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We develop a simple model for the kinematics of charged particles in regions of
magnetic turbulence. We approximate the local magnetic field as smoothly varying
in strength and direction, where adiabatic invariance prevails, or as presenting rapid
changes in direction or ‘kinks’. Particles execute guiding centre gyromotion around
a field line. However, in analogy to kinetic theory for collisional environments,
when the particle undergoes a rapid change in direction by some angle θ , it
would instantaneously transition to Larmor motion around the new field line. This
mimics Brownian motion wherein we replace collisions with other particles by
rapid transitions or ‘collisions’ with other field lines. Using standard methods drawn
from Brownian motion, we follow the evolution of the parallel and perpendicular
components of the velocity, namely v‖ and v⊥, and rigorously show that kinetic
energy isotropization necessarily emerges.
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1. Introduction
The observation of charged particle velocity distributions that are isotropic in

collisionless environments presents an enigma in many plasma environments (Spitzer
2006). We suggest that highly complex geometries associated with turbulent, chaotic
and stochastic magnetic fields may be a predisposing source of this phenomenon.
Typically, long length scales relative to electron gyroradii are observed in turbulent
astrophysical and laboratory plasmas. However, a possibly power-law spectrum in
turbulent field structures could allow for localized regions where the radius of
curvature of the field lines may be shorter than ion gyroradii and, possibly, electron
gyroradii. We are unable to resolve very short field segments since observational
footprints are typically long but there are important hints as to their existence.
Newman, Newman & Rephaeli (2002) noted that magnetic-field strengths in
clusters of galaxies determined from measurements of Faraday rotation and of
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Compton-synchrotron emission appeared to disagree with each other, in part due
to their different dependence on magnetic field coherence length scales, but they
were able to reconcile the discrepancy emerging from the embedded power laws.
Recent work by Johnson et al. (2020) has shown using synthetic observations drawn
from a magnetohydrodynamic cosmological simulation, as well as reviewing the
literature over the intervening time, that similar quantitative uncertainties remain.

In general, there is no simple way to establish the distribution of field line segment
lengths. In principle, they can range over size scales seemingly much larger than
the astrophysical environments being investigated down to very small length scales.
While evidence for extremely short range field line segments is not available in
highly turbulent regimes, their existence cannot be dismissed, and that possibility
could have important ramifications. It is tantalizing to explore the issues emergent
from field structures that sometimes display very short radii of curvature. Turbulent
magnetic fields indeed have a tendency to develop very small coherence and possibly
field-reversal scales in high-β (where β is the ratio of the plasma pressure to
the magnetic pressure), high magnetic Prandtl number regimes relevant to the
inter-cluster medium mentioned earlier. The magnetic field in such situations, as
noted by Schekochihin et al. (2004), develops a so-called ‘folded-structure’, reversing
on a very short length scale, much smaller than the viscous scale of turbulence, and
shorter still than the mean free path. While this is consistent with our overarching
scenario, the field-reversal scale likely remains much larger than the typical thermal
Larmor radius of electrons and ions. As an idealization of this situation, we will
consider a hypothetical magnetic-field structure where the field can be approximated
much of the time by straight-line segments or ‘sticks’ but intermittently undergo a
large angle deflection. Dodin & Fisch (2001) explored charged particle motion in
the vicinity of a magnetic-field discontinuity for a different application, but they
were very careful to limit the range of applicability for their single discontinuity
encounter event. In thermalized intracluster medium plasmas where field direction
coherence scales are unlikely smaller than the ‘average’ particle gyroradius, the model
that we present could perhaps be particularly relevant for high-energy particles in
the non-thermal tail of the distribution – assuming that one is present – since their
Larmor radii are much larger than those of the average thermal particles. While the
physical relevance of our model is not entirely clear, it is of value to explore this
possibility and note that it presents a plasma analogue to collisional or scattering
processes observed in Brownian motion.

Before turning to the model, let us consider some previous work that provides
important hints as to the complexity of the field structures, particularly in astrophysical
environments.

(i) Chandran & Cowley (1998) explored thermal conduction in a tangled magnetic
field as might be encountered in astrophysical plasmas where the electron mean
free path could, in contrast with scale of magnetic-field entanglement, range from
much smaller to much larger. X-ray emission in galaxy clusters, as identified by
Newman et al. (2002), may be associated with chaotic magnetic-field fluctuations.

(ii) These in turn, as shown by Narayan & Medvedev (2001), could play a
significant role in cooling flows in clusters of galaxies. Yet another illustration
of complex field geometries is presented by stochastic magnetic mirrors which
were investigated by Malyshkin & Kulsrud (2001) in the context of thermal
transport and the evolution of the pitch-angle scattering.
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(iii) Hamlin & Newman (2013) explored the role of the Kelvin–Helmholtz instability
in the evolution of relativistic sheared plasma flows. An underlying motivation for
that work was understanding the efficacy of magnetic fields in highly relativistic
flows to collimate plasmas in a strongly sheared environment where the disruption
and entanglement of fields and particles became particularly prominent.

The treatment of such complex magnetized environments, with examples such
as those above, is typically technically challenging, often order of magnitude in
character or requiring advanced methods of numerical simulation. We develop an
idealized model that captures some of the essential features of such geometries that
invariably shows the tendency of particles spiralling in tangled magnetic fields to
become isotropic relative to the local magnetic field. While our simple model does
not incorporate electric fields, smoothly varying electric fields can influence the
evolution of the pitch angle of particles. Stochastic, impulsive electric fields can
systematically energize magnetized particles by increasing v⊥ as shown by Newman
& Newman (1991).

Our purpose in this paper is to develop a simple mechanism which parallels that
encountered in Brownian motion which could provide the machinery for rendering
isotropic charged particle velocity distributions in a non-collisional environment. It
is important to remember that Brownian motion itself is an inexact model and is
used to describe the random motion of particles suspended in a fluid – a liquid or
a gas – resulting from their collision with the fast-moving molecules in the fluid.
The model simply assumes that rapidly moving molecules exist, without seeking to
describe where and how they arise. While the model for Brownian motion employs
a variety of approximations, the geometry presented by magnetic fields in highly
energetic environments – such as the turbulent, stochastic and chaotic ones seen in
laboratory and astrophysical plasmas – can in a loose sense be approximated. The
purpose of this paper is to present a simple toy model that invariably results in an
isotropic electron velocity distribution.

We consider charged particles, especially electrons, following magnetic fields in
guiding centre motion (Boyd & Sanderson 2003). In that spirit, we will follow
the local motion of charged particles around a specified set of highly tortuous
magnetic-field lines produced in short distance scale turbulent environments. We will
assume that the time-dependent motion of the field lines can be ignored. In the
Brownian motion analogy, we do not specify the energy source for the fast-moving
molecules, an aspect we parallel here.

We will characterize the behaviour of the charged particles in terms of the ratio of
their gyroradii to the length scale over which magnetic field entanglement emerges, as
discussed above. Our focus will be on regimes where changes in field orientation are
present on very short scales. When the gyroradius is small compared to the distance
over which the magnetic field undergoes an abrupt change in direction, what we call a
‘kink’, then the conditions for maintaining adiabatic invariance as a descriptor of the
gyromotion apply. In that regime, no systematic changes are expected in the particle’s
velocity distribution, apart from the usual pitch-angle picture that arises from adiabatic
invariants and, should they apply, mirror points. We are concerned with regions where
magnetic fields undergo an abrupt change in direction, as though (locally) we are
presenting two ‘sticks’ describing local portions of a field line undergoing a strong
transition in orientation. Accordingly, we will refer to this aspect of the problem
where the complicated field can be described by an ensemble of interconnected
straight-line field segments of random length, i.e. the field is piecewise linear, and
this is literally a ‘stick model’ for field behaviour. Incorporating the spirit embodied
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in random-walk arguments for collisional environments, especially Brownian motion,
we will identify the statistical properties of the emergent charged particle motion,
focusing on their kinetic energy components aligned both in parallel and orthogonal
to around the fields, in the vicinity of these ‘kinks’. Importantly, we will show that
local discontinuities in the field orientation always result in movement toward isotropy
or orientation independent velocity distributions. Mathematically, this process will give
rise to a mapping which we will show invariably results in an isotropic distribution
of electron velocities. In so doing, we will have demonstrated that tortuous, turbulent
field lines – focusing on their local discontinuities or abrupt changes – can act upon
charged particles in a manner similar to collisional events. Moreover, the rigorous
nature of the derivation will be seen to present an important physical corollary:
departures from isotropic velocity distributions in such environments, assuming that
they exist, are signature indicators of other particle or energy sources that have a
collimating influence.

2. Undamped Brownian motion

Consider now a particle at rest at time t = 0 which undergoes random collisions,
at uniform intervals of time 1t. We will assume that during the nth collision event
it receives an isotropically distributed uncorrelated velocity increment un whose mean
is zero and whose root-mean-squared value is σ . Formally, it satisfies, for all m and
n= 1, 2, . . . ,

〈um〉 = 0

〈um · un〉 = σ
2δm,n.

}
(2.1)

We can express the velocity of the particle after the nth collision vn as being

vn =

n∑
m=1

um. (2.2)

Accordingly, we observe the standard result due to Chandrasekhar (1943) for
Brownian motion that

〈vn〉 = 0 and

〈vn · vn〉 =

〈
n∑

j,k=1

uj · uk

〉

=

n∑
j,k=1

σ 2δj,k = nσ 2, (2.3)

so that
〈vn · vn〉

1/2
=
√

n σ . (2.4)

This brief review provides an illustration of how collisions contribute to the evolution
of the root-mean-squared (r.m.s.) velocity of a Brownian particle. Although we did
not elaborate here on the role of directionality, the contributions to the r.m.s. velocity
in each of the three dimensions is the same, thereby assuring isotropic behaviour.
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FIGURE 1. Illustration of magnetic-field alignment change altering the course of electrons.

3. Random walks in a turbulent, tangled environment
We now turn our attention to a collisionless environment where particles follow

a sequence of randomly oriented field lines. Away from the discontinuities, we
expect that the parallel and perpendicular velocity components will manifest adiabatic
behaviour whose influence will not be considered here. For simplicity, we will
assume that each of the field lines has the same field strength. Moreover, we will
ignore the electric field term since our focus, as described earlier, is on the influence
of magnetic-field discontinuities. We will presume that the Lorentz force equation
describes the dynamics on each and every field line, namely

dv
dt
=

q
mc

v×B, (3.1)

where B is the magnetic field, q is the charge of the particle, m is the mass of the
particle, c is the speed of light, and v is the velocity of the particle. Our primary
concern is the abrupt transition that takes place in the particle’s trajectory migrating
from one field line to another, as depicted in figure 1.

Since our focus is the partitioning of kinetic energy, the magnitude of the magnetic
field is unimportant as long as its variation near the discontinuity is negligible; if this
is not the case, then adiabatic invariants can be incorporated to describe the variation
of the perpendicular component of the kinetic energy away from the intersection points
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of different field lines, which we will not perform here (Bellan 2008; Chen 2012). For
convenience, we shall rotate our coordinate system so that the x-axis is aligned with
the original local magnetic field. The y-axis will be defined so that the new magnetic-
field line that is encountered resides in the x–y plane; the z-axis is perpendicular to
the plane formed by the two field lines. The angle by which the new magnetic field
departs from the previous one is defined by θ1 > 0. We have employed the labels ‘1’
and ‘2’ to designate in the figure the first and second magnetic-field lines encountered
by the particle. It is convenient to decompose at any time the motion into parallel (i.e.
along B) and perpendicular parts, with associated velocities v‖ and v⊥ respectively. We
expect that the electrons will gyrate around the relevant field line and that the velocity
and position of the electron will vary continuously as it transitions from one field line
to the next.

For the first field line, we will regard vx = v‖ as being constant. Similarly, we will
regard vy=v⊥ cosϕ and vz=v⊥ sinϕ as being the velocity of the electron with respect
to the y-axis and z-axis, respectively, where ϕ describes the angle of gyration executed
by the charged particle around the x-axis. We will presume that ϕ varies linearly in
time; we will be performing angle or, equivalently, time averages over quantities · · ·
designated 〈· · ·〉 over ϕ to calculate their average effect. For the second field line, we
must convert our coordinates to ones associated with the now-changed magnetic-field
geometry, and this therefore requires a rotation of coordinates. Our new x-axis, which
we will refer to as x′, is aligned with the new field whose orientation has rotated in
the x–y plane by θ1. Similarly, our new y-axis has rotated by θ1 to y′ while the z-axis
remains unchanged as z′. Therefore, we can immediately write

vx′ =+vx cos θ1 + vy sin θ1

vy′ =−vx sin θ1 + vy cos θ1

vz′ = vz.

 (3.2)

Further, we observe that
vx = v‖

vy = v⊥ cos ϕ

vz = v⊥ sin ϕ,

 (3.3)

where ϕ is the gyration angle which can be regarded as a uniformly distributed
random variable.

In analogy to Brownian motion described in §2, we average over the assumed
uniformly distributed gyration angle ϕ and observe that〈

vy
〉
= 0

〈vz〉 = 0

〈vx〉 = v‖,

 (3.4)

analogous to the ‘guiding centre’ approximation in plasma physics.
Corresponding with conventional Brownian motion, averages over many quantities

simply disappear, but averages over quadratic quantities do not. We observe that

1
2 =

〈
sin2 ϕ

〉
=
〈
cos2 ϕ

〉
. (3.5)
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Therefore, we are able to write〈
v2

x′
〉
=
〈
v′2
‖

〉
=
〈
v2
‖

〉
cos2 θ1 +

1
2

〈
v2
⊥

〉
sin2 θ1〈

v2
y′
〉
=
〈
v2
‖

〉
sin2 θ1 +

1
2

〈
v2
⊥

〉
cos2 θ1〈

v2
z′
〉
=
〈
v2

z

〉
=

1
2

〈
v2
⊥

〉
 (3.6)

from which we obtain〈
v′2
⊥

〉
=
〈
v2

y′
〉
+
〈
v2

z′
〉

=
〈
v2
‖

〉
sin2 θ1 +

1
2

(
1+ cos2 θ1

) 〈
v2
⊥

〉
. (3.7)

We can now combine these expressions in matrix form[〈
v′2
‖

〉〈
v′2
⊥

〉]= [cos2 θ1
1
2 sin2 θ1

sin2 θ1
1
2 +

1
2 cos2 θ1

] [〈
v2
‖

〉〈
v2
⊥

〉] . (3.8)

We will refer to the matrix involving the field deflection angle θ1 as M(θ1). Suppose
that we have many such scatterings designated by the subscript n with angles θ1,
θ2, . . . , θn. Then, we must address the composition of the matrices via the matrix
product M(θn) · M(θn−1) · · · M(θ2) · M(θ1). In order to accomplish this objective, we
must solve the associated eigenvalue problem, taking note that the matrices M are
neither symmetric nor Hermitian.

4. Diagonalization properties
Insight into the eigenvalue problem can be obtained using physical intuition. Since

the kinetic energy per unit mass E is conserved by the Lorentz equation, we verify
that

E ≡ 1
2

[〈
v2
‖

〉
+
〈
v2
⊥

〉]
(4.1)

is preserved therefore establishing that the associated eigenvalue is 1, implying that
the energy does not change. To identify the other eigenvector, we recall that〈

v2
y

〉
=
〈
v2

z

〉
, (4.2)

establishing equipartition of energy in the two perpendicular dimensions. If the energy
were fully isotropic, we would expect to have〈

v2
‖

〉
=

1
2

〈
v2
⊥

〉
. (4.3)

Accordingly, we will define A as a measure of anisotropy, namely

A=
〈
v2
‖

〉
−

1
2

〈
v2
⊥

〉
. (4.4)

Thus, employing eigenvalue form, we observe from (3.8) that[
E ′
A′
]
=

[
1 0
0 1− 3

2 sin2 θ1

] [
E
A

]
. (4.5)

We note that the eigenvalue associated with A, namely 1 − (3/2) sin2 θ1, can be
positive or negative, depending upon the angle of deflection by which the electrons
are diverted from one field line to another. The eigenvalue A becomes as large as
1, for the case of no deflections, and can be as small as −1/2, if all of the energy
in the electron has gone into gyromotion. Importantly, however, the eigenvalue A
is always less than 1 in magnitude, thus assuring that the degree of anisotropy is
invariably decreasing. In the language of nonlinear dynamics, this mapping and the
ensuing isotropization is a global attractor.
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5. Summary and conclusion
The eigenvalue properties derived above guarantees that the outcome of many

magnetic-field deflections results in a dramatic reduction of anisotropy. An isotropic
velocity distribution can be expected to emerge rather quickly, paralleling the
isotropization that occurs in collisional environments akin to Brownian motion.
Charged particle observations in various space and astrophysical environments
complicate matters. Since observational footprints typically encompass large spatial
regions, we should consider sub-regions where field strengths and orientations are
relatively smoothly varying as well as smaller sub-regions characterized by substantial
fluctuations in field orientations. Thus, if electrons appear to be highly collimated
in a localized region where field line orientations could be disordered, it follows
that there must be a source for particle collimation or energization. Finally, returning
to the conventional wisdom that collisionless plasmas cannot become isotropic, we
have shown that particle motion in highly complex field environments such as those
possibly found in regions of tortuous, turbulent, tangled fields could generate isotropic
behaviour arising from ‘kinks’. A simple way to understand this is to take note that
charged particle motion here can undergo sharp deflections, just as they would in
collisional environments, owing to highly complicated field structures and the ‘kinks’
that they present. Turbulent magnetic fields, under the right circumstances, can
become a proxy for particle collisions.
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