Jordan $*$-Derivations of Finite-Dimensional Semiprime Algebras

Ajda Fošner and Tsiu-Kwen Lee

Abstract. In this paper, we characterize Jordan $*$-derivations of a 2-torsion free, finite-dimensional semiprime algebra R with involution $*$. To be precise, we prove the following. Let $\delta: R \rightarrow R$ be a Jordan $*$-derivation. Then there exists a $*$-algebra decomposition $R=U \oplus V$ such that both U and V are invariant under δ. Moreover, $*$ is the identity map of U and $\left.\delta\right|_{U}$ is a derivation, and the Jordan *-derivation $\left.\delta\right|_{V}$ is inner. We also prove the following. Let R be a noncommutative, centrally closed prime algebra with involution $*$, char $R \neq 2$, and let δ be a nonzero Jordan $*$-derivation of R. If δ is an elementary operator of R, then $\operatorname{dim}_{C} R<\infty$ and δ is inner.

1 Results

Throughout the paper, R always denotes an associative ring. An additive map $d: R \rightarrow$ R is called a derivation if $d(x y)=x d(y)+d(x) y$ for all $x, y \in R$. Let $*$ be an involution of R; that is, $*$ is an anti-automorphism of R satisfying $\left(x^{*}\right)^{*}=x$ for all $x \in R$. When R is an algebra over a field F, the involution $*$ is not necessarily F-linear in general. An additive mapping $\delta: R \rightarrow R$ is called a Jordan $*$-derivation if $\delta\left(x^{2}\right)=\delta(x) x^{*}+x \delta(x)$ for all $x \in R$. A Jordan $*$-derivation of R is said to be inner if it is of the form $x \mapsto x a-a x^{*}$ for some $a \in R$. For the motivation to study Jordan $*$-derivations, we refer the reader to the references in $[3,10]$.

In [2] Brešar and Vukman proved that if a unital $*$-ring R contains $\frac{1}{2}$ and a central invertible skew-hermitian element μ (i.e., $\mu^{*}=-\mu$), then every Jordan $*$-derivation of R is inner. In particular, every Jordan $*$-derivation of a unital complex $*$-algebra is inner. In [10] Šemrl showed that every Jordan $*$-derivation of $\mathcal{B}(H)$, the algebra of all bounded linear operators on a real Hilbert space H, with $\operatorname{dim}_{\mathbb{R}} H>1$ is inner (see also [3]). Clearly, the algebra $\mathcal{B}(H)$ is a prime ring with nonzero socle and is not a division ring if $\operatorname{dim}_{\mathbb{R}} H>1$. The following $*$-version of [4, Theorem 1.2] gives a generalization of Šemrl's theorem.

Theorem 1.1 Let R be a prime ring with involution $*$, char $R \neq 2$, and let $\delta: R \rightarrow R$ be a Jordan $*$-derivation. Suppose that R has nonzero socle but is not a division ring. Then there exists $a \in Q_{s}(R)$ such that $\delta(x)=x a-a x^{*}$ for all $x \in R$, where $Q_{s}(R)$ is the symmetric Martindale ring of quotients of R.

In the theorem above, the case that R is a division ring is not yet solved. This paper is a continuation of the recent paper [4] concerning Jordan $*$-derivations. An ideal I

[^0]of a ring (resp. algebra) R with involution $*$ is called a $*$-ideal if $I^{*}=I$. By a $*$-ring (resp. $*$-algebra) decomposition of R, we mean a ring (resp. algebra) decomposition $R=U \oplus V$, where U and V are $*$-ideals of R. The first purpose of this paper is to prove the following theorem.

Theorem 1.2 Let R be a 2-torsion free, finite-dimensional, semiprime algebra with involution $*$ and let $\delta: R \rightarrow R$ be a Jordan $*$-derivation. Then there exists $a *$-algebra decomposition $R=U \oplus V$ such that U and V are invariant under δ. Moreover, $*$ is the identity map of $U,\left.\delta\right|_{U}$ is a derivation, and the Jordan $*$-derivation $\left.\delta\right|_{V}$ is inner.

As an application of Theorem 1.2, we characterize Jordan $*$-derivations of a prime ring R when these $*$-derivations are "elementary operators". For simplicity of notation, we assume that the prime ring R is centrally closed; that is, $R=R C+C$, where C is the extended centroid of R. In this case, R is a prime algebra over C. By an elementary operator of R we mean an additive map $\phi: R \rightarrow R$, which is of the form $x \mapsto \sum_{i} a_{i} x b_{i}$ for $x \in R$, where a_{i}, b_{i} are finitely many elements in R. When $\operatorname{dim}_{C} R<\infty, R$ is a finite-dimensional central simple C-algebra (see [6, Theorem 2 (p. 57)]). Let $R^{\text {op }}$ denote the C-algebra opposite to the C-algebra R. It is known that there exists an isomorphism $\Phi: R \otimes_{C} R^{\mathrm{op}} \rightarrow \operatorname{End}_{C}(R)$ defined by

$$
\Phi\left(\sum_{i} a_{i} \otimes b_{i}\right)(x)=\sum_{i} a_{i} x b_{i}
$$

for $\sum_{i} a_{i} \otimes b_{i} \in R \otimes_{C} R^{\text {op }}$ and $x \in R$. This implies that every C-linear map of R into itself is an elementary operator. In the next theorem, we prove that a centrally closed prime ring R must be finite-dimensional over C if it admits a nonzero Jordan *-derivation that is also an elementary operator. Although the theorem below has an analog in the case of semiprime rings, to avoid a lengthy argument we only prove the case of prime rings.

Theorem 1.3 Let R be a noncommutative, centrally closed, prime algebra with involution $*$, char $R \neq 2$, and let $\delta: R \rightarrow R$ be a nonzero Jordan $*$-derivation that is also an elementary operator. Then $\operatorname{dim}_{C} R<\infty$ and δ is inner.

For $a, b \in R,[a, b]$ denotes the element $a b-b a$. Given two additive subgroups A and B of $R,[A, B]$ (resp. $A B$) will denote the additive subgroup of R generated by all elements $[a, b]$ (resp. $a b$) for $a \in A$ and $b \in B$.

2 Proof of Theorem 1.2

We first prove Theorem 1.2 with R a division algebra.
Theorem 2.1 Let D be a noncommutative, finite-dimensional, central division C algebra with involution $*$ and char $D \neq 2$. Then every Jordan $*$-derivation of D is inner.

We first recall a result due to Herstein. Suppose that L is a Lie ideal of a ring R; that is, L is an additive subgroup of R satisfying $[L, R] \subseteq L$. It follows from the proof
of [5, Lemma 1.3] that $R[L, L] R \subseteq L+L^{2}$. Let D be as in Theorem 2.1. Since $[D, D]$ is a Lie ideal of D and $[[D, D],[D, D]] \neq 0$ by the fact that char $D \neq 2$, we have $D=[D, D]+[D, D]^{2}$. We will use the result in the proof below. The involution $*$ of D is said to be of the first kind if $\beta^{*}=\beta$ for all $\beta \in C$. Otherwise, $*$ is said to be of the second kind.

Proof of Theorem 2.1 Let $\delta: D \rightarrow D$ be a nonzero Jordan $*$-derivation. Let $x, y \in$ D. Expanding $\delta\left((x+y)^{2}\right)=\delta(x+y)(x+y)^{*}+(x+y) \delta(x+y)$, we see that

$$
\begin{equation*}
\delta(x y+y x)=\delta(x) y^{*}+\delta(y) x^{*}+x \delta(y)+y \delta(x) \tag{2.1}
\end{equation*}
$$

Case 1. Suppose that $*$ is of the second kind. Choose a nonzero $\beta^{*}=-\beta \in C$. For $x \in D$, by (2.1) we have

$$
2 \delta(\beta x)=\delta(\beta x+x \beta)=\delta(\beta) x^{*}+\delta(x)(-\beta)+x \delta(\beta)+\beta \delta(x)
$$

That is, $2 \delta(\beta x)=\delta(\beta) x^{*}+x \delta(\beta)$. Replacing x by $\beta^{-1} x$, we see that $\delta(x)=x a-a x^{*}$ for all $x \in D$, where $a:=\delta(\beta) / 2 \beta$.

Case 2. Suppose that $*$ is of the first kind. We claim that δ is C-linear. Fix a $\beta \in C$ and set $f(w):=\delta(\beta w)-\beta \delta(w)$ for $w \in D$. Let $x, y \in D$. By (2.1) we have

$$
\begin{equation*}
\delta((\beta x) y+y(\beta x))=\delta(\beta x) y^{*}+\delta(y) \beta x^{*}+\beta x \delta(y)+y \delta(\beta x) \tag{2.2}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\delta(x(\beta y)+(\beta y) x)=\delta(x) \beta y^{*}+\delta(\beta y) x^{*}+x \delta(\beta y)+\beta y \delta(x) \tag{2.3}
\end{equation*}
$$

It follows from (2.2) and (2.3) that

$$
\begin{equation*}
f(x) y^{*}-f(y) x^{*}-x f(y)+y f(x)=0 \tag{2.4}
\end{equation*}
$$

Replacing y by 1 in (2.4) and using $\delta(1)=0$, we see that

$$
\begin{equation*}
f(x)=b x^{*}+x b \tag{2.5}
\end{equation*}
$$

for all $x \in D$, where $b:=\delta(\beta) / 2$. It follows from (2.4) that

$$
\left(b x^{*}+x b\right) y^{*}-\left(b y^{*}+y b\right) x^{*}-x\left(b y^{*}+y b\right)+y\left(b x^{*}+x b\right)=0
$$

That is, $b\left[x^{*}, y^{*}\right]=[x, y] b$, i.e., $b[x, y]^{*}+[x, y] b=0$ for all $x, y \in D$. By (2.5), we see that $f([D, D])=0$. That is,

$$
\begin{equation*}
\delta(\beta x)=\beta \delta(x) \quad \text { for all } x \in[D, D] \text { and } \beta \in C \tag{2.6}
\end{equation*}
$$

Let $u, v \in[D, D]$ and $\gamma \in C$. Then $u^{*}, v^{*} \in[D, D]$. By (2.1) and (2.6), we have

$$
\begin{align*}
\delta(\gamma(u v+v u)) & =\delta((\gamma u) v+v(\gamma u)) \tag{2.7}\\
& =\delta(\gamma u) v^{*}+\delta(v) \gamma u^{*}+\gamma u \delta(v)+v \delta(\gamma u) \\
& =\gamma\left(\delta(u) v^{*}+\delta(v) u^{*}+u \delta(v)+v \delta(u)\right) \\
& =\gamma \delta(u v+v u) .
\end{align*}
$$

Since $u v-v u=[u, v] \in[D, D]$, it follows from (2.6) that

$$
\begin{equation*}
\delta(\gamma(u v-v u))=\gamma \delta(u v-v u) \tag{2.8}
\end{equation*}
$$

By (2.7) and (2.8), we have $\delta(\gamma u v)=\gamma \delta(u v)$ for all $u, v \in[D, D]$ and $\gamma \in C$. In view of the fact that $D=[D, D]+[D, D]^{2}$, every element of D is of the form $u+\sum_{i} u_{i} v_{i}$ for some $u \in[D, D]$ and finitely many $u_{i}, v_{i} \in[D, D]$; this implies that $\delta: D \rightarrow D$ is C-linear, as asserted.

Let \bar{C} be the algebraic closure of C and let $\widehat{D}:=D \otimes_{C} \bar{C}$. Then $\widehat{D} \cong \mathrm{M}_{n}(\bar{C})$ for some n. Moreover, $n>1$, since D is not a field. Since $*$ is of the first kind, the involution $*$ of D can be extended to a first kind involution on \widehat{D}, also denoted by $*$, by the following rule:

$$
\left(\sum_{i} x_{i} \otimes \beta_{i}\right)^{*}=\sum_{i} x_{i}^{*} \otimes \beta_{i} \text { for } x_{i} \in D \text { and } \beta_{i} \in \bar{C}
$$

Moreover, $\delta: D \rightarrow D$ can be extended to a well-defined map on \widehat{D}, also denoted by δ, by

$$
\delta\left(\sum_{i} x_{i} \otimes \beta_{i}\right)=\sum_{i} \delta\left(x_{i}\right) \otimes \beta_{i} \text { for } x_{i} \in D \text { and } \beta_{i} \in \bar{C}
$$

Note that C is an infinite field. By the C-linearity of δ and the fact that $*$ is of the first kind, we claim that $\delta\left(y^{2}\right)=\delta(y) y^{*}+y \delta(y)$ for all $y \in \widehat{D}$.

Let $C\left[\lambda_{1}, \ldots, \lambda_{m}\right]$ denote the polynomial ring over C in commutative indeterminates $\lambda_{1}, \ldots, \lambda_{m}$, where $m:=\operatorname{dim}_{C} D$. Choose a basis $\left\{e_{1}, \ldots, e_{m}\right\}$ for D over C. Write

$$
\begin{equation*}
e_{i} e_{j}=\sum_{k=1}^{m} \alpha_{i j k} e_{k}, \quad e_{i}^{*}=\sum_{k=1}^{m} \beta_{i k} e_{k}, \quad \text { and } \quad \delta\left(e_{i}\right)=\sum_{k=1}^{m} \gamma_{i k} e_{k} \tag{2.9}
\end{equation*}
$$

for $1 \leq i, j \leq m$, where all $\alpha_{i j k}, \beta_{i k}, \gamma_{i k} \in C$. For $x \in D$, write

$$
x=\sum_{i=1}^{m} \mu_{i} e_{i} \in D, \text { where } \mu_{1}, \ldots, \mu_{m} \in C
$$

Using expansion formulas (2.9) to expand $\delta\left(x^{2}\right)-\delta(x) x^{*}-x \delta(x)$, we see that

$$
\begin{align*}
0 & =\delta\left(x^{2}\right)-\delta(x) x^{*}-x \delta(x) \tag{2.10}\\
& =\sum_{s=1}^{m} p_{s}\left(\mu_{1}, \ldots, \mu_{m}\right) e_{s}=\sum_{s=1}^{m} e_{s} \otimes p_{s}\left(\mu_{1}, \ldots, \mu_{m}\right),
\end{align*}
$$

where

$$
\begin{aligned}
& p_{s}\left(\lambda_{1}, \ldots, \lambda_{m}\right)= \\
& \qquad \sum_{1 \leq i, j \leq m} \sum_{k=1}^{m}\left(\alpha_{i j k} \gamma_{k s}-\sum_{t=1}^{m} \alpha_{t k s} \beta_{j k} \gamma_{i t}-\alpha_{i k s} \gamma_{j k}\right) \lambda_{i} \lambda_{j} \in C\left[\lambda_{1}, \ldots, \lambda_{m}\right]
\end{aligned}
$$

for $s=1, \ldots, m$. Note that $p_{s}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$'s depend only on $\alpha_{i j k}, \beta_{i k}, \gamma_{i k}$. Since $p_{s}\left(\mu_{1}, \ldots, \mu_{m}\right) \in C$ for all $\mu_{i} \in C$, it follows from (2.10) that $p_{s}\left(\mu_{1}, \ldots, \mu_{m}\right)=0$ for $1 \leq i \leq m$. Thus, $p_{s}\left(\lambda_{1}, \ldots, \lambda_{m}\right)=0$ in the polynomial ring $C\left[\lambda_{1}, \ldots, \lambda_{m}\right]$, since C is an infinite field.

In particular, we have $p_{s}\left(\nu_{1}, \ldots, \nu_{m}\right)=0$ for all $\nu_{i} \in \bar{C}$. Thus,

$$
\sum_{s=1}^{m} e_{i} \otimes p_{s}\left(\nu_{1}, \ldots, \nu_{m}\right)=0
$$

in $D \otimes_{C} \bar{C}$. Reversing the expansion of (2.10), we see that $\delta\left(y^{2}\right)=\delta(y) y^{*}+y \delta(y)$, where $y=\sum_{i=1}^{m} e_{i} \otimes \nu_{i} \in D \otimes_{C} \bar{C}$. This proves our claim.

Clearly, \widehat{D} is a prime locally matrix ring (see [4, 7]). In view of [4, Theorem 1.1] or Theorem 1.1, there exists an element $\bar{c} \in \widehat{D}$ such that

$$
\delta(x \otimes 1)=(x \otimes 1) \bar{c}-\bar{c}\left(x^{*} \otimes 1\right)
$$

for all $x \in D$. Write $\bar{c}=a \otimes 1+c_{1} \otimes \gamma_{1}+\cdots$, where $a, c_{i} \in D$ and $1, \gamma_{1}, \ldots$ are C-independent. This implies that

$$
\left(\delta(x)-x a+a x^{*}\right) \otimes 1+(\cdot) \otimes \gamma_{1}+\cdots=0
$$

for all $x \in D$. Thus, $\delta(x)=x a-a x^{*}$ for all $x \in D$.
By applying the same arguments as in the proof of Theorem 2.1, we have the following theorem.

Theorem 2.2 Let D be a 2-torsion free, noncommutative, central division C-algebra with involution $*$. Suppose that there exists an extension field F of C such that $D \otimes_{C} F \cong$ $M_{s}(\Delta)$ for some division F-algebra Δ and some $s>1$. Then every Jordan $*$-derivation of D is inner.

We next deal with the case that R is a ring with exchange involution τ; that is, R has a ring decomposition $R=T \oplus T^{\mathrm{op}}$ with involution $(x, y)^{\tau}=(y, x)$ for $x, y \in T$, where T^{op} is the ring opposite to T.

Theorem 2.3 Let R be a unital ring with exchange involution τ. Then every Jordan τ-derivation of R is inner.

Proof Write $R=T \oplus T^{\mathrm{op}}$ with involution $(x, y)^{\tau}=(y, x)$ for $x, y \in T$. Let $\delta: R \rightarrow R$ be a Jordan τ-derivation. Since R is a unital ring, $1_{R}=e_{1}+e_{2}$, where $e_{1}=(1,0), e_{2}=$ $(0,1)$, and 1 is the identity of the ring T. Thus, $e_{1}^{\tau}=e_{2}$. For $x=\left(x_{1}, x_{2}\right) \in R$, define $\widetilde{x}=\left(x_{1},-x_{2}\right)$. Then

$$
\delta\left(\left(x_{1}+1,0\right)^{2}\right)=\delta\left(\left(x_{1}+1,0\right)\right)\left(0, x_{1}+1\right)+\left(x_{1}+1,0\right) \delta\left(\left(x_{1}+1,0\right)\right)
$$

On the other hand,

$$
\begin{aligned}
\delta\left(\left(x_{1}+1,0\right)^{2}\right) & =\delta\left(\left(x_{1}^{2}+2 x_{1}+1,0\right)\right) \\
& =\delta\left(\left(x_{1}, 0\right)\right)\left(0, x_{1}\right)+\left(x_{1}, 0\right) \delta\left(\left(x_{1}, 0\right)\right)+2 \delta\left(\left(x_{1}, 0\right)\right)+\delta((1,0))
\end{aligned}
$$

Comparing the two equalities above, we see that

$$
\begin{equation*}
\delta\left(\left(x_{1}, 0\right)\right)=\left(x_{1}, 0\right) \delta\left(e_{1}\right)+\delta\left(e_{1}\right)\left(0, x_{1}\right) \tag{2.11}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\delta\left(\left(0, x_{2}\right)\right)=\left(0, x_{2}\right) \delta\left(e_{2}\right)+\delta\left(e_{2}\right)\left(x_{2}, 0\right)=-\left(0, x_{2}\right) \delta\left(e_{1}\right)-\delta\left(e_{1}\right)\left(x_{2}, 0\right) \tag{2.12}
\end{equation*}
$$

where we have used the identity $\delta\left(e_{2}\right)=-\delta\left(e_{1}\right)$ at the second equality above. By (2.11) and (2.12), we have $\delta(x)=\widetilde{x} \delta\left(e_{1}\right)+\delta\left(e_{1}\right)(\widetilde{x})^{\tau}$ for all $x \in R$. A direct computation shows that $\delta(x)=x a-a x^{\tau}$ for all $x \in R$, where $a:=\widetilde{\delta\left(e_{1}\right)}$.

Lemma 2.4 Let N be a field with involution $*$, char $N \neq 2$, and let $K=\{x \in N \mid$ $\left.x^{*}=-x\right\}$. Then the following hold:
(i) Every Jordan $*$-derivation of N is inner if $K \neq\{0\}$.
(ii) Every Jordan $*$-derivation of N is a derivation if $K=\{0\}$.

Proof Let $\delta: N \rightarrow N$ be a Jordan $*$-derivation. Since N is a field, $\delta\left(x^{2}\right)=(x+$ $\left.x^{*}\right) \delta(x)$ for all $x \in N$.
Case 1. Suppose that $K \neq\{0\}$. Choose a nonzero $k \in K$. Let $x \in N$. Note that $\delta\left(k^{2}\right)=0$. Thus,

$$
\delta\left((x+k)^{2}\right)=\left(x+x^{*}\right) \delta(x+k)
$$

implying that $2 \delta(k x)=\left(x+x^{*}\right) \delta(k)$. Replacing x by $k^{-1} x$, we see that $\delta(x)=x a-a x^{*}$, where $a:=\delta(k) / 2 k \neq 0$. This proves (i).

Case 2. Suppose that $K=\{0\}$; that is, $*$ is the identity map of N. Thus $\delta\left(x^{2}\right)=$ $2 x \delta(x)$ for all $x \in N$. By the linearization on x, we get $\delta(x y)=x \delta(y)+\delta(x) y$ for all $x, y \in N$. That is, δ is a derivation of N.
Proof of Theorem 1.2 Let R be a 2-torsion free, finite-dimensional, semiprime F-algebra with involution $*$, where F is a field and let $\delta: R \rightarrow R$ be a Jordan $*$-derivation. By the Wedderburn-Artin Theorem,

$$
R=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{t}
$$

where all W_{i} are finite-dimensional, simple, Artinian F-algebras. Note that W_{i} 's are the only minimal ideals of R. Thus, for each W_{i}, either $W_{i}^{*}=W_{i}$ (that is, W_{i} is a *-ideal of R) or $W_{i}^{*}=W_{j}$ for some $j \neq i$.
Case 1. Suppose that $W_{i}^{*}=W_{i}$. Then W_{i} is a 2-torsion free, finite-dimensional, simple F-algebra with involution $*$. Note that, as an additive group, W_{i} is generated by elements x^{2} for $x \in W_{i}$, since $2 W_{i}=W_{i}$ and $2 x=\left(x+e_{i}\right)^{2}-x^{2}-e_{i}$, where e_{i} denotes the identity of W_{i}. This implies that $\delta\left(W_{i}\right) \subseteq W_{i}$. Thus $\delta: W_{i} \rightarrow W_{i}$ is a Jordan $*$-derivation. By the Wedderburn-Artin Theorem, $W_{i} \cong \mathrm{M}_{s}(\Delta)$ for some division algebra Δ and some integer $s \geq 1$. If $s>1$, then δ is inner according to [4, Theorem 1.2]. If $s=1$, then δ is inner on W_{i} unless W_{i} is a field and $*$ is the identity map on W_{i} (see Theorem 2.1 and Lemma 2.4). By Lemma 2.4, $\delta: W_{i} \rightarrow W_{i}$ is a derivation when $*$ is the identity map on W_{i}.

Case 2. Suppose that $W_{i}^{*}=W_{j}$ for some $j \neq i$. Let $T:=W_{i} \oplus W_{j}=W_{i} \oplus W_{i}^{*}$. Since T is generated by elements x^{2} for $x \in T$ as an additive group, T is invariant under δ. In fact, $T \cong W_{i} \oplus W_{i}^{\text {op }}$ via the map $\phi: T \rightarrow W_{i} \oplus W_{i}^{\text {op }}$ defined by

$$
\phi\left(x+y^{*}\right)=(x, y) \text { for } x, y \in W_{i} .
$$

Let τ denote the exchange involution on $W_{i} \oplus W_{i}^{\mathrm{op}}$; that is, $(x, y)^{\tau}=(y, x)$ for $x, y \in W_{i}$. Then $\phi\left(z^{*}\right)=\phi(z)^{\tau}$ for $z \in T$. Thus, T is isomorphic to $W_{i} \oplus W_{i}^{\mathrm{op}}$ as rings with involution. In view of Theorem 2.3, δ is inner on T.

Let

$$
\Gamma=\left\{i \mid W_{i} \text { is a field and } * \text { is the identity map on } W_{i}\right\}
$$

Set $U=\bigoplus_{i \in \Gamma} W_{i}$ and $V=\bigoplus_{j \notin \Gamma} W_{j}$. Clearly, U and V are $*$-ideals of R and are invariant under δ. Moreover, δ is a derivation on U by Lemma 2.4 and the Jordan *-derivation δ on V is inner by Theorems 2.1 and 2.3 and Lemma 2.4. This proves the theorem.

Using the proofs above, we can establish an analog of Theorem 1.2 in the context of semiprime Artinian rings. Recall that a semiprime Artinian ring R is the direct sum of finitely many simple Artinian rings. These simple Artinian rings are the only minimal ideals of R, which are called the components of R. A division component I of R means that the component I is itself a division ring.

Theorem 2.5 Let R be a 2-torsion free, semiprime, Artinian ring with involution * such that every *-invariant division component of R is a finite-dimensional central division algebra. Suppose that $\delta: R \rightarrow R$ is a Jordan $*$-derivation. Then there exists $a *$-ring decomposition $R=U \oplus V$ such that U and V are invariant under δ. Moreover, $*$ is the identity map of $U,\left.\delta\right|_{U}$ is a derivation, and the Jordan $*$-derivation $\left.\delta\right|_{V}$ is inner.

3 Proof of Theorem 1.3

Throughout this section, R always denotes a noncommutative, centrally closed, prime ring with involution $*$. Thus, R is a prime C-algebra, where C is the extended centroid of R. In order to prove Theorem 1.3, we need the well-known result of Martindale [9, Theorem 2(a)], stated below in a form convenient for our purpose.

Lemma 3.1 Let $a_{i}, b_{i}, c_{j}, d_{j} \in R$ be such that $\sum_{i=1}^{\ell} a_{i} x b_{i}+\sum_{j=1}^{m} c_{j} x d_{j}=0$ for all x in a nonzero ideal of R. If a_{1}, \ldots, a_{ℓ} are linearly independent over C, then each b_{i} is a C-linear combination of the d_{j} 's. Analogously, if b_{1}, \ldots, b_{ℓ} are linearly independent over C, then each a_{i} is a C-linear combination of the c_{j} 's.

Applying the same argument as given in the proof of [8, Lemma 2.6], after replacing Q by R, we have the following lemma.

Lemma 3.2 Let $a_{1}, \ldots, a_{n} \in R$ be C-independent. If $\operatorname{dim}_{C} R \geq \frac{n^{2}(n+5)^{2}}{4}$, then there exists $y \in R$ such that $a_{1}, \ldots, a_{n}, a_{1} y, \ldots, a_{n} y$ are C-independent.

Lemma 3.3 Suppose that the map $x \mapsto c x^{*}$ for $x \in R$ is an elementary operator of R, where c is a fixed nonzero element of R. Then $\operatorname{dim}_{C} R<\infty$.

Proof Suppose on the contrary that $\operatorname{dim}_{C} R=\infty$. Write $c x^{*}=\sum_{i=1}^{n} a_{i} x b_{i}$ for all $x \in R$, where a_{i}, b_{i} are fixed elements in R and n is a positive integer. Choose n to be minimal. Then a_{1}, \ldots, a_{n} are C-independent.

Let $x, y \in R$. Then $c(x y)^{*}=\sum_{i=1}^{n} a_{i} x y b_{i}$. On the other hand, $c(x y)^{*}=c y^{*} x^{*}=$ $\sum_{i=1}^{n} a_{i} y b_{i} x^{*}$. Thus,

$$
\begin{equation*}
\sum_{i=1}^{n}\left(a_{i} x\right) y b_{i}=\sum_{i=1}^{n} a_{i} y\left(b_{i} x^{*}\right) \tag{3.1}
\end{equation*}
$$

In view of Lemma 3.2, there exists $x_{0} \in R$ such that $a_{1}, \ldots, a_{n}, a_{1} x_{0}, \ldots, a_{n} x_{0}$ are C-independent. By (3.1) we have $\sum_{i=1}^{n}\left(a_{i} x_{0}\right) y b_{i}=\sum_{i=1}^{n} a_{i} y\left(b_{i} x_{0}^{*}\right)$ for all $y \in R$. It follows from Lemma 3.1 that $b_{i}=0$ for all i, a contradiction.

Proof of Theorem 1.3 Suppose on the contrary that $\operatorname{dim}_{C} R=\infty$. Since $\delta: R \rightarrow R$ is an elementary operator, there exist finitely many $a_{i}, b_{i} \in R, 1 \leq i \leq m$, such that $\delta(x)=\sum_{i=1}^{m} a_{i} x b_{i}$ for all $x \in R$. Let $x, y \in R$. Since δ is Jordan $*$-derivation of R, it follows from (2.1) that

$$
\sum_{i=1}^{m} a_{i}(x y+y x) b_{i}=\delta(x) y^{*}+\sum_{i=1}^{m} a_{i} y b_{i} x^{*}+x \sum_{i=1}^{m} a_{i} y b_{i}+y \delta(x)
$$

implying that

$$
\begin{equation*}
\sum_{i=1}^{m}\left[a_{i}, x\right] y b_{i}+\sum_{i=1}^{m} a_{i} y\left(x b_{i}-b_{i} x^{*}\right)-y \delta(x)=\delta(x) y^{*} \tag{3.2}
\end{equation*}
$$

Choose a basis $1=c_{0}, c_{1}, \ldots, c_{t}$ for the C-space $C+\sum_{i=1}^{m} C a_{i}$ and a basis e_{1}, \ldots, e_{s} for the C-space $\sum_{i=1}^{m} C b_{i}$. We rewrite (3.2) as

$$
\sum_{i=1}^{s}\left[d_{i}, x\right] y e_{i}+c_{0} y\left(x h_{0}-h_{0} x^{*}-\delta(x)\right)+\sum_{j=1}^{t} c_{j} y\left(x h_{j}-h_{j} x^{*}\right)=\delta(x) y^{*}
$$

for all $x, y \in R$, where all $d_{i}, h_{j} \in R$ are fixed. Write

$$
f_{0}(x):=x h_{0}-h_{0} x^{*}-\delta(x) \quad \text { and } \quad f_{j}(x):=x h_{j}-h_{j} x^{*} \text { for } j=1, \ldots, t
$$

Then we have

$$
\begin{equation*}
\sum_{i=1}^{s}\left[d_{i}, x\right] y e_{i}+\sum_{j=0}^{t} c_{j} y f_{j}(x)=\delta(x) y^{*} \tag{3.3}
\end{equation*}
$$

for all $x, y \in R$. Let $x, y, z \in R$. By (3.3), we see that

$$
\delta(x)(y z)^{*}=\delta(x) z^{*} y^{*}=\sum_{i=1}^{s}\left[d_{i}, x\right] z e_{i} y^{*}+\sum_{j=0}^{t} c_{j} z f_{j}(x) y^{*}
$$

On the other hand, $\delta(x)(y z)^{*}=\sum_{i=1}^{s}\left[d_{i}, x\right] y z e_{i}+\sum_{j=0}^{t} c_{j} y z f_{j}(x)$. Thus,

$$
\begin{equation*}
\sum_{j=0}^{t}\left(c_{j} y\right) z f_{j}(x)-\sum_{j=0}^{t} c_{j} z\left(f_{j}(x) y^{*}\right)=\sum_{i=1}^{s}\left[d_{i}, x\right] z\left(e_{i} y^{*}\right)-\sum_{i=1}^{s}\left(\left[d_{i}, x\right] y\right) z e_{i} \tag{3.4}
\end{equation*}
$$

Since $\operatorname{dim}_{C} R=\infty$, it follows from Lemma 3.2 that $e_{0}, \ldots, e_{s}, e_{0} y_{0}^{*}, \ldots, e_{s} y_{0}^{*}$ are C-independent for some $y_{0} \in R$. By (3.4), we have

$$
\sum_{j=0}^{t}\left(c_{j} y_{0}\right) z f_{j}(x)-\sum_{j=0}^{t} c_{j} z\left(f_{j}(x) y_{0}^{*}\right)=\sum_{i=1}^{s}\left[d_{i}, x\right] z\left(e_{i} y_{0}^{*}\right)-\sum_{i=1}^{s}\left(\left[d_{i}, x\right] y_{0}\right) z e_{i}
$$

By Lemma 3.1, $\left[d_{i}, R\right] \subseteq \sum_{j=0}^{t} C\left(c_{j} y_{0}\right)+\sum_{j=0}^{t} C c_{j}$ for $i=1, \ldots, s$. Since $\operatorname{dim}_{C} R=\infty$, it follows from [1, Theorem 2] that $d_{i} \in C$ for $i=1, \ldots, s$. Thus, (3.4) is reduced to

$$
\begin{equation*}
\sum_{j=0}^{t}\left(c_{j} y\right) z f_{j}(x)-\sum_{j=0}^{t} c_{j} z\left(f_{j}(x) y^{*}\right)=0 \tag{3.5}
\end{equation*}
$$

By Lemma 3.2 again, there exists $y_{0} \in R$ such that $c_{0}, \ldots, c_{t}, c_{0} y_{0}, \ldots, c_{t} y_{0}$ are C-independent. By (3.5), we have

$$
\sum_{j=0}^{t}\left(c_{j} y_{0}\right) z f_{j}(x)-\sum_{j=0}^{t} c_{j} z\left(f_{j}(x) y_{0}^{*}\right)=0
$$

for all $x, z \in R$. In view of Lemma 3.1, $f_{j}(x)=0$ for all $x \in R$ and all j. In particular, $f_{0}=0$; that is, $\delta(x)=x h_{0}-h_{0} x^{*}$ for all $x \in R$. Since δ is a nonzero elementary operator, $h_{0} \neq 0$ and the map $x \mapsto h_{0} x^{*}$ for $x \in R$ is also an elementary operator of R. In view of Lemma 3.3, $\operatorname{dim}_{C} R<\infty$, a contradiction.

Up to now, we have proved that $\operatorname{dim}_{C} R<\infty$. In view of Posner's Theorem [6, Theorem 2 (p. 57)] R is a finite-dimensional central simple C-algebra. Thus, by Theorem 1.2, the Jordan $*$-derivation δ of R is inner, as asserted.

References

[1] J. Bergen, Derivations in prime rings. Canad. Math. Bull. 26(1983), no. 3, 267-270. http://dx.doi.org/10.4153/CMB-1983-042-2
[2] M. Brešar and J. Vukman, On some additive mappings in rings with involution. Aequationes Math. 38(1989), no. 2-3, 178-185. http://dx.doi.org/10.1007/BF01840003
[3] M. Brešar and B. Zalar, On the structure of Jordan *-derivations. Colloq. Math. 63(1992), no. 2, 163-171.
[4] C.-L. Chuang, A. Fošner, and T.-K. Lee, Jordan τ-derivations of locally matrix rings. Algebr. Represent. Theory, published online December 15, 2011, http://dx.doi.org/10.1007/s10468-011-9329-8.
[5] I. N. Herstein, Topics in ring theory. The University of Chicago Press, Chicago, Ill.-London, 1969.
[6] N. Jacobson, PI-algebras. An introduction. Lecture Notes in Mathematics, 441, Springer-Verlag, Berlin-New York, 1975.
[7] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings. Trans. Amer. Math. Soc. 69(1950), 479-502.
[8] T.-K. Lee, Finiteness properties of differential polynomials. Linear Algebra Appl. 430(2009), no. 8-9, 2030-2041. http://dx.doi.org/10.1016/j.laa.2008.11.007
[9] W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity. J. Algebra 12(1969), 576-584. http://dx.doi.org/10.1016/0021-8693(69)90029-5
[10] P. Šemrl, Jordan *-derivations on standard operator algebras. Proc. Amer. Math. Soc. 120(1994), no. 2, 515-518.

Faculty of Management, University of Primorska, Cankarjeva 5, SI-6104 Koper, Slovenia e-mail: ajda.fosner@fm-kp.si

Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
e-mail: tklee@math.ntu.edu.tw

[^0]: Received by the editors June 8, 2012.
 Published electronically July 27, 2012.
 Corresponding author: Tsiu-Kwen Lee. T.-K. Lee was supported by NSC and NCTS/TPE of Taiwan. AMS subject classification: 16W10, 16N60, 16W25.
 Keywords: semiprime algebra, involution, (inner) Jordan *-derivation, elementary operator.

