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Abstract. The densities of invariant measures for Misiurewicz maps and Lasota-
Yorke maps of class C are of class Cr~l on certain intervals (forming the partition
of an interval in case of Misiurewicz maps). For these maps the Perron-Frobenius
operator has an unambiguous decomposition into the sum of projections onto
eigenspaces (multiplied by the eigenvalues) and a remainder operator. The remainder
operator has spectral radius less than one in certain spaces of smooth functions.

0. Introduction
A. Lasota and J. Yorke [5] started the long series of studies of ergodic properties
of piecewise monotonic transformations of an interval with derivative greater than
one. Advanced research in this domain is found in [1] which is written in terms of
functional analysis. M. Rychlik [8] has obtained similar results for maps with a
countable number of pieces of monotonicity and without the application of the
strong Ionescu-Tulcea, Marinescu theorem.

Other useful references have maps with singularities where the derivative is equal
to zero (for example the famous family of quadratic maps {ax(l -x)}). I recall only
the papers closely related to the present research. M. Misiurewicz [6] has proved
the existence and studied properties of absolutely continuous invariant measures
for negative Schwarzian maps without sinks and such that the set of critical points
is separated from the trajectory. W. Szlenk [10] has proved the existence of absolutely
continuous measures for similar maps which are not necessarily negative Schwarzian.

The third subject connected with this research is the question of smoothness of
densities of invariant measures. This question for expanding maps was answered
by R. Sacksteder [9] (unfortunately the paper contains an important mistake) and
K. Krzyzewski [4] who proved that if an expanding map is of class Cr then the
density is of class Cr~'.

In this paper we construct the spaces C}~1 of functions of class C~l on intervals
forming a partition with a weighted sup-norm.

The Perron-Frobenius operator for Lasota-Yorke maps or Misiurewicz maps has
an unambiguous decomposition into the sum of projections onto the eigenspaces
and the remainder operator. The spectral radius of the remainder operator in the
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space C}~1 is less than one. Proving this we also show that the densities of invariant
measures belong to C}7'.

The question of convergence of mixing coefficients also appears to be connected
with the work in this paper. We recall that if they converge to zero exponentially,
then the map satisfies the Central Limit Theorem. K. Ziemian [11] applied theorem
6.3(d) in the proof that for Misiurewicz maps mixing coefficients tend to zero
exponentially. F. Hofbauer and G. Keller [2, paragraph 4] have proved this for the
maps considered in [10] when critical points fall into the repelling periodic orbits.

§ 1 contains the lemmas which allow us to estimate the derivatives of images of
functions under the Perron-Frobenius operator.

§§ 2-5 contain definitions, lemmas and propositions about Misiurewicz maps
which are necessary to prove the main result theorem 6.3. Thus in § 2 we define the
class M of mappings and give estimates of distortion and of derivatives of iterates
of a map. § 3 gives the estimates of images of functions under the Perron-Frobenius
operator and auxiliary operators /(l) far from the trajectories of the critical points.
§ 4 defines the class Mr of maps (of class C) and Banach spaces C}e and extends
results of § 3. In § 5 we prove the fundamental inequalities (proposition 5.4(b)),
which suggest a possibility of an application of Ionescu-Tulcea, Marinescu theorem.
Unfortunately we don't know how to secure a compactness property and therefore
we prove theorem 6.3 in a way similar to that of K. Krzyzewski.

In § 6 we reformulate certain results of M. Misiurewicz [6] and prove the main
theorem about maps in the class Mr. At the end we prove the spectral decomposition
of the Perron-Frobenius operator for maps in the class Ji.

§ 7 is devoted to Lasota-Yorke maps. It contains two different definitions of
Banach spaces of differentiable functions (the second one does not depend on the
map). We state there that the densities of invariant measures belong to this space
and the spectral radius of the remainder operator is less than one,

In what follows we assume that the reader is familiar with the paper of M.
Misiurewicz [6].

Our results here answer the question about a class of smoothness of invariant
measures posed to me by W. Szlenk. The general question about analyticity of
invariant measures for analytic maps remains open. For Misiurewicz or Szlenk maps
given by a real polynomial the answer is positive. It is proved by the reasoning
contained at the beginning of [7] applied to these maps.

After I had written this paper, I found that the condition (iii) (see § 2) on the
Schwarzian derivative can be replaced by a weaker one as follows:

(iii') There exists S such that Ws satisfies the conclusion of theorem 2.1, WgC1!
(see (v) and (2.0) of § 2) and if xe Ws and/k(x)e Ws then \(fk)'(x)\>\.
(A similar condition was suggested by W. Szlenk.)

I conjecture that this condition also allows us to prove all the main results of M.
Misiurewicz [6] and all the results of the present paper. Moreover in this case the
map could be of class C2 instead of C3 and it would be possible to treat jointly
Misiurewicz maps and Szlenk maps.

When I was finishing this paper I learned that K. Bugiel at Jagiellonian University
had obtained results similar to those in § 7.
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I would like to thank W. Szlenk for discussions which allowed me to avoid several
mistakes and M Rychlik for talks about Lasota-Yorke type maps. I am also grateful
to K. Ziemian for help in preparing the present version of the paper.

Now we introduce the notation.
We shall consider in §§ 2-7 maps/: J \ A -» /, where / is an interval, Ac I a finite

set containing the endpoints of/. We will assume that / i s continuous and monotonic
on components of I\A. Write

J = / x{+, -}\{(left endpoint of /, - ) , (right endpoint of /, +)}.

We shall pretend that / acts on / (i.e. / : /-» /) as follows: f(x, e) = (x', e'), where
x' is the limit of f(y) as y tends to x from the right if e = +, (left if e = - ) and
e'=e if and only if/ preserves the orientation in a right-neighbourhood of x if
e = +, (left if e = - ) . If x e I then x is its first coordinate and x the second one. We
suggest the reader thinks of (x, +) as x with its right neighbourhood and (x, - ) as
x with its left neighbourhood. Then/((x, +)) indicates whether the right neighbour-
hood of x is mapped to the right or to the left of f{(x, +))v. This notation gives an
advantage in (3.10), where we define the weight functions <p,. It also enables us to
treat jointly the cases of two- and one-sided derivatives in §§ 3-5. We set

A = / n ( A x { + , - } ) , Bn=\Jf\A),
< c = l

B = B+0O, Bn = (Bny, B = {B)\

Ai=AnB, A2 = A\At.

For x e I and y e I define the distance

{|x — y\ iff either y = + and y <x or y = — and y>x,

+oo otherwise.

Then for x e I and D<=• I, dist (x, D) = infj,eD dist (x, y). We also define a one-sided
e-neighbourhood. For x e / and e > 0,

Let g: V^U be a map (V<= / ) , then for xel, g(s)(x) will denote the (left-sided if
x = - , right-sided if x = +) 5th derivative at x, seN. A will be Lebesgue measure
on /.

The main results of this paper are proved in § 6. For their proofs, the results of
[6] and those from §§ 1-5 of this paper, only proposition 5.4 (together with remark
5.5) and remark 4.3 are necessary. The proof of remark 4.3 is independent of the
other results of this paper. In order to help the reader understand the course of the
proof of proposition 5.4 we give the following short description of it:

Fix some n and a S which is small enough. We write W for Ws, where W$ is
some neighbourhood of critical points (see (2.0)). Set

Ui = {x:fi~\x)eWJ>{x)iW f o r / < y < n - l } l < / < « ;

Ek = {x:fj{x)£W forO<j<fc-l} 0<&<n;

U0=En.

https://doi.org/10.1017/S0143385700002686 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002686


616 B. Szewc

We have/''([/,) <= £„_,, Hence, since (/+g)*=/* + g* and (/°g)*=/*°g*, where
f# is denned in (1.6), we have

MP)= i (/"~jk_,v(/%)*(p)- (0
Define ||p|| = supXE/ |p(x)|/<p(x) for some weight function <p. We can then show for
£(a) = u(a)/(l+u(a)) that there is an H > 0 with (lemma 5.3):

l(/7l/,)*(p)|stf| |p|| I . *%$ (2)
a&A2

where i//b is defined in (3.1), and that for 77 e (0, 1) there are G>0and he (0,1) with

(/k |Ej*(*?)sG(|(/*)'(6)|"-V>( 6 ) + *k) (3)

(lemma 5.1 for 1 = 0) where be B and keN. Putting (2) and (3) into (1) we get

\fl{p)\^H\\p\\ £
aeA2

* C\\p\\ I I 1̂  \(fm)'(f(a))\i(a)-1 (^a\a)) +1) = C\\p\W
\m=0 aeA2 I

and we have an estimate of ||/£(p)||. This explains the choice of the weight
function <p.

In order to establish (2), we need the existence of G with
|/J(p)|<G||p| | onW. (4)

Because |p|<«p||p|| (cf. definition of ||-||) we have (this shows the advantage of
defining || • || as a weighted sup-norm):

so that it suffices to show
fl(<p)^G<p onW. (5)

As (f> is a linear combination of i/»b and 1, it suffices to prove (5) for these functions
instead of <p. This is done in lemma 3.1.

But we also want to estimate derivatives of /£(p), so we start in § 1 with the
proof of

\n(PYs\x)\ < £ /?o(|p(O|)(x) • T(x), (6)
1=0

where

/(O(P)(*)= Z P(y)\ny)\"",
yef '(x)

and the function T is bounded on W which is proved in § 4. As above we define
semi-norms for the derivatives

|p|, = sup and |p|,iS = max{|p|,,..., |p|J,

where <p, is again a suitable weight function. In order to estimate |/J(p)|)jS we use
the derivatives of (1). We have to apply (6) for (k(f

n~J\E^)*(Pj))(s) with p, =
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Perron-Frobenius operator 617

(/7U,)*(p),thatis:

I/;(P)( S )N T £ i (fn-j\Enj(i)(pf), (?)
i=Oj=O

where T is related to the map f"~3\En.j and hence it is uniformly bounded on /.
This makes it necessary to generalize (3) to {fk\Ek)(t), which is proved in lemma
5.1 and prepared in § 2, and to generalize (2) to ((/;|u,)*(p))(l), which is done in
lemma 5.2. To get the generalized (2), we also have to generalize (4) to C/*(p))(s).
This is done in § 4. It follows from (6), (5) and a formula similar to (5) for/(",(^>i)
which is proved in lemma 3.4.

Now we put the generalized (2) and (3) into (7), and we can see that in order to
obtain r < 1 in proposition 5.4 we need to introduce small e > 0 in the definition of
Vi ((3.10)).

1. Derivative lemmas
In this section we shall consider maps/: 7 \ V-* I, r-times differentiable (r>2) and
such that / ' 5* 0, for V a countable sum of intervals. In what follows f~" denotes a
branch of the inverse map for / " and f~k (k < n) is the branch of the inverse map
for/* related to/"", i.e. whenever/^" = Sn°- • " S , thenf~k = Sk°- • -°S,, where Sj
(j = 1 , . . . , n) is the inverse for f\Jy J a component of 7 \ V. The compositions of
functions are restricted to the sets where they are well defined. Next, p:/-»R is a
real function ( r - 1)-times differentiable on some subset of /.

LEMMA 1.1. Let x e 7 be such that y=r"(x), (D(r\y) and p(r~l\y) are well defined
and (fy(y)^O. Then for s = 0, . . . , i—1 ,

is equal to the sum (modulo signs) of terms like

S(lo,Z)(x) = D'o(x) n Dl
k(x)\

where Z is a set of triples of integers (I, k,j) ( 1 < / < S ; l<fc<« and for each pair
(l,k) there is only one j such that {l,k,j)eZ) such that lo + Yd{l-j:{l,k,j)eZ for
certain j,keN} = s,0<lo<s and

(I)

Also each term occurs in the sum less than ((s+ I)!)3 times and for lo= s there is only
one term S(s, 0 ) = D*.
Proof. We omit elementary justification of formulae (1.1), (1.2). First let us find the
derivatives of all components of one term:

4-Dl = Dl+x-{l + \)-Dl- i D{ (1.1)
dx fc=i

l i ) (1.2)
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618 B. Szewc

This enables us to find the derivative of such a term:

-fs(/0,Z) = S(/0 + l,Z)-(/0 + l) i S(/0,Z)-Di
ax k=t

+ I f\S(lo,Z)^r-l-i S(lo,Z)-D\-S(l0,Z)-Dl
k\. (1.3)

L uk i=l J

Now we can prove the first part of the lemma using induction. Formula (1.1) for
/ = 0 proves the lemma when 5=1 . Induction and formula (1.3) then proves the
lemma for all s < r - 1.

We now proceed to estimate N(s), the maximal number of repetitions of one
term of the 5th derivative. Let us fix the term S = S(l0, Z), which occurs in the s + 1st
derivative and list all the ways it could originate. We make use of the formula (1.3).

(I) S could originate from S, = S/D[ (if 5 contains the component Dl
k). The

number of such S, is less than or equal to 5 - /0. Taking the derivative of S, we can
obtain at most (/0+ l) + ( 5 - / 0 + I)2 terms 5. Hence one can obtain at most ((/0+ 1) +
(5-lo+\)2)(s-/<,) terms S this way.

(II) One S appears from S( / o - 1, Z).
(III) S might originate from S2 = S- Dk~

l/Dl
k (if 5 contains the component

Dk, />2) . There are at most (s — lo)/2 such 52. Differentiating S2 we obtain at most
s-l0 terms 5. Hence no more than (s-lo)

2/2 terms S originate this way.
From (I)—(III) we have (omitting some details) that the number of terms 5 is less
than or equal to:

Notice that in view of (1.1), N( 1) = 1. Hence

The last statement of the lemma follows easily from (1.1) and induction on s. •

Denote by S(l0, s,f~") the set of all Z such that S(1O,Z) occurs in the formula
which expresses the 5th derivative in lemma 1.1. Next define the following functions
T{i, s, n):I^U+.

T(i, s, n) = max {R(i, s,f"):f~" is a branch of the inverse for/"}

(i,s, neN, i<s<r) (1.4)

T(s, s , n ) = l ,

where for /' < s

\ I I! \D'k(x)\J if x belongs to the domain of/""

10 elsewhere on /.
(1.5)

Let us define the operators / ( l ) (i = 0, 1,2,...):

fiyl forp:/^R. (1.6)

https://doi.org/10.1017/S0143385700002686 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002686


or

(y)

Perron-Frobenius operator 619

We remark that
/(O°g(i)=(/°g)(i), (' 7^

and hence (/")((> = (/(o)"- Therefore we shall often write/",) instead of (/")(j

Notice that /(0) is the Perron-Frobenius operator. We shall also denote it by /,..

LEMMA 1.2. Let xe I be such that for each y with f" (y) = x, (f")(r)(y) and p(r~l)

are well defined and (f)'(y) ^ 0. Then for ssr~l
s

lf"foVs)Cxtl< 7 f?J\nu)\)(x)T(i v n)(x)
i = 0

Proof. For a fixed branch f~", from lemma 1.1 it follows that

-f-s(u-FV\°f~")w * 'z \DHx)\-R(lo,s,rn)(x)+\Ds(x)\
"X \\(J ) I / 10=0

S(IoT(/0,5,n)(x)-|D'o(x)|.

Consequently

=s Z T(/o, 5, n)(x) ^ |DH*)|

s

'o=O ' ' °

This completes the proof. •

Remark 1.3. Let £ be a sum of pairwise disjoint intervals. Then lemma 1.2 remains
true if one replaces / " by f\E and the branches f~" by respective branches of the
inverse for/"|£. (They are certain restrictions of branches/"".)

2. Expansion in the class M
I shall list the conditions found by M. Misiurewicz [6] in a slightly stronger version.
They are satisfied for an uncountable subset of the family {ax(l -x )} , in particular
when some image of the critical point falls into the repelling periodic orbit.

(i) / is of class C3.
(ii) / V 0 .

.A

(iii) Sf^O, and for each a e At there exists 5 > 0 and a function g:[d — S, a +S]->
R such that g is of class C3, gVO, Sg^O and g\F(a,s)=f\F(a,sy

(iv) For each x e / , if/"(x) = x then \(fp)'(x)\> I.
(v) There exists a neighbourhood °U of A, such that for each ae A and n>0,

Also for each a e A not being the end of /, (a, +) or (a, - ) belongs to A2.
(vi) For each a e A there exist constants a, <u, S > 0 and M > 0 such that

for every xe Ua = F(a, S).
We define M as the class of maps / satisfying conditions (i)-(vi).
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Conditions (iii) and (v) are a little stronger than the respective ones formulated
by M. Misiurewicz [6]. The second part of (iii) is introduced to obtain a more
explicit form of weight functions (see 3.10). The second part of (v) together with
(iii) enables us to obtain the very useful theorem 2.1 as an easy consequence of
theorem (1.3) in [6]. We remark that (iv) implies non-existence of sinks and that
(vi) is satisfied whenever / has non-zero one-sided derivatives of some order at
points of A.

Let / satisfy (i)-(iv) and the second part of (v). Let us define for -y>0:

i v ) . (2.0)

THEOREM 2.1. For each 5>0 there exists meN such that if f'(x)e I\WS for
i = 0 , . . . , m - l then |(/m)'(x)|> 1.

Proof. Since / satisfies (iii) and the second part of (v), / | / \iv8 can be extended to
a function h: V-* I where V is a neighbourhood of J \ Ws (we might have to increase
/ ) . Such an h satisfies the assumptions of theorem (1.3) of [6], and hence theorem
2.1 follows. •

LEMMA 2.2(a) (Distortion lemma). For each 8>0, there exists p > 0 such that if
fj(x) and f'(y) belong to the same component of I \ Ws forj = 0 , . . . , n - 1 then

(/TOO
(b) Let f satisfy (vi). For each 5 > 0 there exists cr>0 such that if xe Ua and

fJ(x)> (fJ(aY belong to the same component of I \ Wsforj = 1,2,..., n -1 then
1

Proof, (a) Let K be a component of the set
(1.1) of [6] we have:

(/TW

TJ f~J( ws) a n d x,yeK. Following

<exp (y I'
\ fc=o(my)

where y > 0 is a Lipshitz constant of \n\h'\ (see the proof of theorem 2.1) and A is
Lebesgue measure.

Theorem 2.1 gives us that the derivative on K grows exponentially with n (of
course, K also changes with n). Namely, \(f)'(x)\> A'd" for certain constants
A'>0 and a > 1 and xe K. Hence

and consequently

k±o
Thus (a) follows for p = exp (ya-\(I)/(a- \)-A').

(b) From (vi) we obtain

(2.1)
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so we have

Irw -

•|(/")'(x)| (2.2)

where £ is some number between/(x) and (/(a))v. Then/^f) is between fj+\x)
and (fi+l(a)Y and they all belong to the same component of 7 \ Ws. Hence by the
distortion lemma, (vi), (2.1) and (2.2):

|x-d|-|(/")'(x)|s
p-w(u + l)

- P(° |x-a|-|(/")'(x)|.

This proves (b) with cr = maxae/i2p-&>(a)/a(a). D

The following lemma was proved by K. Ziemian [11] in a slightly different form.

LEMMA 2.3. Let/belong to M.
(a) Ifxe Ua for some aeA and y>0 is sufficiently small, then

is well defined.
(b) For each y > 0 there exists a constant A'>0 such that ifxe Ua, dist(/'(x),

Bi)a y and l>n{x, y) then

(c) For each y>0 small enough there exist constants E>0 and c>\ such that if

dist (/'(*), B,) s y then |(/)'(x)| > Be'.

Lemma 2.3 can be proved from lemma 2.2.

3. Estimates far from singularities
For b e I let us define the function i/»b: 7-»R:

for x > b if fc = +, and for x < b if b = -
" " (3.1)

elsewhere.

LEMMA 3.1. Let f satisfy (i)-(iii) and let us fix some TJ, 0< -q < 1. Then for any xe I

nwM:"dist(x, BJ"

/ Let J be a component of /\({6}uUkIo.T''('4)), such that tAb|/>0. Then
f\j is a diffeomorphism. Denote by (a, b) the interval f(J) and let g «=/"|j. Notice
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that (a,+), (b, - ) e Bn u{/"(ft)}. Let us recall the formula for the Schwarzian
derivative of a composition.

S(g°h) = (h')2(Sg°h)+Sh. (3.2)

Write i/ffc = p.

By lemma 4.1 of [6], since 1/Vp|7 is concave and p\j is C2, p\j = h%(\) for some
negative Schwarzian difleomorphism h. In view of formula (3.1) S(g°/i)<0. We
see that

Hence by lemma 4.1 of [6], 1/Vg:).(p|/) is concave. Then -Jg*{p\j) is convex and

consequently gHc(p|j) is convex. Thus

\updk
j)d\=J-

x-a

b-x

\

dist (x, Bn u{/"(5)})'

where xe (a, b), /, = g~'((a, x))and /2 = g~'((x,b)). We finish the proof by summing
the above inequalities over all components J.

A proof of the second inequality is similar. •

LEMMA 3.2. Let feM. For each y>0, ief̂ J, 0 < £ < l and ^ < r j < l , there exist
constants C > 0 and 0 < g < 1 such that

for be B, neN, xe / such that dist (x, B)> y.

Proof. Let us write

(3.3)

where ^ / N U r - o ' r ' M J - R , T(y) = ^(^)/|(/")'(^)l and f = (i + f - i j ) / i < 1. We
shall first prove the following assertion:

(3.4) For y and ^ as above there exist e>0, D > 0 and 0<d< 1 such that for
each branch /~" of the inverse of/", if y =f~"(*) E ? ( M ) then T(J») < Dcf", where
x and fe are as in the lemma.

Let us fix some S>0 such that Ws (see (2.0)) is separated from B\(A,)V (see (v)
of § 2) and contained in UaeA2 UauA (see (vi)). Suppose that b in the lemma is
equal to / k (a ) for some aeA2 and keN. We take e small enough that y > e > 0
and the following conditions (3.5) and (3.6) are satisfied.

For m € N, let f~m be the branch of the inverse for f" related to a trajectory of
a (i.e. for small p>0 , (/m|F(a,p)r ' =r"V<F(a,P»).

(3.5) r m is defined on F = F(fm(a), e) and rm(F)<=Uan Ws, meN.
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Next, for m e N and j =\,2,... ,m, let J~J be the branch of the inverse for f'
related to fm (see the beginning of § 1) where J~m is from (3.5). Then

( 3 . 6 ) ^ ) 0 ^ = 0 and rJ(F ) c F (fm~J(a), y) for j = 1, . . . , m - 1.
The existence of such an e follows from theorem 2.1 combined with (v). Namely,
this theorem gives usmo£N such that |(/m°)'|s| > 1 and consequently for some e, > 0
l( /m°) 'k , l>g>l , and t/E,nUr=oo'ri(A) = 0 , where U., = {x: dist (x, B)< e,}.
Hence (3.5), (3.6) for m = m0- l + l, leN, follow easily by taking some e2<e, such
that UE2nWs = 0. This implies (3.5), (3.6) for meN with e s e 2 such that
rJ(F{fJ(b), e))cF(b, e2) for all be B, j = 1 , . . . , m0- 1 and/~J is as in (3.6). This
briefly justifies (3.5), (3.6).

Let us take / = n(z, y) - k (see lemma 2.3a), where z =j~k{y) and/^fc is the branch
related to a trajectory of a. We can do this because of (3.6) for m = k. From (3.6)
we have that />0 and since \x-(f+k(a)Y\^ y, l^n. Next, since ye F(b, e), from
(3.5), (3.6) and lemma 2.2b it follows that

(fk)'(z)-(z-d)

y-b

1 ,
f'(y)-(f'(b)y

and consequently we have

< 3 ' 7 )

(Notice that {f'+k)'(z) = (f'y(y)-(fky(z).) We proceed to estimate T.
From (3.7) and lemma 2.3c we have:

where

D = jTf— and d

(Notice that (/")'(y) = (/""')'(/(>'))-(f'Yiy) and 0<£<l . ) This completes the
proof of (3.4).

(3.9) There exist constants H > 0 and 0< h< 1 such that r(y) < Hh" (n 6 N) for
y e / such that /"(y) = x and dist (x, B) > y.

A

In order to see this, one has to consider the case dist (y, B)> e together with the
proof of (3.4). By lemma 2.3c it is very easy.

Now from (3.3), (3.9) and the definition of /"0 it follows that

and this proves the lemma for C = D' and g = a". •
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We proceed to define the weight functions <pt which will enable us to construct
Banach spaces C}~x invariant under the Perron-Frobenius operator. For feJi and
ieH or i = ee [0 , minae/j2 (1 - f ( a ) ) / 2 [ we define <p,: J\-B0-»R+:

n = 0 a e 2

where ij(a)= l - f ( a ) -2e , f(a) = n(a)/(«(a) + l), a,=fJ(a) for jeN,

n 7 > o ^ a n d l / y = Ufc£flF(b,r).
Since for some x < +00, sup | / | <x,f(Uy)a [/xr and hence

Bo. (3.11)

In what follows if p : / \ B 0 - » R then we regard / * ( p ) : / \ B 0 - » R . Since
r'(I\B0)^I\B0 (see (3.11)),/!|e(p) is well defined.

We remark also that since |(/")'(«i)| grows exponentially (see (v) and theorem
2.1) and A2 is finite and the functions {*lfB

a^
a)}ne\ have uniformly bounded integrals,

<pE e L,(A). Similarly from the definition of Bo it follows that
<p,(x)<+oo for x e / \ B 0 , ieN or i = e.

PROPOSITION 3.3. Let xe I\B0. Then

dist (x, B) > 0 dist (x, B)'

Proof. Suppose x £ Bo. Then x £ Uy for some y > 0 and hence the first inequality
follows. One obtains the second inequality by adding the inequalities obtained
from lemma 3.1 applied to all the functions {i/'a^f[a)}meN,aS/i2 together with the
function 1. •

LEMMA 3.4. Let feJt. For each y > 0 and i e N there exist constants D > 0 and
0 < c < 1 such that

for neN and for xel such that dist (x, B) > y.

Proof. We remark first that by lemma 2.3c we can find constants C > 0 and 0 < g < 1
such that

for n € M and x as above. Thus from lemma 3.2 and (3.10), for each small e > 0 we
have (adding the inequalities in turn) C > 0 and 0 < g < 1 such that

Using proposition 3.3, the proof is completed by putting D = C \(pe dk/y and
c = g. •

4. The class Mr and Banach spaces C}~1

We introduce a new condition:
(vi') / can be extended to be of class C, r e N, on / \ Wy (see (2.0)) for all y > 0,

and for each s, l < s < r and aeA2 there exist constants K > 0 and v = v(s, a ) >
u(a) — s + l such that \f(s)(x)\^K\x — d\" for xe Ua (see (vi)).
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We remark that (vi') is valid whenever / has non-zero one-sided derivatives of
some order at a e A.

In what follows M' will be the class of maps satisfying (i)-(vi') (see § 2 and notice
that JTc./#).

We are going to estimate the derivatives of the iterates /*(p) far from their
singularities. Let us recall that Uy = UbeB F(b, ?)•

LEMMA 4.1. Let feMr. For each y > 0 small enough there exist constants B > 0, c < 1
such that for each branch off~" ifx£ Uy then

where 0 s /< r, k= 1,2,..., n and

max ({/:l=si<&,/-(*) e W}u{0}) «//~fc(x)e W.
(D'k is from lemma 1.1, W= Ws for some small S, see (2.0).)
Proof. Let us suppose that_rk(x)2 W. Then by (vi'), sup^ w \fa+l\y)\ = a(/)< +oo
and My*w\f(y)\ = b>0. Hence

and by lemma 2.3c

\D'k(x)\*{B(l)/ck)',

where B(/) = l/£(a(/)/5)1/ / .
Suppose now that j> =/~fc(x) e F(a, 8) and y is small such that Wn Uy = 0 (by

(v) this is possible), then by lemma 2.3(b), (c)

Since |>»-d|<8 this, combined with (vi)-(vi') gives

where

(We notice that in view of (vi') t>(/+l)-M + />0.) We finish the proof by setting

D

LEMMA 4.2. Letfe M'. For each y > 0 sma// enough, there exists a constant C(y) > 0
such that

T(i, s, n)(x) < C(y) /or x e J \ t/,, « e M, 1 < i < s < r.
Proof. Throughout the proof we fix a branch of f~", y > 0, x e 7 \ (/„ s S r - | and
i<s. We need the following notation: for Ze%(i, s,f~"),

K(Z) = {k:(l,k,j)sZ for some /JeN}
and
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We notice that by lemma 1.1 IfceJC(z) l(k, Z) = s- i. Let us put S{Z) = \[(IXj)eZ {D'k)
J.

From lemma 4.1 it follows that

|S(Z)|=s n (B/ck)Hk-z). (4.1)
keK(Z)

Let us estimate n(Z) = card {Z, e£(i , s,/~"): K(Z,) = HC(Z) and l(k, Zt) = l(k, Z)
for fce K(Z)}, the number of different S{Z\) which have the same estimate (4.1).
Since card {(/ , , . . . , /,): Xj=1 /, = m, l} positive} = 2m~',

n(Z)< n 2'(k'z) = A:(5-0, (4.2)

where

( ) = 2m<+oo.

(4.1), (4.2) and lemma 1.1 imply

-i)- i n (4V-

Hence, by Newton's formula

3fc(s-o( i

This completes the proof. •

We proceed to define spaces C}"1 and C(/~2)+l. Let x e / \ B 0 and let J(x, y) be
the component of / \ Uy containing x. Notice that if y, < y2, then J(x, y,) => J(x, y2)
and for y small enough J(x, y) is non-empty. Thus we can define the interval
J(x) = {Jy>0J(x, y). Notice that for x, ^ x2, either J(xx) = J(x2) or /(jc,)n7(x2) =
0 . Hence the sets /(x) form a countable partition ,/ of I\B0. Notice that for

, (pi\j, i€Wu{g}, is continuous.
For every p:I\B0-*U we define

= sup sup H (4.3)
J

We suppose now that p is of class Cs, s e N u {0}, on all / e $ . (It may happen that
J = {x}. Then we put (p\j)U)(x) = 0 for^eN.) We define for l < i < s

|p|, = supsup ,
J e > J <Pi

|p|i>s = max{|p|,: i=l,...,s}. (4.4)

Let us assume in addition that pU) is Lipshitz on compact subsets of all / e $. Then
p(s) is almost everywhere differentiable and the following definition makes sense:

|p(s+1)|
|p|(s)+i = supessup , (4.5)
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and for s > 0

|p|i,(S)+i=max{|p|M, |p|(s)+i}.

Finally, if p is of class C" on all / e / then we define

||p||1 = max{||p||.,|p|1.1}, (4.6)

and if additionally p is as in (4.5) then for s>0

||p||(s)+1=max{||p||e, |p|1>(l).+1}

and

||p||(o)+,=max{||p||E, |p|(0)+i}.

Having these definitions, we can define for feM and s > 0 (s = 0) the space C}e

of all p:I\B0^U of class Cs on all 7 G / and such that ||p||s<+oo (||p||E < +oo).
We define Cjfe

)+1 to be the space of all p e C}E such that p(s) is Lipshitz on compact
subsets of all Je$ and ||p||(s)+1 <+oo.

Remark 4.3(a) If feJlr and p is of class Cs ( s < r - 2 ) and p(s) is Lipshitz on
compact subsets of Je# then/s)c(p) has the same properties.

(b) C}iS and C£)+1, seNu{0}, are Banach spaces.
(c) A ball in C}°)+l is compact in L,(A).

Proof, (a) follows easily from the definition of/„. and $, (elements of $ are mapped
onto elements of $).

(b) The proof is based on the fact that a Lipshitz function is a.e. differentiable
and is equal to the integral of its derivative. Hence the essential supremum of the
derivative is equal to the Lipshitz constant. We shall prove only that CJfE

)+l is a
Banach space. The proof for C}e is standard.

Suppose that pn is a Cauchy sequence in the norm || • ||(S)+|. Thus it is Cauchy in
the norm || • || s and therefore it converges to some p in this norm. Let us take small
y >0 and n0 such that for n,m> n0, \pn -pm\M+i < y. Hence

Ip<rl)-P(r1)|<r«>s+, a.e.
Define for k e K and 8 > 1

Vk = {xe I\B0: 8k-> < <ps+1(x) < Sk}.

We have \JtZ v* = J\Bo- Let K be a component of Vk. Then |p(
n

s+1) - p(^+1)| < y 8
a.e. on K. Hence

Up((pn-pm)(s)\K)<y8k.

Since p(
n
s)\K converges uniformly to p<s)|K, Lip ((p(s}-p(m)\K)^ ySk. Hence p(s)\K

is Lipshitz, because p^'lx is Lipshitz. Consequently, p<s) is differentiable a.e. on K
and

|p ( s + " -p^ + 1 ) |< r S
f c <y5^ + l a.e. on K.

Since this holds for all components K of all Vk, it gives

k

Since 8 was arbitrary, we have for m> n0, \p-pm\(s)+i^ y and this proves (b).
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(c) Take/? = {peC}°)+l: ||p||(0)+1< 1}. Let {pn}n6N be a sequence, pn e R. Notice
that vk = J \ Ux/k is compact, keH, (see § 4) and <pe\Vk and ̂ ,|04 are bounded. Hence
by the Ascoli-Arzela theorem the families {pn\Vk}n£H, keN, are compact.

We can now choose a diagonal subsequence pn, which converges pointwise and
uniformly on compact subsets of / € $ to some p. Let x e Vk (defined for (pc instead
of <pJ+i), then we have

\p(x)\ «- \pni(x)\<\\pni\\E-<pe(x)s8k = 8-5k-i^8<pe(x).

Hence | |p| | e<5 and consequently since 5> 1 was arbitrary, ||p||e< 1.
Let Vbe a component of Vk (defined for <pi). Since ||pn|||(0)+1< 1, Lip (p«,|v) — 8k.

Hence also Lip (p| v) =£ Sk and |(p'| v)(^)| - 8<Pi(x) a.e. on V. Since 8 > 1 was arbitrary
we obtain essup |p'|/<Pi ̂  1. Thus we have proved that pe R. It remains to prove
that pn, converges to p in L,(A).

Take an e > 0 and take koeN such that \Ux/kQ<pcd\ <e /3 . Then take NeN such
that \pn,\vko-p\vkJ<e/3 for /> N. For /> N this yields

\d\-,-plk=s I klrfA+f \p\d\+\ \Pn-p\
J<J>/k0 JVukt> Jvko

3 3 3

This proves the compactness of R in L,(A). •

PROPOSITION 4.4. Letfe Mr. Then for each y > 0 t/iere exisr G > 0 and 0 < g < 1 such
that if pe C}e, s<r, then for x£Uy

Proof. From lemma 1.2 and lemma 4.2 we have

w(x)|<C £ /?,)(|p(l)l)(*)
i=0

1 = 1

where C = C{y). Then applying lemma 3.4 and proposition 3.3 we obtain

where g = maxI=, ..r_, c(i) and G = C max{J (ped\/y, (r- l)-maxi=i,2,...>r-i D(i)}.

" ' •
Lemma 4.2 and proposition 3.3 allow us to prove that the densities of invariant

measures for / are of class c(r~2)+1 on compact subsets of J e $. Nevertheless we
are going to investigate more precisely the Perron-Frobenius operator in the spaces
defined in this section.
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5. Global estimates
In this section we assume / belongs to M. Let us take 8 > 0 such that for each
aeA,F(a,S)ci Ua and

dist(Ws,B)>8; (5.1)

(see § 2(v), (2.0) and the definition of distance). We shall often write W instead of
Ws. For each neN define a partition {U,}"^0 of 7:

Ut = {xe / : / - ( x ) v e W and (fJ(x)Y i. W for j = i,... , n - l } \ (i= 1 , . . . , «);

[/<,= £„, where for fcelM, £k = {xe l : (fJ(x))v £ W for> = 0, 1 , . . . , k- 1}V.
(5.2)

LEMMA 5.1. For ie.Nu{0} a/id 0< 17< 1 ffcere exist constants G>0, 0< / i< 1 suc/i
that for be B, JceN

and /or fceN

Proo/ We shall write </»f instead of ipi. In view of theorem 2.1 there exists meN
such that | ( / m ) ' | E J > a > l .

(5.3) We extend fm\Em to g: £ -» 7 such that E = E, E => Em and 7f is equal to a
finite sum of intervals. Moreover, | g ' | > a > l,ln|g'| is Lipshitz and for any com-
ponent K of E, g(K) = I.

Following (2.5) in [6], there is p > 0 such that

(gk)'(x)

if x, y belong to the same component of 7-7fc, where Hk is the domain of gk. Proposition
2.1 of [6] gives

A(HJ<0fc-A(7) O < 0 < 1 . (5.5)

Let us estimate the integral of i/>£, 0 < £ < 1 (we assume that b = —)

[
J H S-A(Hk)

(Pl-()k; (5.6)

(when b = +, the same inequality holds).
Let Kk be the component of Hk which contains b and Xk (3Tk) be the set of all

components of H^\Kk (Hk). Put

dist (x, z)
5= max sup sup —— -.

KeX\ x,yeK Z6H,\K dlSt {)>, Z)

We shall prove by induction that for each k e N

y, b)

From the definition of S, (5.7) holds for fc= 1.
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Let (5.7) hold for some feeN. We consider K'e3Vk+l such that K'^ Ke Xk. Then
the ratio in (5.7) for K' is less than or equal to the ratio for K. It remains to consider
K'e Xk+U K'cKk. Notice that K" = gk(K') e X\ (see (5.3)) and K'" = gk(Kk+l)e Xt.
Let xoe Kk, then by 5.4 for x, y e K'

dist (x, 6) _ P

dist (y, 6) - \(g
knxo)\

dist {g *<*>•*(fe)):
 IPWYMI

 dist (g iy)'
Thus (5.7) is proved. From (5.7) it follows immediately that

<p(x)<p2S<l/(y) for x,yeK, Ke%k, keN. (5.8)
Let us prove the following:

(5.9) For each 0 < f < 1 and i e N there exist Q > 0,0 < q < 1 such that

Let <£(£, i, K, x) = (gk \K)(i)(t
c+i)(x), K e 5Tk. We notice that

0(fc, £«',*)= I (t>(£,i,K,x)

is equal to the left-hand side of (5.9).
We shall prove (5.9) for i = 0 first. By (5.8) and (5.4)

4>(C, 0, K, x)<p{p2S)c- <M£ 0, K, y) Ke Xk, x,yel
and hence

©(fc, £, 0, x)<p(p2S)TJ-©(fc, £, 0, y). (5.10)

Since the Perron-Frobenius operator preserves integrals,

0A(dx)= ip^dX.
Jl JHk-Kk

Hence, by (5.6) for each feeN, one can find xk such that

Then, using (5.10) we obtain for every xe I

&(k,£,O,x)£p(p2Sy0(k,t,O,xk)<Qqk, (5.11)

where Q = p(p2S)1-\(I)1 ~l/\-£ and q = ^~c<\. Hence (5.9) follows for i = 0.
Let us consider the case i ¥= 0. Then using (5.11) for I = £ we get

^<f>(l 0,K,x)-@(k,i,0,xY

*<t>(€,0,K,x)-H-hk, (5.12)

where f = (i + f)/(i+l)<l, KeXh yeK, fk(y) = x, H = [p(p2sy/((l -£)•
A(/)'"f)]' and /i = (/3'"f)'< 1- Immediately from (5.11) and (5.12) by taking the
sum term by term it follows that

0(fc, i, i, x) £ @(fe, £ i, x) • H- hk < Qq\

where Q = H2 and q = h- ̂ ' " f < 1. Hence (5.9) follows for i ̂  0.
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It remains to prove (5.14) and to deduce the lemma. Let L, be the component of
Ei containing b.f'\Ll is one to one.

Let x=f'(y),ye L,r\supp ipb, IG^JU{0}, 0< 17 < 1. Then there exists T > 0 such
that

(f\LlUW+i)(x)^T\(fy(b)\'>-l-^+
ii)(x). (5.13)

The left-hand side of (5.13) equals

(b-sr'K/
then by lemma 2.2a it is less than or equal to

and this is equal to the right-hand side of (5.13) for T = p2l+v+i. Similarly we can
prove that

Finally (5.9), (5.13) and (5.14) allow us to prove the lemma.
Take n = km+r, Osr<m, keN. Notice that £ „ c Ekm<= Hk. Then

^(f%rh)°(gk\Hkh) (5-15)

(5.9) and (5.14) give the estimates

Then, applying this to (5.15) we have

Now using (5.13) for l = r we have (notice that /"(x)=/ r°gk(x) , for xeEn):

where

C,= sup (/rUr)(0( !)(*)<+00;
xe Itr<m

C2= sup .(rk-0<o(*ri)
xe I,r<m,a&B

and

This finishes the proof of the first inequality. A proof of the second inequality is
actually contained in the above argument. •
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LEMMA 5.2. Let f belong to Mr. There exist constants H>0, 0 < g < 1 (g being the
same as in proposition 4.4) such that for i = 1, 2 , . . . , n and p € C}e, 0 < 5 < r,

is from (3.10)).

Proof. Let Fa = F(a,S) (=WsnUa) for aeA2 (S is from (5.1)). Set £/,-„ =
{xeUi:f

i~1(x)eFa}.Then

(/%,)*= I . (/lu,.)*. (5-16)

From (v) and (5.1) it follows that Usn Ws = 0. Therefore, applying proposition
4.4 one can write for xe I

, 1 | p | 1 , , + ||p||.) j*s. (5.17)
(In fact here we use a slightly stronger result than proposition 4.4. This is that the
sum of the absolute values of the derivatives of all terms of /£(p) is less than or
equal to the expression stated in proposition 4.4. It is proved within the proof of
proposition 4.4. Taking above the restriction f~l\Ula instead of/'"1 we omit some
terms for given x and the estimate remains true.)

Let pi = (/'~l|uia)*(p) and q=f\Fa, (we observe that q is one-to-one). Then

From lemma 1.1 we obtain:

k*(Pi)O)(x)|s I I \S(k,Z)\, (5.18)
k=0ZeZ(k,j,q >

and
S(k,Z)(x) = Dk(x) II D\(x)".

(M,p)eZ

Let us estimate D\ and Dk (see lemma 1.1 and conditions (vi), (vi')). Let q(y) = x,
then

i n i / \\ - K-\y-d\v K . ,„_„.(,+,)
| D l ( x ) | S ( a b - d | " ) ' + I " a ' + l b ~ a |

Since t>>«-/ ((vi')), for some constant £, >K/a'+l using (2.1) we have

\D\(x)\*El\y-&\'-'-'«'+» = El\y-&\-«''+»

<£2(/)- |x-(/(a))vr, (5.19)

where E2{1) = £,(«/(« + 0)'-
We now estimate Dk using (5.17), (vi) and (2.1)

k

where E3 = ak+I((« + l)/ft.)«"Ht+1).
(5.18)-(5.20) give us

(5.21)
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where £4 = maxa£^2 maxZeSi(KW') ((G/E3g) n(;,i,p)ez E2{l)p) and

p(a) = t(a)+kt(a)+ £ Ip

(see lemma 1.1), since k + Z(U>p)EZ l'P=J, 0==/</ Hence also card 2E(k,j, q~l)^2J.
Therefore from (5.18), (5.21) it follows that

where H = (j + 1)-2J- E4. Now the lemma follows from (5.16). •

LEMMA 5.3. There exists a constant H>0 such that

ifluM*.)* H I . M /or «= 1,...,«.

Proof One can easily prove this from proposition 3.3 and (vi). We omit the precise
proof since it is actually a part of the proof of lemma 5.2. D

Now we have a method to prove the fundamental proposition of this paper.

PROPOSITION 5.4. (a) There exist constants @>0 and &< 1 such that for neN

n(<Pe)^®(<Po + #"<Ps) and \\fl\\^2@.
(b) IffeM' and e > 0 then there exist constants T>0 and T<\ such that for

neN, pe C}_e and 1 < s < r,

( i / e = 0 then r=\).

Proof We notice first that f\u. =/"~'Un_,°/i|u1 and hence

W\u,)* = (/"'%„ J^/'U)*- (5-22)
Then we notice that since U^o ^ = ^

£ (r\u,)*=n- (5-23)
i=0

(a) By lemma 5.3 and (5.22), since f(U,)<= W, we have, 0 < i < « ,

Hence by lemma 5.1 it is less than or equal to

GH( I \(r~iY(f(a))\Ha)-]

\aeA2

Then by lemma 5.1 and (3.10),

O A

* ] , (5-25)
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where £, =VkZla.A2 \(fk)'(ai)\~n(a) + K+oo. Since |(/k)'(a,)| grows exponen-
tially, one can find constants E2>0 and /»! < 1 such that

\D{k+x)\<E2h1 for k,nzN.

Now (5.25) gives us:

k )* (?J s£ 3 fc 2 V , (5.26)

where £3 = G-max{£|, E2} and /i2 = max{/ii, li}< 1.
Let us look at (5.24). We can write -r](a) instead of £ ( a ) - l (maybe making

GH larger) which is less than -7j(a). This is possible since \(fk)'(b)\> 1 for b e B
and for k large enough.

Let us sum (5.24) for i = 1 , . . . , n and then add (5.26) to the resulting inequality.
In view of (5.23), we have (a) for 0 = max {GH, GH/{\- h), E3} and # = h2< 1.

In order to estimate ||/£||e we notice that |p | s ||p|| ,,-<?,,. Hence, by the first part,

(notice that if A( J) < 1 then <pe > <p0. If not then one has to increase 0).
(b) From now on xeI\B and xi. Bo. Let p € C/>e. In view of (5.22), (5.23),

= I [ ( / 1 " I U . . I ) * « ( / ' I I / 1 ) * ( P ) ] ( S ) - (5-27)

Let p, = (/it/,)*(p)- Then by remark 1.3

k r ' U ^ i %Mj)\ * , « - o. (5.28)
7=0

Theorem 2.1 easily implies the existence of constants C > 0 and /3 > 1 such that

\(fk)'{x)\>C-{ik forxe£,,/sfc (5.29)

This enables us to follow the proof of lemma 4.1 and lemma 4.2 and to obtain:
(5.30) There exists a constant D such that T(j, s, n)(x)<D for j<s<r, n e N

and x e /.
According to lemmas (5.1) and (5.2), and (5.29) we get (notice that (/(A))v<= En

for each neN)

</wip|1J+iipiu)/.r z. (i(/n")'(/(a))r7'<a)-^a^))+i), (5.3D

where H, = HG max{C~~2£, 1} and /i, = max{j8"2c, h}< 1.
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Let us return now to (5.27), (5.28) and there apply (5.30) and (5.23).

I/*(P)(1SD£ I ( / - 'U^WIP^D
j=0i=O

) + _I S,), (5.32)

where Sy = SP-o (/"~''U.-,)(j)(|piJ')|)- According to (5.31) and (3.10) for g, =
max {g, h{} < 1 we have

+ H,-cardA2-I (gMp|,,y+A"-IIPIU)-
i = 0

Now since |p|i,j=£ |p|i,s and for g2: g, <g 2 < 1 there exists G2 such that (n + l)g"
G2g" for n € fy, we have

+ H,-card A2-[(« + l)gr|p|1>s+(1/1-

^^(^IPL+IIPIU)- -? , , (5.33)
where H2= H, -card A2-max {G2,1/1 - / i } . Having (5.33) and the second part of
(a) we can apply (5.32) to obtain:

Dividing both sides by <ps and taking the supremum over x e / e j ' we have:

where ae = sup <pj<ps < +00 and a, = sup <Pj/<ps < +00. Hence proposition 5.4(b) fol-
lows for T = g2< 1 and T= D(20aE + / / 2 £ s

= 1 ay)- D
Remark 5.5(a) In proposition 5.4(b) the space C}>£ can be replaced by the space
Cjf£~

1)+1 and the semi-norm |- | l s by the semi-norm |-|, (s_i)+1. Then the pattern of
the proof remains the same. The only difference is that certain expressions hold
almost everywhere (compare remark 4.3(a)).

(b) Proposition 5.4(a) implies the existence of absolutely continuous invariant
measures for / This gives the proof, different from that of M. Misiurewicz [6].

6. Main results in the class Mr

In this section / belongs to Mr (r>2). Let us recall some results of § 6 of [6].
There exists a finite family of pairs {(Ku, Vij^i^js^jsisp satisfying (6.1)-(6.6).

For Kjj we take j modulo kt.
(,0.1) J '(li.jj) = A.,:j:',

(6.2) KtJ c / is a finite sum of closed intervals and the Ku are pairwise disjoint;
(6.3) ^jeL,(A), \vijdk =

(6A) f{KiJ) = KiJ+uU{ViJ) =
(6.5) {fk'\Kll, vudk} is exact;
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We define for each Ky the basin of KUj:

Mu=ur^).
n=0

Then for peL,(A):

(6.6) limn^+oo/j'
c'(A'M,,/p)=»'.,rlMuprfA in L,(A).

For p of class C2 the convergence is also in the topology of uniform convergence
on compact subsets of J e $. We remark that all results obtained for the partition
$ defined in [6, § 5] remain true for our partition $ defined in § 4 above.

Let us define the projection

pdk.

From (6.4) it follows that

>J ' J M,j

(6.8)

J = M^l l s f < s , l s ; < f c , (6.7)

Namely, r 1 (M i j ) = U ^ o r ' t ' ' ' ( r 1 ( ^ u ) ) - Now since

fHr'iKtj)) = Ku_, and r ' ( * u ) c M,,_,,

(6.7) follows. This and (6.4) yield

/ * • tt = 770/, and /J°TT-(P) = I »>,J+n I p dA;

(notice that fM /*(p) d\ = \r*iMi )pd\= | M ._( pdA). Let us define the remainder
operator <f> —f^—f^'T- In view of (6.8) since w2 = TT,

/ * = / J o ^ + ̂ n forallneN. (6.9)

The following proposition is a consequence of (6.6).

PROPOSITION 6.1. For each pe L,(\), limn^+0O ||</>n(p)||i., = 0.

Proof. Let «o = Ilf=i fcr Then fl°'°ir= -rr and by (6.9):

f
Mi. i

* W , (6.10)
where Mo = I\M and M = U, j M,> We shall now prove that

' 0. (6.11)

Let pi = 0"°'(1) and let us consider the set

H = cl conv{p;:

In view of proposition 5.4 and theorem 6.2(c) of [6], H is compact, the L, topology
and topology of uniform convergence on compact subsets of JeJ! (u.c.s. topology)
coincide on H, and H c 2)0.

Let p = 1 in (6.10) and let us suppose that there exists a subsequence p,k of pt

such that lim,t.»+co p4 = <p & 0. Since by (6.6) lim/-.+co/J
)l(;rM) = fl'(l),
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L,
\imk^+ooflok(xM0) =<P- Since <peHc2)0, there exists Joe£ such that <p\Jo>0.
Because /(Mo)<= MQ, Jo has to be contained in Mo. Take M, =U^ro/"(-^o)- We
have M{nM = 0 , M, is invariant under / and is equal to the composition of
elements of $. Thus it has to contain some set KtJ (one can deduce a proof from
[6, § 5]). This leads to a contradiction, since no Ku intersects Mo(=> M,). Hence
we have that <p = 0 and (6.11) for p = 1 follows. Now by (6.10), (6.11) we have

= \ r/A (Mo) = [ XM0 dk = \ r/(XM0) d\ -l 0

and A(M0) = 0. This yields the identity 0"°'(p) = <j>n°'(p- XM) a.e. Simultaneously,
(6.6) implies that

f^M' p) ^ 0.
/-»+OO

Hence (6.11) follows. Now, since ||<£"||Ll2=2 for neN the proposition follows
as well. •

Remark 6.2. We have proved that A(M0) = 0, which is necessary for theorem
6.3(g), (h) of [6]. M. Misiurewicz omitted this proof in [6].

We are now in a position to prove the main theorem.

THEOREM 6.3(a) C}e for s = 0 , 1 , . . . , r - 1 is invariant underf^ and there exists C> 0
such that:

^C forne\,s=l,...,r-l;

< C forneN.

(b) vtJeCr
f-\

(c) 7T, <f>: C}-ei> are continuous (s = 0 , 1 , . . . , r - 1).
(d) There exist constants T > 0 and 0 < y < 1 swcfc ffcaf /or p e Cjfe

)+1 and « £ N,

(e) For e > 0 assumed to be as in (3.10) there exist constants A>0 and 0 < f < 1
such that

| |0"|U<A-c" / o r « e N , s = l , . . . , r - l .

{Briefly speaking, the spectral radius of<f> in C}e is less than one.)

Proof. Again let n0 = nf=i K Then/"0'°7r = v and by proposition 6.1 for peL,(A)

fl°'(p)^ir(p) as /->+ooin L,(A). (6.12)

We shall first prove the theorem for the spaces Cjf,rl)+1 instead of C}e and for
|| •!!(,_,)+, instead of \\-\\s.
(a) follows for C = max {26,27} from remark 4.3(a), proposition 5.4 and remark
5.5(a).

Now, le tp ( =/V(l ) . By (a)

l|p/||(r-2)+i — C, for each ZeN.

We want to prove that

7r(l)eCJ;72)+1. (6.13)
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Let us take a compact subset K of / e / . We have

\p,\K| < C- sup <pE < +00, |p<s)|K | < C- sup tps < +00,
K K

(s = l , . . . , r - 2 ) a n d

Now applying the Ascoli-Arzela theorem we obtain by induction on 5 that there
exists a subsequence {p/J^l^M which converges in C~2(K) to some pK e C~2(K)
and P(K~2) is Lipschitz on K. Since by (6.12) p, converges to TT(1) in L,(A) we obtain
•"•(I)IK = PK a.e. Hence since K was arbitrary, some representative of TT-(I) is of
class Cr~2 and 7r(l)(r~2) is Lipschitz on compact subsets of Je£. It remains to
estimate the norm of TT(1).

We can choose a diagonal subsequence of {p(JfceN which converges pointwise to
TT(1) with its derivatives up to order r - 2 . Hence ||TJ-(1)||,._2< C. NOW using the
method of the proof of remark 4.3(b) (in particular Vk) we obtain:

and hence

This ends the proof of (6.13).
In view of (6.2), (6.13) and the definition of TT, we get

vueC%m-2Hl. (6.14)

Note the following

f f
| |p | |L |< <pe d\- | |p||e S I <pe d\- | |p | | ( s_1 ) + 1 . (6.15)

Hence we can prove the first part of (c) as follows:

m a x \\VJ . | | ( s _ 1 ) + | .
•j

This combined with (6.15) proves that
(6.16) TT: CJfE~1)+1-» Cjf£~

1)+I is continuous and consequently the same is true
f o r <f>.

Moreover from (6.9) and (a) for s = 1 it follows that

||^"||(o)+,sD forneN, (6.17)

where D= C+ C\\v\\m+i. Write ® = clLl\J*~o<f>n(R), where R is a unit ball in
C}°)+1 and notice that 38 is ^-invariant, and by (6.17)

Hence by remark 4.3(c) 38 is compact in L,(A). Since ||<^"||Ll<2, proposition 6.1
shows that the sequence of functions on 38 c L,(A), {<p"\m}neN, converges uniformly
to zero. Therefore for some neN, | |0"(p)| |L,<<'< 1 for pe58. Let us take neN,
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and r, Os f < n such that n = k- n + f. Now we can estimate for pe R:

<dk-2<Y-y", (6.18)

where y = du" and r = 2/y"\ (notice that by (6.9), ||^""||L]<2).
Finally, putting p/||p||(0)+i in (6.18) one obtains (d) for pe C}°e

)+1.
(e) We shall first prove

lim sup| |*"(p)| | .=0. (6.19)
n-»+oo p£R

Let us take e'> 0 and write for p e R

\f(P)\ = I/*(P -
and by proposition 5.4(a) we have

Now we can find y > 0 and n, € N such that

l<ft W ( x ) l < e ' f o r x e [ / r , n > n , andpe/? . (6.20)
VAX)

Besides (d) and (6.17) imply that <j>"(p)(x) converges uniformly to zero for
xeI\Uy and p e R (notice that by (6.17) <£"(p)'(x) is bounded for n e N, x e J \ t/r

and pe /?). This enables us to find n2eN such that

andn>n 2 . (6.21)

(6.20), (6.21) yield ||<p"(p)||e < e' for n > max {n,,n2} and peR, and this proves
(6.19). We proceed to prove (e).

Recall the inequality from proposition 5.4(b) (compare remark 5.5(a)).

^ - O + . ^ T V - I P U - O + I + IIPIU)- (6.22)

Let B denote the unit ball in C^~1)+l. Let us take meN such that T- ||<£m(p)|U <5
for p e R and let fc e r\J be such that Trk- \<t>m{p)\ i,(s-i)+i <1 for p e B. ((c) and (6.19)
enable us to do this). Now put <j>m(p) instead of p in (6.22) and estimate

for p s B c R , Hence \\<pk+m(p)\\(s-i)+[ <§ for p e B (one can assume that T>1).
The same reasoning as in (6.18) justifies the inequality in (e). Thus we have proved
the theorem with C}c replaced by C/'~l)+l. Hence we shall deduce the theorem.

(a) follows from proposition 5.4. In view of the proved case of (e),/J»'( 1) converges
to -n-(l) in C{/~2)+l as / tends to +oo. But since/J>'(1)e C}~' and C}~1 is closed in
CJ;T2)+I and the respective norms coincide on C}~', we have that TT(\) belongs to
C}~'. Hence (b) (see the definition of v), (c) and (e) follow immediately.

Thus the proof is finished. •
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Let A, 6 S1 be a generator of the cyclic group of order fcj. Let us define for 1 < i < p,
1 <7< fc, the projections:

l V) ( | f p dA| Af • f

It is easy to check that ir^ is a projection onto the eigenspace of /* related to the
eigenvalue Â . (It may happen that the lengths of two different cycles have a common
divisor. Then certain eigenvalues will be repeated.)

PROPOSITION 6.4. (a) Z,,j "y = 7T-

(b) (spectral decomposition)

/* = Z (A-i)Sry + <f>k for keK
u

(c) for all pairs (i,j),irij°4> = <l>°irij = 0 and 7r,j ° Tr,-,. = 0 if (i,j) ^ (' ',/)•

Proof, (a) Assume that there is only one cycle, for the proof will be easier; (we shall
omit the index i.)

pdk-A(n-l),

where A(m) = Xy=1 A-/m-A(nr) is equal to zero whenever m # 0 and it is equal to k
when TO = 0. Hence

r

(b) follows from (a) and (6.9). Proof of (c) is trivial. One can check it using (6.3),
the definition of operators and applying A as above. •

7. Lasota-Yorke type maps
In this section we assume that \f\> y> 1 and / on each component of I\A can
be extended to the map of class Cr (r>2) on the closure of this component. Let
us write

$ - {J: J is a component of I\B}.

We define the spaces
BV = {pe L,(A): var p< +°o},
BV(r"2)+l = {peBV: some representative of p is of class C~2 and p(r"2) is

Lipschitz on all / e Jf},
BVr~] = {p € BV: some representative of p is of class C~' on all J € / } .

For p e BV(r"2)+l we define the semi-norms:
|p|,=supJeJfsupj |p(0| ( i= l ,2 , . . . , r - 2 , and i = r - l if peBVr~'),
|p|(r-2)+i=supJeJf essupjp*''"''!;
\p\ i,(r-2)+, = ma,x {|p|,,..., |p|r_2, |p|<r_2)+1}.

In the space BV we have the norm
r

j dk +varp,
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where varp = inf {varp': p' = p a.e.}. Let us define the norm on BV*r"2)+l as

||p||(r_2)+l=max{||p||,|p|Mr_2)+i}

and the norm on BVr~l

Let us then define

" 2 ) + 1 = {p € BV<-2>+1: ||p || (r_2)+I < +00}

According to M. Rychlik [8] there is a family of pairs {(Ku, Vij)}^jSk,,isisp such
that the conditions (6.1)-(6.6) hold for the map / Thus we can define basins Mu

and operators IT and <f> as in § 6. From [6] one can also deduce the following
proposition.

PROPOSITION 7.1. \\ct>"\\ tends to zero exponentially as n-> +oo.

We shall prove now the following theorem.

THEOREM 7.2. (a) BVr~' is an f^-invariant subspace of BV.
(b) The densities vtJ belong to BV'"1.
(c) | |0"|| r_, converges to zero exponentially as n-* +oo.
(d) For each density vtj and for each J e $ either v{j\j = 0, or v^j is separated from

zero (compare [3]).

Proof, (a) We have/(B) c B and hence for each / e / , . T V ) c U<?- (a) now follows
from the definition of /*,

(c) We shall prove first that vu€ BV(r~2)+l. From lemma 1.2 it follows that

\fk*(l)(s\x)\^fl(l)(x)T(O,s,k)(x) forxel. (7.1)

Let us note that for some C > 0

T(l,s,k)(x)s;C f o r x e / , s = l , 2 , . . . , r - l , / < s , f c e f U (7.2)

The proof of (7.2) is contained in the proofs of lemmas 4.1, 4.2. We will not repeat
it.

Put m = nf=i fci- We have/£° ir = TT. Hence by proposition 7.1 and (6.9) we have
(7.3) f%"{p) converges to ir(p) in BV as n tends to infinity.

Let us write /in=/£m(l). By (7.1)-(7.3) there exists a constant E>0 such that
|/i(

n
s)(x)| < E for x € U ^ and s = 1 , . . . , r - 1. Let us fix J e / . From the Ascoli-Arzela

theorem and (7.3) it follows by induction that TT(1)\J is of class C<r~2)+1. Hence
TT(1)€ BV(r-2)+l and all vu belong to BV(r"2)+l. From lemma 1.2 and (7.2) we can
deduce that for some constant F > 0

l4(p)|1,(r_2)+1<F(r-
fc|p|,,(r_2)+I+||p||) (7.4)

for keN and p e £V(r~2)+1, y> 1. We omit the precise proof.
Let Bt denote the unit ball in J5V(r"2)+l. We notice that by (7.4), ||/£||(r_2)+, <

max {2F, D} = D{. Hence by (6.9)
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where D = supfceN \\J%\\ < +00. We also notice that since vu e BV(r~2)+1, ||7r||(r_2)+i <
+00.

Take neH such that F\\<f>"\\ <j and fcosuch that Fy~k°D2<i Now put </>"(p), pe
B,, in (7.4) in place of p and we obtain

Hence ||0n+k<>||(r_2)+1 <§< 1 and this yields
(7.5) ||(£fc||(r_2)+i converges to zero exponentially.

Therefore (7.3) now holds in BV(r~2)+l and, in particular, hn converges to TT(1) in

and || • ||(r-2)+i coincide on BVr~'. Hence TT{\)& BV'"1 and (b) holds. This gives us
that BVr~l is invariant under <f> and hence according to (7.5), (c) holds.

(d) Let us return to (7.1)-(7.2). We have that \h'n\< c\hn\ and hence by (7.3)

We write v=ir(l). Thus we have |(ln i/)'|< C on
Fix / e $ and let x0 e /. Then for x e J

In v(x0) — C\x — xo| ^ In v{x) < In ^(x0) + C\x — xo|

and
v(xo) e - c |^xol< V(X)<V(XQ) c

cl*-*ol.

Hence (d) follows. D

Finally in this section we shall define the Banach space BVX = {pe BV: the
continuous part of some representative of p is Lipschitz}. Since a function of bounded
variation can be decomposed into the sum of a step function and a continuous
function, this definition makes sense. Define the norm

||p||, = max {||p||, Lip cpp},

where cp p denotes the continuous part of p. Notice that Lip cp p = essup |p'| and
recall that a function of bounded variation is almost everywhere differentiable.

THEOREM 7.3. Let r = 2.

(a) BV, is an f^-invariant subspace of BV.
(b) The densities vu belong to BV,.
(c) || 0" II, converges exponentially to zero as n-> +00.

We shall not prove this theorem because the proof is almost the same as the proof
of .theorem 7.2. We remark only that if a sequence pn converges to p in the norm
|| • || then its continuous part and its step part converge uniformly to the continuous
part and step part of p respectively. This enables one to repeat the proof of theorem
7.2(b), (c).
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