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ON TAILS OF PERPETUITIES

PAWEŁ HITCZENKO,∗ Drexel University

Abstract

We establish an upper bound on the tails of a random variable that arises as a solution of
a stochastic difference equation. In the nonnegative case our bound is similar to a lower
bound obtained in Goldie and Grübel (1996).
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1. Introduction

A random variable R satisfying the distributional identity

R
d= MR + Q, (1)

where (M, Q) are independent of R on the right-hand side and ‘
d=’ denotes equality in distri-

bution, is referred to as perpetuity and plays an important role in applied probability. The main
reason for this is that it appears as a limit in distribution of a sequence (Rn) given by

Rn
d= MnRn−1 + Qn, n ≥ 1,

provided that the limit exists. (Here, (Mn, Qn) is a sequence of independent and identically
distributed (i.i.d.) random vectors distributed like (M, Q) and R0 could be an arbitrary random
variable; for convenience, we will set R0 = 0.) A systematic study of the properties of
such sequences was initiated by Kesten [5], and such studies continue to this day. Once the
convergence in distribution of (Rn) is established, at the center of the investigation is the tail
behavior of R. There are two distinctly different cases:

P(|M| > 1) > 0 and P(|M| ≤ 1) = 1.

The first case results in R having a heavy tail distribution, that is,

P(|R| > x) ∼ Cx−κ

for a suitably chosen constant κ and some constant C (see the original paper of Kesten [5] or
[2]), while in the second case the tails of R are no heavier than exponential. This was observed
by Goldie and Grübel [3]. Some subsequent work is given in [4], but the full picture in this
case is not complete. The purpose of this note is to shed some additional light on this case by
establishing a universal upper bound on the tails of |R|. In a special, but important, situation
when Q and M (and, thus, also R) are nonnegative our bound is comparable to a lower bound
obtained by Goldie and Grübel [3].
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2. Bounds on the tails

For a random variableM such that |M| ≤ 1 and 0 < δ < 1, definepδ := P(1−δ ≤ |M| ≤ 1).
Then, as has been shown in [3] (see also Equation (2.2) of [4]), if 0 ≤ M ≤ 1 and Q ≡ q (q
being a positive constant), then, for 0 < c < 1 and x > q, we have

P(R > x) ≥ exp

(
ln(1 − c)

ln(1 − cq/x)
ln pcq/x

)
.

Since ln(1 − cq/x) ≤ −cq/x for any particular value of c, say c = 1
2 , this immediately gives

P(R > x) ≥ exp

(
− ln(1 − c)

cq
x ln(pcq/x)

)
= exp

(
2 ln 2

q
x ln pq/(2x)

)
.

Our aim here is to supply an upper bound of a similar form. While our result does not
give the asymptotics of P(R > x) as x → ∞, it shows that it essentially behaves like
exp(c1x ln(pc2q/x)/q) for some positive constants c1 and c2. Specifically, we prove the
following result.

Proposition 1. Assume that |Q| ≤ q and |M| ≤ 1, and let R be given by (1). Then, for
sufficiently large x,

P(|R| > x) ≤ exp

(
1

4q
x ln p2q/x

)
.

Thus, if Q ≡ q > 0 and 0 ≤ M ≤ 1, then

exp

(
2 ln 2

q
x ln pq/(2x)

)
≤ P(R > x) ≤ exp

(
1

4q
x ln p2q/x

)
.

Proof. If P(|M| = 1) > 0 then, as was proved in [3], R has tails bounded by those of an
exponential variable, so we assume that |M| has no atom at 1. Fix 0 < δ < 1, and define a
sequence (Tk) as follows:

T0 = 0, Tm = inf{k ≥ 1 : |MTm−1+k| ≤ 1 − δ}, m ≥ 1.

Then the Tks are i.i.d. random variables, each having a geometric distribution with parameter
1−pδ . Furthermore, |Mk| ≤ 1−δ if k = T1 +· · ·+Ti for some i ≥ 1 and |Mk| ≤ 1 otherwise.
Therefore,

m∏
k=1

|Mk| ≤ (1 − δ)j for T1 + · · · + Tj ≤ m < T1 + · · · + Tj + Tj+1.

This in turn implies that

∣∣∣∣
∑
k≥1

k−1∏
j=1

Mj

∣∣∣∣ ≤
∑
k≥1

k−1∏
j=1

|Mj | ≤ T1 + (1 − δ)T2 + (1 − δ)2T3 + · · · =
∑
k≥1

(1 − δ)k−1Tk.

Therefore, if |Q| ≤ q, we obtain

P(|R| > x) ≤ P

(∑
k≥1

k−1∏
j=1

|Mj | ≥ x

q

)
≤ P

(∑
k≥1

Tk(1 − δ)k−1 ≥ x

q

)
. (2)
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To bound the latter probability, we use a widely known argument (our calculations follow [1,
Proof of Proposition 2]). First, if T is a geometric variable with parameter 1 − p then

E eλT =
∞∑

j=1

eλj P(T = j) =
∞∑

j=1

eλjpj−1(1 − p) = eλ(1 − p)

1 − eλp
= eλ

1 − p(eλ − 1)/(1 − p)
,

provided that eλp < 1. Thus, writing t in place of x/q on the right-hand side of (2), for λ > 0,
we have

P

(∑
k≥1

(1 − δ)k−1Tk ≥ t

)
= P

(
exp

(
λ

∑
k≥1

(1 − δ)k−1Tk

)
≥ eλt

)

≤ e−λt E exp

(
λ

∑
k≥1

Tk(1 − δ)k−1
)

.

If λ satisfies eλp < 1 then peλ(1−δ)k−1
< 1 for every k ≥ 1 as well, and, by the independence

of (Tk), the expectation on the right-hand side is

∞∏
k=1

eλ(1−δ)k−1

1 − p(eλ(1−δ)k−1 − 1)/(1 − p)
= eλ/δ

∞∏
k=1

1

1 − p(eλ(1−δ)k−1 − 1)/(1 − p)
. (3)

Now, choose λ > 0 so that p(eλ − 1)/(1 − p) ≤ 1
2 . Then, as 1/(1 − u) ≤ e2u for 0 ≤ u ≤ 1

2 ,
for every k ≥ 1, we obtain

1

1 − p(eλ(1−δ)k−1 − 1)/(1 − p)
≤ exp

(
2

p

1 − p
(eλ(1−δ)k−1 − 1)

)
.

Therefore, the rightmost product in (3) is bounded by

exp

(
2

p

1 − p

∑
k≥1

(eλ(1−δ)k−1 − 1)

)
.

We bound the sum in the exponent as follows:

∑
k≥1

∑
j≥1

λj (1 − δ)(k−1)j

j ! =
∑
j≥1

λj

j !
∑
k≥1

(1 − δ)j (k−1)

=
∑
j≥1

λj

j !
1

1 − (1 − δ)j

≤ 1

δ

∑
j≥1

λj

j !

= eλ − 1

δ
.

Combining the above estimates we obtain

P(|R| > qt) ≤ exp

(
−tλ + λ

δ
+ 2p

1 − p

eλ − 1

δ

)
, (4)
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provided that λ satisfies the required conditions, that is,

eλp < 1 and
p

1 − p
(eλ − 1) ≤ 1

2
.

Clearly, both are satisfied when eλp ≤ 1
2 .

We complete the proof by making a suitable choice of λ. Since we are assuming that |M|
has no atom at 1 and we are interested in large x, we may assume that δ is small enough so that
pδ < 1

3 . This condition implies that 2pδ/(1 − pδ) < 3pδ , so that the last term in the exponent
of (4) is bounded by 3pδ(eλ − 1)/δ. Now let t = 2/δ. Then (4) becomes

P(|R| > qt) ≤ exp

(
−λ

2

δ
+ λ

δ
+ 2pδ

1 − pδ

eλ − 1

δ

)
≤ exp

(
−1

δ
(λ − 3pδ(e

λ − 1))

)
.

Set λ = ln(1/3pδ) so that eλpδ = 1
3 . This choice of λ is within the constraints and maximizes

the value of λ − 3pδ(eλ − 1), this maximal value being

ln

(
1

3pδ

)
− 3pδ

(
1

3pδ

− 1

)
= ln

(
1

pδ

)
− (1 + ln 3) + 3pδ ≥ 1

2
ln

(
1

pδ

)
,

with the inequality valid for sufficiently small pδ (less than e−2/9 for example). Thus, using
t = 2/δ, we finally obtain

P(|R| > qt) ≤ exp

(
− 1

2δ
ln

(
1

pδ

))
= exp

(
t

4
ln p2/t

)
,

or, in terms of x,

P(|R| > x) ≤ exp

(
x

4q
ln p2q/x

)
.
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