn>/W
w
and

W = QW(¢17"'7¢b7Tb+17"~77—n>/W
so the first inclusion is a QI and similarly for the second inclusion. If U is the open subscheme of Y
obtained by removing the singular points as well as intersections with the horizontal divisor H, the
cohomology sheaves of all three complexes can be viewed as subsheaves of the complex W&y from
[HK94, § 1.4]. Thus, as explained by Jannsen in the appendix to [Hyo91], the independence of the
filtration follows (that is, no cocycle condition needs to be checked).

Define a new cosimplicial sheaf C(Wo[u]) by adjoining to C(W®) in each cosimplicial degree
variables ul’) subject to the condition that u[0] = 1, dul! = dt/tul’~", each having weight two and
Frobenius action F(u;) = p'u;. Thus, C(W[u]) gives a cosimplicial resolution of Wa[u], that is,
there is a QI of complexes

Wolu] ~ s(C(Wolu]))
and hence, a QI of CDGAs
TW(C(Wolu])) ~ TW(Wu)).
On the other hand, we have a natural QI Wo[u] ~ Ww, and hence, a QI
W(C(Wolu])) ~ TW(Ww).

We give to C(W&[u]) and to s(C (Ww[u])) the weight filtration P defined by the convolution of the
weight filtration on Wo[u] with the filtration by cosimplicial degree. That is,

Py(Wailu]) = Py y(Wox:[u])
@ n4i— 2] W@Xl)um

By the independence of P’ from the lifting, the same is true for P.

As in [Hai87b] it is easy to construct a QI from s(C(Wa[u])) to a cosimplicial resolution of
the Hyodo—Steenbrink complex which is filtration preserving. This is achieved by concatenating
our QI Wolu] — Ww with Mokrane’s Ww — WA at each level. Therefore, on cohomology, we
get a filtration-preserving isomorphism. In the case that k is a finite field, we will see below that
the cohomology of s(C(W&[u])) is a mixed isocrystal as was shown for the cohomology of WA by
Mokrane, so a simple strictness argument shows that the two filtrations agree on cohomology.

On the other hand, P induces a natural filtration on TW(C(W®[u])), and hence on B(Y,y)
and Cr(Y,y).
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THEOREM 3. Suppose the field k is finite. Then (TW (Ww), TW (C(W&[u])), P) is a commutative
mixed Frobenius algebra.

Proof. As filtered complexes, TW (C(W&(u])) is filtered QI to
RI(s(C(Wwlu]))),
so we may compute the terms of the spectral sequence with the latter. We compute the Fy term:

Ey ™ = Gra[RT(s(C(Wlu])))]*™"

= P Gro[RT(Waye[u])]s """

0<t<n

— @ Grfjrt [RT(Woxe [u])]Q—n—t

0<t<n
@ @Grn+t 22 RF Wth)]q " t( i)
o<t<n ¢
= P PiGil—n—t+2i)(—n—t +2i)9 " (=)
0<t<n ¢

_ @ @Gg—2n—2t+2i(_n — i+ i),
otsn @

where G; is a direct sum of complexes RI'(Wwp,) for some collection of subsets T' C {1,...b} of
cardinality > t. Thus,

E nq_@Hq 2n— 2t+22(G )( ’I’L—t—l—’L)
t,i
which is pure of weight ¢, being built out of the crystalline cohomology of proper smooth varieties.
This finishes the proof. O

Now given a point y € Y, we get augmentations of TW (C(W&[u])) and TW (Wwy ). Using them,
we can form the bar complexes

B(TW(C(W&[u))), ay)
and B(Y,y) which are quasi-isomorphic. Thus, the weight filtration on
H(B(TW(C(W&[u))), ay))

induces one on H(B(Y,y)) which is compatible with the Hopf algebra structure. Therefore, we get
a weight filtration on Lie 7§* (Y, y) = (QH°(B(Y,y)))*.

The previous theorem says that if k is finite, then
(TW(Wwy), TW(C(W&[u])), P)

is a mixed Frobenius algebra. Therefore, we get the structure of a mixed F-isocrystal on Lie 7{" (Y, y)
as well.

7. Comparison with the De Rham fundamental group: proof of Theorem 2

Now suppose X and Y are as in Theorem 2. Denote by X the formal completion of X along Y.
Regard all of the objects as log (formal) schemes with the log structure coming from the horizontal
divisor D. Thus, X, X and Y are all smooth with respect to the trivial log structures on W and k.
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We would like to compare the crystalline fundamental group of Y with the De Rham fundamental
group of X*, the generic fiber of X. At the level of cohomology, this is the Berthelot—Ogus theorem
[BO83] and we need only to take care that the appropriate maps are multiplicative. To do this, we
need to make explicit several maps in that paper that are only defined in the derived category by
defining explicit maps between embedding systems that realize them.

In the proof, we will use the computation of the crystalline fundamental group via the crystalline
complex associated to an embedding system, as explained in § 4. As a general remark, it is important
to note that the comparison isomorphism between the crystalline complexes associated to two
different embedding systems is effected via a third embedding system dominating both, and the
associated inclusion map of the crystalline complexes is via pull-back of differential forms. Hence,
the crystalline complexes are actually quasi-equivalent as algebras.

We start with the following preliminary lemma.

LEMMA 13. Let
Y — S

be a map of fine saturated log schemes over k and let S—T be an exact PD-immersion. Suppose T'
admits a Frobenius lift. Then there exists an embedding system (Y., Z ) which admits a Frobenius
lift compatible with the Frobenius of T

Proof. The proof is analogous to [III79, p. 602]. Let U;U; be an affine open covering of Y such
that each U; lifts to a smooth formal T-log scheme U; (these exist by [Kat89, Proposition 3.14]).
Let U = [[U;, U = [[U;. Then the Frobenius f from U to U lifts to U — U by smoothness, in a
manner compatible with the Frobenius of 7'. On the other hand, U — Y is a morphism of cohomolog-
ical 2-descent for sheaves having any fixed n-torsion in the étale topology [Sai72, Corollary 4.3.5].
This means that for the sheaves we are considering (pro-systems over n of p"-torsion sheaves)
this covering extends (via taking the coskeleton) to a simplicial hypercovering Y. — Y such that
Y, = U Xy U Xy -+ xy U (i + 1 times). On the other hand, each Y; embeds naturally into
an (i+ 1)-fold product of U over S which, in turn, embeds into Z; := Uxp U xp--- xp U.
The Frobenius lifting of Z; = U induces product maps Z; — Z;, which give us the required lift-
ing. ]

Choose a uniformizer 7 of A which therefore determines a presentation A ~ W[t]/(f(t)), where
f(t) is an Eisenstein polynomial of degree e = [F' : K]. Let R be the p-adic completion of the divided
power envelope of (f(t),p) inside W[t]. Thus R is also the DP envelope of the ideal (¢¢). We have a
natural map g : R — W ((t)). On the other hand, if f denotes the Frobenius map on W ((t)) which
is the usual Frobenius on W and the pth power map on ¢ and 7 is such that p" > e, then the map
o" : W{(t)) — W{((t)) factors through W{((t)) — R — W {(t)). Note that the Frobenius map defined
above also induces a Frobenius map R — R. Let Y/ = X ® A/p with the induced log structure.
The Berthelot—Ogus isomorphism hinges on the comparison between the crystalline cohomology of
Y with respect to W((t)) and Y’ with respect to R. That is, we have the commutative diagram

Y’ — Y — Y’
! ! !
Spec(A/p) — Spec(k) — Spec(A4/p)
! ! !

Spec(R)  — Spec(W((t))) —  Spec(R)

where the composite of the horizontal arrows are all the rth iterate of the Frobenius. We choose
crystalline complexes for Y and Y’ as follows. Construct first embedding systems for Y and Y’ with
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respect to W[t] which fit into a diagram
Y - Y < Z
! !
Y — Y/

where Z is smooth over Wt] and the left-hand square is cartesian. We can also arrange for Z to
admit a Frobenius lift compatible with the Frobenius of W{t]. Then C = Qz/yy @ W((t)) and
' = Q7w ® R are crystalline complexes for ¥ and Y’ and we can regard both as simplicial
sheaves of CDGAs on Y.

Denote by C(") (respectively (C")(")) the pull-back of C' (respectively C’) by the rth power of
the Frobenius map of W ((t)) (respectively R). Then the big diagram above implies that

(M ~ct K R
W)

in the homotopy category of sheaves of CDGAs on Y.. On the other hand, the Frobenius lifts induce
maps C(") — C and (C")") — C’. So we have maps of sheaves of CDCGAs

COR—CMeoR~ ()" -
and taking Thom—Whitney algebras, we have multiplicative maps
TW(C)® (R®Q) — TW(C")® (R Q) = TW((C")") — TW(C')

of CDGAs over R ® Q. The theorem of Berthelot and Ogus implies that all the maps are quasi-
equivalences (since the usual maps involving the simple complexes rather than TW algebras are
quasi-isomorphisms). Now we form a tensor with the quotient map R® Q — A® Q = F to get

® F~TW(C) Q) F
£))®Q R®Q
By using the fact that C’ ® A is the crystalhne complex associated to an embedding system for Y’
with respect to A which is also true of €2 ¢ /4> We get
TW(C) @ F ~ TW(QX/A) ~ TW(Qx+/r),

where the last quasi-equivalence follows from formal GAGA. On the other hand, C' is quasi-
equivalent to the base change to W((t)) of a crystalline complex for Y with respect to W so
we get
TW(C)® F ~ TW(Wuwy) Q) F,
K
giving us the desired quasi-equivalence

TW (Wwy) Q) F ~ TW(Qxr)-
K
This gives the isomorphism of homotopy types stated in the theorem.

It is straightforward to check that this equivalence is compatible with base-points. So putting
everything together, we see that we get a quasi-equivalence of augmented algebras

(TW(Qx/x), ) = (TW(Wwy,ww (L)) ®F

and therefore

Cr(Y,y) Q) F ~ DR(X*, )
K
of the theorem, an isomorphism of commutative Hopf algebras over K.
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As proved in [Woj93], this last object is the coordinate ring of the De Rham fundamental group
of X* and the isomorphism is clearly compatible with the bar filtration (since it is induced by a QI
at the level of augmented CDGAs), so we conclude that

T (V,y) Q) F =~ i (X", ).
K

Although we are concentrating on the fundamental group for this paper, the higher cohomology
of the bar complex is also of interest. In particular, if the varieties are simply connected, they can
be used to define higher crystalline rational homotopy groups.

Proof of Corollary 2. The isomorphism classes of the higher rational homotopy groups are deter-
mined by their dimension, and this dimension can be computed in any complex embedding of F
or after base change to the completion F; of F' with respect to v. The assumptions imply that the
special fibers Y and Y’ are isomorphic smooth log schemes. Thus, TW(wy) ~ TW (wy~), which
implies the quasi-equivalence of TW(Qx (log D)) ® F,, and TW (s (log D')) ® F,,. Thus, their bar
complexes are quasi-equivalent, giving isomorphisms of their cohomology groups, i.e. the higher
De Rham homotopy groups of U and U’ [Woj93]. O

In the projective case without divisors this theorem follows from Artin and Mazur’s étale homo-
topy theory [AMS86] where a stronger integral statement is proved. The rational statement in the
smooth proper case without divisors can also be deduced from the formality theorem of Deligne et al.
[DGMST75] together with the proper base change theorem for étale cohomology and the comparison
theorem between étale and Betti cohomologies over C.
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