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Abstract. It is shown that the unit tangent bundle of a compact uniform visibility
manifold with no focal points contains a subset of positive Liouville measure on
which all the characteristic exponents of the geodesic flow (except in the flow
direction) are non-zero. This completes Pesin's proof that the geodesic flow of such
a manifold is Bernoulli.

0. Preliminary remarks
Anosov showed in the early 1960's that the geodesic flow on the unit tangent
bundle of a compact Riemannian manifold with negative curvature has a dense
orbit; that the closed orbits of the geodesic flow are dense in the unit tangent
bundle; and that the geodesic flow is ergodic. Since then efforts have been made
to extend these results to a wider class of manifolds. Eberlein and O'Neill [10]
introduced the axiom of uniform visibility (defined in § 1) as a suitable generalization
of negative curvature. Eberlein [5], [6], [7] showed that the geodesic flow on a
compact uniform visibility manifold has a dense orbit, and that the geodesic flow
is topologically mixing if the manifold also has non-positive curvature. Later Pesin
[17], [18], [19] investigated the ergodic aspects of the problem using his extensive
theory of non-uniform hyperbolicity. Pesin considered manifolds with no focal
points (a generalization of non-positive curvature) satisfying uniform visibility. He
almost proved that the geodesic flow of such a manifold is ergodic with respect to
the smooth measure on the unit tangent bundle. He showed that if the set A, where
the characteristic exponents of the geodesic flow (other than in the flow direction)
are non-zero, has positive measure, then it has full measure and the geodesic flow
is ergodic and even isomorphic to a Bernoulli flow. We prove that A has positive
measure. One of the main steps in the argument will be to show that the closed
orbits of the geodesic flow are dense. Precise statements of our result and Pesin's
theorem will be found at the end of § 1.

Ballmann [1], [2] has studied manifolds with non-positive curvature satisfying a
condition weaker than uniform visibility. He and Brin have shown that these
conditions imply that the geodesic flow of a compact manifold is ergodic and
Bernoulli. An earlier version of their result is contained in [3]. In § 4 we give a
proof of Ballmann & Brin's theorem.
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2 K. Bums

1. Introduction and statement of results
We begin by summarizing the properties of manifolds with no focal points which
will be needed later. Most of this theory can be found in [18]; [5], [8], [11] and
[12] are also useful references.

Throughout M will be a compact, connected, smooth (C°°), n-dimensional
Riemannian manifold without boundary. We shall write H for the Riemannian
universal cover of M and identify TT\{M) with the group of covering transformations,
which are isometries of H. Geodesies will always have unit speed. If v is a unit
vector in M or H, let yv be the unique geodesic with yUO) = v. The geodesic flow
$, on the unit tangent bundle SM is defined by

<*>,(v) = y'v(t).

Let n be the Liouville measure on SM. The measure /J. is 4>,-invariant.
We shall always assume that M has no focal points. This means that if Y(t) is a

Jacobi field along a geodesic in M with Y(0) = 0, then ||F(f)|| is strictly increasing
as t -* oo. Geometrically this means that the universal cover H has two properties.
Firstly

expp: TPH-*H

is a diffeomorphism for every p e / / (i.e. M has no conjugate points [14, pp 133,
201]). So there is a unique geodesic passing through any two distinct points in H.
Secondly every geodesic ball in H is strictly convex in the following sense [9, lemma
1]. We shall say that a set C c H is convex if the geodesic segment joining any
two points of C lies inside C. We shall say that C is strictly convex if in addition
C is the closure of an open set in H with dC a C2-embedded hypersurface, and
for any pedC we have

Cnexpp(rpdC) = {/?}.

Any manifold with non-positive curvature has no focal points.
Geodesies y and S in H are asymptotic (as t->oo) if d(y(t), S(t)) is bounded as

t->oo, and biasymptotic if d{y{t), S(t)) is bounded as t -»±oo. Geodesies in M are
asymptotic if they have lifts to H that are asymptotic. An equivalence class of
asymptotic geodesies in H is called a point at infinity. One can show that if p e H
and v 6 SH there is a unique w e SpH with yw asymptotic to ym and w depends
continuously on p and v. Using this one can identify the set //(oo) of all points at
infinity with the sphere S""1 and construct a natural topology (the cone topology)
on

H=HuH{<x>)

so that it is a closed disc with H(<x>) as boundary. Each geodesic y in H has uniquely
defined endpoints y(-oo), y(oo)e//(oo) so that

y:[-oo, oo]->//

is continuous. Covering transformations of M extend to homeomorphisms of H.
The angle function£p(x, y) is continuous on

{(p,x,y)eHxHxH:p*x,p*y}.
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Hyperbolic behaviour of geodesic flows 3

These results were proved when M has non-positive curvature by Eberlein and
O'Neill [10]. It is clear from [11], [12] and [18] that they still hold when M has
no focal points.

For v € SH define L(v) to be the boundary of

U D(yv(t), t),

where
D(p,r)={qeH:d{p,q)<r};

then L(v) is orthogonal to the geodesies asymptotic to yv and intersects each of
them exactly once, cf. [12, § 2]. Let

L(v) = L(-v),

so L(v) is orthogonal to the geodesies asymptotic to yv as t -*• -oo. The hypersurfaces
L(v) and L(v) are called horospheres. Let

B(v) = L(v)nL(v).

PROPOSITION 1.1. (i) L(v), L(v) are hypersurfaces C2-embedded in H, [12, theorem

(ii) L(v) and L(v) are tangent at points of B(v) and their common normals are
biasymptotic to yv. These are the only geodesies biasymptotic to yv, [12, proposition 4].

(iii) / / y and 8 are biasymptotic geodesies in H and

8(0) eB(y'(0)) thenB(S'(0)) = B(y'(0)).

(iv) Ifvn^v in SH, pn-*P in H and pn&B(vn) for each n, then p&B{v).
(v) B(v) is convex, [12, theorem 2(ii)].
(vi) If y and 8 are biasymptotic geodesies in H, then d(y(t), 8(t)) is constant, [16,

proposition 4].
(vii) The Flat Strip Theorem: the geodesies y and 8 in (vi) bound a strip of flat

totally geodesically immersed surface, [12], [16].

Along each geodesic we have the families of stable and unstable Jacobi fields. They
are constructed in [8], [12], [18] as certain limiting solutions of Jacobi's equation.
We give an equivalent description, cf [12, theorem l(i)]. A stable Jacobi field along
a geodesic in H is any Jacobi field Y(t) that can be constructed in the following
way. Choose a C^-curve cr(s) in L(y'(0)) with

<r(0) = y(0).

Let <r(s) be the unit normal to L(y'(0)) at a(s) pointing to the same side as y'(0).
Define

<x(s,t) = y&is)(t).

We see from proposition 1.1 (i) that a is C1. Define

^(0,t).
ds

Note that Y(t) is uniquely determined by cr'(0), and Y(t)±y'(t) for all t, since
o-'(0)±y'(0) and a is a variation through unit speed geodesies. Unstable Jacobi
fields are obtained from L(y'(0)) in, a similar way. The stable and unstable Jacobi
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4 K. Burns

fields along a geodesic in M can be defined by projection from H. If v e SM or
SH write ux for the orthogonal complement of v (in TM or 77/). Define

so that /u(f)w and Jv{t)w are the stable and unstable Jacobi fields respectively with
initial value wev1, and J'v(t)w, J'v{t)w are their covariant derivatives along yv.
Note that /„ is not the stable Jacobi tensor Dv of [11], [12], [13]; indeed

Dv{t)=Ut)°p;'

where PtW1' -*y'v{t)x is parallel translation. If / : U-* V is a linear map between
normed spaces, write

\[T\\ = sup{\\Ju\\v.\\u\\u^l},
and
PROPOSITION 1.2.

(i) Jv(

(ii)/o(-0 = /-„({)..
(iii) Jv(t), J'v (t), Jv(t), J'v (t) vary continuously with v and t.
(iv) The length of a stable {unstable) Jacobi field is non-increasing {non-

decreasing) with t.
(v) ||/t,(f)ll is non-increasing; ((/„(/))) is non-decreasing.
(vi) Let Y{t) be a Jacobi field along yv. The following are equivalent:

(a) \\Y{t)\\ is bounded;
(b) Y{t) is parallel {i.e. Y'(t) = 0);
(c) Y{t) is both stable and unstable;
(d) /

Proof, (i) and (ii) are clear from the above definition of Jv and Jv.
(iii). We show continuity oiJv{t) andJ'v {t); continuity of Jv{t) and/UO then follows
from (ii). Since a Jacobi field depends smoothly on its initial value and its initial
covariant derivative, it will suffice to show that /o(0) and J'v{0) vary continuously
with v. But

Jv (0) = Id for any v,
while Eschenburg and O'Sullivan [13, proposition 4] have shown that v -*J'v(0) is
continuous.
(iv), (v), (vi). See [8, pp. 458-459]. •
The other geometrical property we need to consider is the axiom of uniform
visibility. This was introduced by Eberlein and O'Neill [10] as a criterion for a
manifold with non-positive curvature, or more generally no focal points (or even
no conjugate points [5]), to be like a manifold with negative curvature. The idea
of uniform visibility is that far away things in the universal cover H should appear
uniformly small. Precisely:
M satisfies uniform visibility if it has no conjugate points, and for each e > 0 there
is R{e) >0 so that if p e H and y is a geodesic inH with the distance d{p, y)>R{e),
then y subtends an angle <e at p.
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Hyperbolic behaviour of geodesic flows 5

Now consider the Lyapunov exponents of the geodesic flow. Given a Riemannian
metric on SM we can define, for non-zero £ e TJZM, the characteristic exponent
of the vector £ at v,

X+(v, £) = Hm sup 1/f

Since SM is compact this definition is independent of the choice of metric on SM.
The natural choice is the Sasaki metric which we now describe briefly; see [14],
[20] for more detail.

Let IT : SM -* M be the projection and K: TTM -* TM the connector map for the
Riemannian connection of M. It can be checked that K: TJSM-» u x and the map

iv: TJM -> T^M © v±, iv(£) = (TTT£, K£),

is a linear isomorphism. For £, 77 6 TJiM define

so /„ becomes an isometry. The Riemannian volume defined by the Sasaki metric
is the Liouville measure, /i.. The geodesic flow is the flow of the vector field

E(v) = i-\v,0).

Let TllSM be the subbundle of TSM spanned by H, and T^SM its orthogonal
complement with respect to the Sasaki metric. Both T^SM and T^SM are T<$>,-
invariant.

There is a natural bijection between TJ>M and the Jacobi fields along yv that
arise from variations through unit speed geodesies. If £ e TJ>M then

is a Jacobi field along yv, and

One can show that £ e T\SM if and only if Y((t) is a constant multiple of y'v(t). If
£ e TtSM then

Y((t) and Y'((t)ey'v{t)± for all f;
and conversely. Write Xs

v, X" for the subspaces of TVSM corresponding to the
stable and unstable Jacobi fields respectively. We see from proposition 1.2 that Xs

and X" are continuous, r<J>rinvariant subbundles of T^SM. The following lemma
must be well known and has been proved in a special case in [19, p. 801].

LEMMA 1.3. With the above notation,

Proof. It is clear from the definition of the Sasaki metric that

lim suprMogllY-ftDH^fof).
To prove the reverse inequality it will suffice to show that each £ e TJ>M has the
following property: there is A(£)>0 such that

for all large enough t. Since TlSM and TLSM are orthogonal, the property for
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6 K. Bums

general f will follow if we prove it in the two cases £ € T\SM and g e TtSM. If
$ e TlSM the property is clear since Y'( (t) = 0. So assume £ e T^SM. Then we can
write

where rj eX*v, £eTtSM and Yv(0) = Y((0), F{(0) = 0. Eberlein has proved that
both 17 and £ have the property, [8, propositions 2.11, 2.7]. Since Yv(t) and Y((t)
need not be orthogonal it is not immediately clear that the property follows for £.
But, unless £ = 0, ||Y((t)\\->oo as t->00 [8, proposition 2.9], while \\Yv(t)\\ is bounded
as t -* 00 by proposition 1.2(iv). Using this it is easy to see that when ( # 0 w e can
take

foranye>0. •

Pesin's theory studies those v e SM at which T<$>, has hyperbolic behaviour. Define

A = {ve SM: x+(v, £) * 0 for all non-zero £ e r^SM}.

(This is a slight change from Pesin's definition to allow for the fact that x+(v> f ) = 0
whenever £eXs

v © TlJSM\X'v.)
We see from proposition 1.2(iv) and lemma 1.3 that

and

t; e A if and only if both these inequalities are always strict.
The set A is intimately connected with the ergodic properties of the geodesic

flow. The main result of [18] is:

THEOREM (PESIN). Let M be a compact Riemannian manifold without focal points,
satisfying the axiom of uniform visibility. Define A as above, and letft. be the Liouville
measure on SM. Then either

/u.(A) = 0 or

In the latter case the geodesic flow is ergodic with respect to ix and is isomorphic to
a Bernoulli flow.

The purpose of this paper is to prove:

THEOREM. Let M and A be as in Pesin's theorem. Then

COROLLARY. The geodesic flow on SM is Bernoulli with respect to the Liouville
measure.

The first step in the proof is to show that the closed orbits of the geodesic flow are
dense in SM whenever M satisfies uniform visibility. This is done in § 2. The proof
of the theorem is completed in § 3. The main idea is to show that A must contain
at least one closed orbit.
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Hyperbolic behaviour of geodesic flows 7

2. Uniform visibility and density of closed orbits
Eberlein [5] has shown that if M satisfies the axiom of uniform visibility then the
geodesic flow on SM has a dense orbit. We now show that a geodesic in H which
corresponds to a dense orbit in SM is the only geodesic between its two endpoints
in//(oo).

LEMMA 2.1. Assume Msatisfies uniform visibility. Let ybea geodesic in Hsuch that

is dense in SH. Then the only geodesies in H biasymptotic to y are translates of y.

Proof. Write B =B(y'(0)). We wish to show that B ={y(0)}. We show firstly that
B is compact. ifpeB, the geodesic segment joining p to y (0) lies in B (proposition
1.1 (v)) and so is perpendicular to y. Thus y is tangent to the geodesic ball with
centre p and radius d(p, y(0)), which is strictly convex. So y(0) is the point on y
closest to p. Now y subtends angle v at every point in B, so we see from uniform
visibility and the above that B lies in a bounded neighbourhood of -y(O). Thus B
is compact.

We now show that for any points p, q in B there is an isometry of the convex
set B into itself sending p to q. Since B is compact any isometry of B into itself
is surjective, and so has an inverse which is also an isometry [4, p. 314]. So it will
suffice to find for each p e B an isometry T:B-*B with T(y(0)) = p. We shall use:

SUBLEMMA. Suppose CsH is convex and crn:C-*H is a sequence of isometries
such that crn(co) converges for some coeC. Then {<rn} has a pointwise convergent
subsequence {o-nk} and the map

c-> lim o-nk(c)
lc-»°o

is an isometry of C into H.

Proof.

o-n = expo.,,̂ ) ° dan (c0) ° exp;o\

where dcrn(c0) is a linear isometry of the subspace of TCoH spanned by
into T^ico)H. It is enough to choose nk so that {d<rnk (c0)} converges. •
It is clear from proposition 1.1 (vi) that for any t the map

defined by translation along the geodesies biasymptotic to y is an isometry. Let w
be the unique vector in SpH such that yw is biasymptotic to y. We can choose
sequences tn -»oo and {<£„}£ TT\(M) SO that

<f>n*y'(tn)^w.

Applying the sublemma to { ^ , » T , J gives an isometry T:B-*H with

We see from (iv) and (iii) of proposition 1.1 that

T(B)SB(W)=B.
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8 K. Burns

Finally we show that the above is impossible unless B is a single point. Call p e B
extreme if p does not lie in the interior of a geodesic segment contained in B. There
is at least one extreme point in B. For, since B is compact, there is p0 e B as far
away from y(0) as possible. The point p0 is extreme since the closed geodesic ball
in H with centre y(0) and radius d(p0, y(0)) contains B, is strictly convex, and has
p0 on its boundary. Clearly any isometry T.B -*B maps non-extreme points to
non-extreme points. But we know that r has an inverse T"1, which is an isometry
as well. So r must also map extreme points to extreme points. It follows that every
point in B is extreme. This is impossible if B contains two distinct points. Hence
B={y(0)}. •

Call a vector in SM periodic if its orbit under the geodesic flow is closed, and call
a vector in SH periodic if it is a lift of a periodic vector in SM.

COROLLARY 2.2. / / M satisfies uniform visibility the periodic vectors are dense in
SMandSH.

Proof. We use an argument of Eberlein [6, theorem 3.10]. Let y be as in lemma
2.1. It suffices to show that, for some t, y'(t) is a limit of periodic vectors in H.

Suppose 4> e TTI(M). Then <f> has at least one axis, that is, a geodesic <5 in H such
that

for some constant c [11, § 4.3]. Note that the tangents to <5 are periodic vectors
and 5(-oo) and 5(oo) are fixed points of <f> (extended to act on H). Eberlein [5,
proposition 2.6] has shown that if M satisfies uniform visibility then <f> has at most
two fixed points in H. So <f> has exactly two fixed points, which must be the ends
of all the axes of <$>.

Eberlein has also shown [5, proposition 2.8] that if M satisfies uniform visibility
and x, y are distinct points in H(oo) then there is a sequence {<£„}£ vi(M) so that
<f)n has fixed points xn, yn with

xn->x, and yn->y.

For each n let Sn be an axis of <t>m oriented so

8n(-oo)=xn, and 5n(oo) = yn.
If p is any point in H,

Jf-P(xn,yn)->$P(x,y)>0

since x # y. It follows using uniform visibility that p has a compact neighbourhood
through which all of the geodesies Sn pass. So there is a sequence {tn} such that
{S'n{tn)} lies in a compact subset of SH. Let v be a limit vector of this sequence of
periodic vectors. Then

yv(-°o)=x, and yu(oo) = y.

Apply this with x = y(-oo) and y = y(°o). We see using lemma 2.1 that v = y'(t)
for some t. •

https://doi.org/10.1017/S0143385700001796 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001796


Hyperbolic behaviour of geodesic flows

3. Proof of the theorem
Define

Ao = {v e SM: lim sup T 1 log \\fv(t)\\ < 0,
r-»oo

r1
liminfr1log((/u(0))>0}.

It is clear from lemma 1.3 that Aoc A.

LEMMA 3.1. / / Ao# 0 , then ja(Ao)>0.

Proo/. We use an argument of Pesin [19, p. 803]. Let v0 e Ao. We can choose tQ > 0
and Ao such that 0<A0< 1, with

Since Jv(t0) and Jv(t0) vary continuously as v varies in SM (proposition 1.2(iii)), we
can find an open neighbourhood U of v0 and A such that Ao^ A < 1, with

l|/0(ro)ll<A, ((/„(*<>)))> A"1

for every v eU. Recall that the Liouville measure /x is invariant under the geodesic
flow. By the ergodic theorem there is a set G ^SM with IJL(G)>0 such that for
any v &G

liminfl/f f xu(®s(v)) ds >lfi.(U)>0,
r-oo Jo

where xu is the indicator function of the set U. So, if v e G, the forward orbit of
v under the geodesic flow spends a positive fraction of time inside U where stable
Jacobi fields definitely shrink and unstable Jacobi fields expand. We see using the
definition of U and proposition 1.2(i), (iv) that G c Ao. •

There is a simple criterion to decide whether or not a periodic vector is in Ao.

LEMMA 3.2. Suppose v e SM is periodic. Then either ve\Q or there is a non-zero
Jacobi field along yv which is orthogonal to y'v and parallel (i.e. its covariant derivative
vanishes).

Proof. Let T be the period of yv. Then

Jv(T):v^v\

We see using proposition 1.2(i), (iv) that

lim sup f"1 log \\Iv(t)\\ = lim sup n~r log ll/jr)"| | = log A,
(-.00 i ^

0 0

where A is the modulus of the largest eigenvalue of JV(T). By proposition 1.2(iv)

||/U(7')H'| |^| |W|| for every w e vx.

So A < 1. If A < 1 we have that

limsup T1 log\\Tv(t)\\<0.
r-*oo

If A = 1, there is an invariant subspace of v1 on which all the eigenvalues of JV{T)
have modulus 1. So on this subspace /„ (T) is volume preserving but does not expand
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10 K. Bums

the length of any vector. It follows that /„ (T) is an isometry on this subspace. Hence
there is w ev1 with

\[rv(T)nw\\=l for every MEZ.

It follows from proposition 1.2(iv) that the stable Jacobi field Jv(t)w has constant
length 1. It is parallel by proposition 1.2(vi).

Thus we have shown that either

or there is a non-zero parallel Jacobi field orthogonal to y'v. A similar argument
shows that either

\iminfr1log({Jv(-t)))>0,
r-»oo

or there is a non-zero parallel Jacobi field orthogonal to y'v. The lemma follows
immediately from these two statements. •

Now we use the preceding lemma and the density of the periodic vectors to show
that Ao # 0 if M satisfies uniform visibility.

LEMMA 3.3. Assume M satisfies the axiom of uniform visibility. Then the set Ao
contains a periodic vector.

Proof. Suppose not. Then there is a non-zero parallel Jacobi field along each closed
geodesic in M. Using corollary 2.2 we see that there is a non-zero parallel Jacobi
field along each geodesic in H. We use this to obtain a contradiction. Let y be a
geodesic in H such that

is dense in H. We shall find a geodesic biasymptotic to y, contrary to lemma 2.1.
If v 6 SH, let

Using proposition 1.2(vi) we see that

Let k be the smallest value of dim P(v) for v e SH. From the above we have k > 1.
Since J'v(0) and J'v{0) both vary continuously with v (proposition 1.2(iii)), the set

{v eSH: dimP{v) = k)

is open. This set is clearly invariant under covering transformations. So, by re-
parametrizing if necessary, we can assume that P(y'(0)) has dimension k.

Write L =L(y'(0)) and for p eL let p be the unit normal to L pointing to the
same side of L as y'(0). Since L is C2-embedded in H (proposition 1.1 (i)), p
certainly varies continuously on L. Thus there is an open neighbourhood U of y(0)
in L such that P(p) has dimension k for every p eU. Using this and proposition
1.2(iii) we see that P(p) is a continuous ^-dimensional distribution on U. Let X
be a continuous vector field on U with X(p)e P(p) for every p eU and X(y (0)) ̂  0.
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Hyperbolic behaviour of geodesic flows 11

For some e >0 there is a C1-curve

a:(-e,e)-*U, with cr(0) = y(0),

which is an integral curve of X [15, p. 3].
Define

I:(-e,s)xR-»H, S(s, t) = y*<f)(r).

We see using proposition 1.1 (i) that 2 is C1. For each fixed 5, d1/ds(s, •) is a stable
Jacobi field along %*(*>, and

8Z/ds(s, 0) = AV(s)) € P(<T(S)).

We see that each of the vector fields d1/ds(s, •) is parallel along y&(s). It fqjlows
that for any t

<[ 1^(5, t)\ds
Jo 1105 II

= f \\X(a(s))\\ds,
Jo

which is independent of t. Hence the geodesies y and y^(S) are biasymptotic for
any se ( - e , e). Since X(y(0))#0, o-(s)^-y(0) for small s, and so we have a
contradiction to lemma 2.1. •

The theorem follows immediately from lemmas 3.1 and 3.3.

4. Non-positive curvature
It is known that if the compact manifold M has non-positive curvature, then M
satisfies uniform visibility if and only if the universal cover H contains no embedded
flat totally geodesic plane [5, theorem 4.1]. Ballmann [1], [2] has studied manifolds
of non-positive curvature satisfying the weaker condition that there should be at
least one geodesic in H which does not bound a flat totally geodesic half plane.
He has shown that many of the properties of uniform visibility manifolds still hold.
In particular, the geodesic flow on SM is topologically transitive. We now show
that the results of this paper still hold under Ballmann's condition. This result has
also been obtained by Ballmann and Brin.

THEOREM 4.1. Suppose M has non-positive curvature and satisfies Ballmann's
condition. Then ̂  (A) = /u, {SM) and the geodesic flow is ergodic and Bernoulli.

Proof. First we show that /x (A) > 0. We need to check that lemma 2.1 and corollary
2.2 still hold when uniform visibility is weakened to Ballmann's condition. We
know from [2, theorem 3.5] that the geodesic flow is still topologically transitive.

Uniform visibility was used in the proof of lemma 2.1 only in showing that B
was compact. In the present case we can argue as follows. If B is not compact, we
see using the Flat Strip Theorem (proposition 1.1 (vii)) that the geodesic y in lemma
2.1 must bound a flat half plane. But then it follows from the density property
of y that every geodesic in H bounds a flat half plane, contradicting Ballmann's
condition.
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Ballmann has shown that the properties of uniform visibility manifolds used in
the proof of corollary 2.2 still hold under his condition [2, theorem 3.8].

Thus IJ. (A) > 0. In particular, there is a geodesic y in M such that there is no
non-zero parallel Jacobi field along y orthogonal to y'. By [3, theorem 1], the
geodesic flow on SM is ergodic and Bernoulli. Since A is an invariant set of positive
measure, fj. (A) = n (SM). •

This result should generalize to manifolds with no focal points.

The work in this paper is intended to form part of the author's Ph.D. thesis at the
University of Warwick. The author would like to thank very sincerely his supervisor,
Dr. Anthony Manning, for his advice and encouragement. He also thanks Roger
Butler and Ralf Spatzier for helpful conversations, and Dr. Werner Ballmann for
helpful correspondence.
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