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SEMISTABLE SHEAVES WITH SYMMETRIC c1

ON A QUADRIC SURFACE

TAKESHI ABE

Abstract. For moduli spaces of sheaves with symmetric c1 on a quadric

surface, we pursue analogy to some results known for moduli spaces of sheaves

on a projective plane. We define an invariant height, introduced by Drezet in

the projective plane case, for moduli spaces of sheaves with symmetric c1 on a

quadric surface and describe the structure of moduli spaces of height zero. Then

we study rational maps of moduli spaces of positive height to moduli spaces of

representation of quivers, effective cones of moduli spaces, and strange duality

for height-zero moduli spaces.

§1. Introduction

It is a fundamental problem to decide whether there exists a semistable

sheaf with a given numerical invariant or not. In the case of P2, Drezet

and Le Potier [DL] solved this problem completely; they determined the

set of pairs (µ,∆) such that there exists a semistable sheaf having µ as its

slope and ∆ as its discriminant. In their result, exceptional bundles play an

important role. In [D], Drezet refined the result by introducing a function

δ : Q→Q, which is also defined using exceptional bundles. He proved

that the inequality ∆> δ(µ) is a necessary and sufficient condition for

(µ,∆) ∈Q2 to be the pair of the slope and discriminant of a nonexceptional

stable sheaf. The function δ allowed him to define an invariant height of

a positive-dimensional moduli space of semistable sheaves on P2, and he

proved that a moduli space of height zero is isomorphic to a moduli space

of representations of the Kronecker quiver [D, Theorem 2].

The Picard group of a positive-dimensional moduli space of semistable

sheaves on P2 is a free abelian group of rank 1 (resp. 2) if its height is zero

(resp. positive).
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When the height of a moduli space M of semistable sheaves on P2 is

positive, Coskun, Huizenga and Woolf [CHW] constructed a rational map

of M to a moduli space of representations of a Kronecker quiver, and using

it, determined completely the effective cone of the moduli space M . In [A15],

using Coskun, Huizenga and Woolf’s rational map as one of the ingredients,

the author showed the strange duality for sheaves on P2 when one of the

moduli spaces appearing in the strange duality has height zero.

The aim of this paper is to pursue, in the case of the quadric surface

S = P1 × P1 under the assumption “with symmetric c1,” analogues to the

above results.

1.1 Height and moduli spaces of height zero

First of all, we need to determine Chern classes of semistable sheaves with

symmetric c1 and define height for positive-dimensional moduli spaces of

sheaves with symmetric c1 on S. In [R94], Rudakov described Chern classes

of semistable sheaves on S (under the condition ∆ 6= 1/2). His description

involves all exceptional bundles. The set of all exceptional bundles on S

is more complicated than the set of those on P2 (see [R89]). So it seems

difficult to define, in the quadric surface case, an analogue to the function

δ introduced by Drezet for P2, and to define height of the moduli space of

semistable sheaves on S.

The essential observation of this paper (Proposition 3.6) says that

if we restrict ourselves to considering semistable sheaves on S having

symmetric c1, then we can describe their Chern classes using only symmetric

exceptional bundles. Although the proof of this observation is easy, we note

that it still is not a trivial fact because the filters of the Harder–Narasimhan

filtration of a sheaf with symmetric c1 do not necessarily have symmetric

c1. The set of symmetric exceptional bundles on S is well understood

(cf. [R89, Section 6]), so we can define an analogous function δ to Drezet’s

function δ in the P2 case, and define height of a moduli space of semistable

sheaves on S having symmetric c1 (Definition 3.8). Then we proceed to

show that a moduli space of height zero is isomorphic to a moduli space

of representations of a certain quiver (see Section 5.2 for the appearing

quivers). The result has some overlap with the result in [Ka], [Ku]. In both

[Ka] and [Ku], the authors do not impose the assumption “having symmetric

c1”. Karpov [Ka] gave a sufficient condition for a moduli space of semistable

sheaves on S to be isomorphic to a moduli space of representations of

Kronecker quivers. In [Ka, Section 7], he considered a symmetric case, and
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[Ka, Theorem 7.3] is a special case of Theorem 5.4 in this paper. Kuleshov

gave some examples of moduli spaces of semistable sheaves on S that are

isomorphic to moduli spaces of representations of quivers like Qα and Qβ

(see Section 5.2 for the quivers Qα, Qβ).

1.2 Coskun, Huizenga and Woolf’s rational map

After defining height, and describing the structure of moduli spaces of

height zero, we move on to studying moduli spaces of positive height.

Let M be a moduli space of positive height of semistable sheaves with

symmetric c1 on S. What we do is the following:

(i) We construct a rational map of M to a moduli space of representations

of quivers, which is an analogue of the rational map constructed by

Coskun, Huizenga and Woolf in case P2 [CHW].

(ii) We determine some part of the effective cone of M . More precisely, we

define a 2-dimensional subspace V in NS(M)R, and determine the cone

Eff(M) ∩ V .

(iii) We establish a strange duality for height-zero moduli spaces in the

case S.

Actually, once we succeeded in defining height, doing these things is a

more or less straight-forward task. Having said so, there are some technical

issues to cope with. The technical difficulty is caused by the following two

facts:

• the Picard group of S is not cyclic,

• there are two kinds of symmetric exceptional slopes: even ones and odd

ones.

For example, to carry out (i), we need to show an analogous result to

[CHW, Theorem 4.16], which concerns continued fraction expansions of

exceptional slopes. This is Theorem 7.4, and its proof is messier than [CHW,

Theorem 4.16] due to the above second fact. Also, to prove (iii), we need to

show a dimension-estimate result analogous to [Le, Lemma 18.3.1]. This is

Proposition 6.1, and its proof is more involved than [Le, Lemma 18.3.1] due

to the above first fact.

Comment on the method of the proof of Theorem 5.4: in the proof

of Theorem 5.4, it is essential to show that the semistability of a sheaf

corresponds exactly to the semistability of the representation of a quiver.

To show this, we take a different method from that in [D], [Ka], [Ku]; we
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employ the argument using the Bridgeland stability as in [ABCH], [Oh]. It is

just a matter of the author’s taste; the proof via the Bridgeland stability

feels more conceptual.

Organization of the paper : In Section 2, we collect basic facts about

symmetric exceptional bundles. In Section 3, we define the function δ,

prove the existence theorem (Theorem 3.7), which is a counterpart of the

second statement in [D, Theorem 1], and define the height of a moduli

space. In Section 4, we study the Bridgeland stability for symmetric

exceptional bundles. The Bridgeland stability of exceptional bundles on P2

was studied by Huizenga [H, Section 9], and we trace his argument. In

Section 5, we study the relation between the usual semistability and the

Bridgeland semistability. Then, after introducing notation of quivers, we

show that the moduli space of height zero is isomorphic to a moduli space of

representations of a quiver. Section 6 is devoted to proving Proposition 6.1,

which gives a dimension estimate for the locus of nonsemistable sheaves

in a complete family of torsion-free sheaves. In Section 7, we consider

continued fraction expansions of symmetric exceptional slopes. This section

is a counterpart of [H, Section 3] and [CHW, Section 4]. In Section 8, we

consider resolutions of semistable sheaves by symmetric exceptional bundles.

In Section 9, we define a rational map of a moduli space of sheaves to a

moduli space of representations of a quiver, which is an analogue, in the

quadric surface case, to Coskun, Huizenga and Woolf’s rational map. In

Section 10, we define a 2-dimensional subspace in the real Néron–Severi

group of the moduli space of sheaves, and determine the intersection of the

subspace and the effective cone. In Section 11, we state a strange duality for

height-zero moduli spaces in the quadric surface case. In Appendix we give a

Beilinson-type spectral sequence used in the paper for readers’ convenience.

Notation and Convention. In this paper, the variety S denotes P1 × P1.

The line bundle OP1(a)�OP1(b) is denoted by O(a, b), and E ⊗O(a, b)

is abbreviated as E(a, b) for a sheaf E. We identify Pic S with Z2 by the

correspondence O(a, b)↔ (a, b).

Unless otherwise stated, a semistable sheaf is a semistable torsion-

free sheaf, and semistability means Gieseker–Maruyama semistability with

respect to the ample line bundle O(1, 1). The rank of a coherent sheaf E is

denoted by r(E). The reduced Hilbert polynomial of a sheaf E is denoted

by pE , that is, pE(n) = χ(E(n, n))/r(E) for n� 0.

For polynomials f and g, f � g (resp. f � g) means that f(n)> g(n)

(resp. f(n)> g(n)) for n� 0.
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A class ξ ∈K(S) is said to be semistable if there exists a semistable sheaf

F with ξ = [F ].

For ξ ∈K(S), we denote by M(ξ) the moduli space of semistable sheaves

F on S with [F ] = ξ.

For a smooth projective variety X, D(X) denotes the bounded derived

category of coherent sheaves on X.

P(x) denotes the polynomial (x+ 1)2.

§2. Preliminaries

2.1 Numerical Invariants

The rank of ξ ∈K(S) is denoted by r(ξ). If ξ has rank r > 0, its

discriminant is defined by

∆(ξ) =
1

r

(
c2(ξ)− r − 1

2r
c1(ξ)2

)
.

If c1(ξ) = (a, b), then we put

ν(ξ) = (a, b)/r, ν ′(ξ) = a/r, ν ′′(ξ) = b/r,
deg ξ = a+ b, µ(ξ) = (a+ b)/r, µ̄(ξ) = µ(ξ)/2.

Here ν(ξ) is an element of Pic S ⊗Q'Q2. We say that ξ has symmetric c1

if a= b. We mainly use these notations when ξ is a class of a sheaf.

If ξ, η ∈K(S) have positive rank, then by the Riemann–Roch theorem

we have

χ(ξ, η) = r(ξ)r(η)
{(
ν ′(η)− ν ′(ξ) + 1

) (
ν ′′(η)− ν ′′(ξ) + 1

)
−∆(ξ)−∆(η)

}
.

If ν(ξ) = (µ̄(ξ) + t, µ̄(ξ)− t) and ν(η) = (µ̄(η) + s, µ̄(η)− s), then the above

formula can also be expressed as

(2.1) χ(ξ, η) = r(ξ)r(η)
{

P(µ̄(η)− µ̄(ξ))− (t− s)2 −∆(ξ)−∆(η)
}
.

In particular, if ξ and η have symmetric c1, then

(2.2) χ(ξ, η) = r(ξ)r(η) {P(µ̄(η)− µ̄(ξ))−∆(ξ)−∆(η)}.

Definition 2.1. A coherent sheaf E on a smooth projective variety is

said to be exceptional if End(E)' C and Exti(E, E) = 0 for i > 0.
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All exceptional sheaves on S are locally free (cf. [KO, Proposition 2.9]).

A general member C of the anti-canonical linear system |−KS | is an elliptic

curve, and the restriction E|C of an exceptional bundle E to C is simple (cf.

[KO, Lemma 3.6]). It follows from this that E is µ-stable (with respect to

the polarization O(1, 1)), and that if c1(E) = (a, b) then 2(a+ b) and r(E)

are coprime. In particular, r(E) is odd.

2.2 Symmetric Exceptional bundles

ι : S→ S denotes the involution (x, y) 7→ (y, x). A coherent sheaf E on

S is said to be symmetric if ι∗E ' E. We recall the following result [R89,

Proposition 6.1].

Proposition 2.2. Let E be a symmetric bundle that is a direct sum

E1 ⊕ E2 with E1 and E2 exceptional bundles. The following are equivalent.

(1) χ(E, E) = 2.

(2) χ(E1, E2) = χ(E2, E1) = 0.

(3) Exti(E1, E2) = Exti(E2, E1) = 0.

(4) ν(E1), ν(E2) ∈ {(a, a± 1)/r | a, r ∈ Z}.

After Rudakov [R89], we use the following terminology.

Definition 2.3. A symmetric exceptional bundle is either an excep-

tional bundle which is symmetric or a symmetric bundle satisfying the

equivalent conditions in Proposition 2.2. The former is called an odd

symmetric exceptional bundle, and the latter is called an even symmetric

exceptional bundle. (Note that an even symmetric exceptional bundle is

NOT an exceptional bundle.)

The use of the adjective “even” and “odd” is justified by the fact that

the rank of an even (resp. odd) symmetric exceptional bundle is even (resp.

odd).

2.3 Mutation in a general context

We recall an operation called mutation in a general context. Our

references are [Bo] and [BS].

Let D be a C-linear triangulated category. For a full triangulated

subcategory B, we put

B⊥ = {A ∈ D |Hom(B, A) = 0 for any B ∈ B},
⊥B = {A ∈ D |Hom(A, B) = 0 for any B ∈ B}.
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Then B is defined to be left (resp. right) admissible if the inclusion functor

B ↪→D has a left (resp. right) adjoint. B is said to be admissible if it is

left and right admissible. It is known (cf. [Bo, Lemma 3.1]) that B is left

(resp. right) admissible if and only if the pair (B, ⊥B) (resp. (B⊥, B)) is

a semi-orthogonal decomposition. Here, a pair (B, C) of full triangulated

subcategories of D is a semi-orthogonal decomposition if

• for B ∈ B and C ∈ C, we have Hom(C, B) = 0,

• any A ∈ D fits in a triangle

(2.3) C→A→B,

with C ∈ C and B ∈ B. (One can easily see that B and C are determined

uniquely up to unique isomorphism.)

Assume that B is admissible. For A ∈ ⊥B, we define LB(A) ∈ B⊥ to be

the object determined by the triangle

B→A→ LB(A)

with B ∈ B. LB(A) is called a mutation of A through B. Similarly, for

A ∈ B⊥, we define RB(A) ∈ ⊥B to be the object determined by the triangle

RB(A)→A→B

with B ∈ B. RB(A) is called a right mutation of A through B.

If E = (E1, . . . , Em) is an exceptional collection, the full subcategory 〈E〉
generated by E is admissible (cf. [Bo, Theorem 3.2]). We write LE and RE
for L〈E〉 and R〈E〉.

Definition 2.4. A d-block exceptional collection is an exceptional

collection E together with a partition of E into d subcollections E =

(E1, . . . , Ed) such that the objects in each block Ei are mutually orthogonal,

that is, for any E, E′ ∈ Ei, we have Homk(E, E′) = Homk(E′, E) = 0 for

any k.

Given a d-block exceptional collection E = (E1, . . . , Ed), we define, for

1< i6 d, a d-block exceptional collection τLi (E) to be(
E1, . . . , Ei−2, LEi−1(Ei)[−1], Ei−1, Ei+1, . . . , Ed

)
.

Similarly for 16 i < d, we define τRi (E) to be(
E1, . . . , Ei−1, Ei+1, REi+1(Ei)[1], Ei+2, . . . , Ed

)
.

We call τLi and τRi d-block mutation operators.
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Now we specialize to the case D = D(X) with X a smooth projective vari-

ety of dimension n. If E = (E1, . . . , En+1) is a full (n+1)-block exceptional

collection consisting of exceptional sheaves, then E is strong, and τLi (E)

and τRi (E) also consists of exceptional sheaves (cf. [BS, Theorem 4.5]). It

follows from this that if Ei−1 = (Eα+1, . . . , Eβ), Ei = (Eβ+1, . . . , Eγ) and

Ei+1 = (Eγ+1, . . . , Eδ), then for β + 16 k 6 γ, the natural morphism

β⊕
l=α+1

Hom(El, Ek)⊗ El→ Ek

is surjective, and LEi−1(Ek)[−1] is its kernel. Similarly, the natural mor-

phism

Ek→
δ⊕

l=γ+1

Hom(Ek, El)
∗ ⊗ El

is injective, and REi+1(Ek)[1] is its cokernel.

2.4 Mutation of Symmetric Exceptional bundles

A symmetric exceptional triple is a triple (E1, E2, E3) of symmetric

exceptional bundles on S such that one of E′is is even, and the other two

are (necessarily) odd, and that Extk(Ei, Ej) = 0 for any k if i > j.

If (E1, E2, E3) is a symmetric exceptional triple, and Ei is an even

symmetric exceptional bundle E′i ⊕ E′′i , then by substituting (E′i, E
′′
i ) for Ei,

we obtain a full 3-block exceptional collection. Conversely, if (E1, E2, E3) is a

full 3-block exceptional collection, then one of the blocks Ei’s consists of two

exceptional bundles and the other two blocks consist of a single exceptional

bundle. Say E1 = (E′1, E
′′
1 ) and Ej = {Ej}, j = 2, 3. Then (E′1 ⊕ E′′1 , E2, E3)

is a symmetric exceptional triple if the sheaves in the triple are symmetric.

By this correspondence between symmetric exceptional triples and full

3-block exceptional collections such that the direct sum of bundles in each

block is symmetric, we can apply 3-block mutation operators τLi , τRi for

symmetric exceptional triples. For example, for a symmetric exceptional

triple E = (E1, E2, E3),

τL3 (E) = (E1, LE2(E3)[−1], E2), τR1 (E) = (E2, RE2(E1)[1], E3),

where if E is an even symmetric exceptional bundle E′ ⊕ E′′, then LE and

RE are understood to be L〈E′,E′′〉 and R〈E′,E′′〉, respectively.
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2.5 Construction of Symmetric Exceptional bundles

Let SE be the set of all symmetric exceptional bundles. Put D := {p/2q |
p ∈ Z, q ∈ Z>0}. We define a map η : D→SE , by induction on q, such that

for odd p ∈ Z and q ∈ Z>0,(
η

(
p− 1

2q

)
, η

(
p

2q

)
, η

(
p+ 1

2q

))
is a symmetric exceptional triple. For p ∈ Z, we define η(p) =O(p, p). For

odd p ∈ Z, we define

η(p/2) =O
(
p− 1

2
,
p+ 1

2

)
⊕O

(
p+ 1

2
,
p− 1

2

)
.

Let p be an odd integer and q > 2. If p≡ 1 (mod 4), then

(2.4)

(
η

(
p− 1

2q

)
, η

(
p+ 1

2q

)
, η

(
p+ 3

2q

))
is a symmetric exceptional triple, so we define η(p/2q) by(

η

(
p− 1

2q

)
, η

(
p

2q

)
, η

(
p+ 1

2q

))
= τL3 (the triple (2.4)).

If p≡ 3 (mod 4), then

(2.5)

(
η

(
p− 3

2q

)
, η

(
p− 1

2q

)
, η

(
p+ 1

2q

))
is a symmetric exceptional triple, so we define η(p/2q) by(

η

(
p− 1

2q

)
, η

(
p

2q

)
, η

(
p+ 1

2q

))
= τR1 (the triple (2.5)).

Rudakov proved the following theorem (cf. [R89, Theorem 6.5]).

Theorem 2.5. The map η is bijective.

2.6 Numerics of Symmetric Exceptional bundles

If α= a/r with r > 0 is an irreducible fraction, we call r the rank of α

and denote it by rα; we define the discriminant of α by

∆α =


1

2

(
1− 1

r2

)
if r is odd,

1

2

(
1− 2

r2

)
if r is even.
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We can see that if E is a symmetric exceptional bundle, then ∆(E) = ∆µ̄(E).

For α, β ∈Q with 2 + α− β 6= 0, we define

α.β =
α+ β

2
+

∆β −∆α

2(2 + α− β)
.

We define a map ε : D→Q inductively on q as follows. For p ∈ Z, we define

ε(p) = p. For p/2q with p odd and q > 0, we define

ε
( p

2q

)
= ε

(
p− 1

2q

)
.ε

(
p+ 1

2q

)
.

From the lemma below, we see that ε is a strictly increasing function. For

α, β ∈Q, we put

χ(α, β) := rαrβ (P(β − α)−∆α −∆β).

Lemma 2.6. Let α, β ∈Q satisfy α < β < α+ 2 and χ(β, α) = 0.

(1) If γ ∈Q satisfies χ(β, γ) = χ(γ, α) = 0, then γ = α.β.

(2) We have

α.β − α=
1− 2∆α

2(2 + α− β)
, β − α.β =

1− 2∆β

2(2 + α− β)
.(2.6)

In particular, we have α < α.β < β.

(3) We have

1− 2∆α.β =
(1− 2∆α)(1− 2∆β)

2(2 + α− β)2
.

(4) We have

α+ α.β

2
+

∆α −∆α.β

2(α.β − α)
= β − 1(2.7)

α.β + β

2
+

∆α.β −∆β

2(β − α.β)
= α+ 1.(2.8)

(5) We have (
α− α.β

2

)2

− P(α− α.β)

2
+

(
∆α −∆α.β

2(α.β − α)

)2

= ∆β(2.9) (
α.β − β

2

)2

− P(α.β − β)

2
+

(
∆α.β −∆β

2(β − α.β)

)2

= ∆α.(2.10)
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Proof. (1) This follows from

P(γ − β)−∆γ −∆β = 0,

P(α− γ)−∆γ −∆α = 0.

(2) Since χ(β, α) = 0, we have

∆α −∆β = 2∆α − P(α− β)

= 2∆α − 1 + (β − α)(2 + α− β).

Thus
1− 2∆α

2(2 + α− β)
=
β − α

2
+

∆β −∆α

2(2 + α− β)
= α.β − α.

The proof of the other equality is similar. Since the discriminants are less

than 1/2, the inequalities follow.

(3) We have

∆α.β = P(α− α.β)−∆α

=

(
α− β

2
+ 1−

∆β −∆α

2(2 + α− β)

)2

−∆α

=
1

4
(α− β + 2)2 −

∆α + ∆β

2
+

(
∆β −∆α

2(2 + α− β)

)2

=
1

4
(α− β + 2)2 − 1

2
(α− β + 1)2 +

(
∆β −∆α

2(2 + α− β)

)2

=
1

2
− (α− β)2

4
+

(
∆β −∆α

2(2 + α− β)

)2

=
1

2
−
(
α− β

2
−

∆β −∆α

2(2 + α− β)

) (
α− β

2
+

∆β −∆α

2(2 + α− β)

)
=

1

2
−
(

2∆α − 1

2(2 + α− β)

) (
2∆β − 1

2(2 + α− β)

)
.

Here in the first equality we used the equality χ(α.β, α) = 0.

(4) We prove the first equality. From χ(α.β, α) = 0, we obtain

(α− α.β)(α− α.β + 2) + ∆α −∆α.β = 2∆α − 1.
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Then we have

∆α −∆α.β

2(α.β − α)
=

2∆α − 1

2(α.β − α)
+
α− α.β + 2

2

= β − 1− α+ α.β

2
,

where we used (2.6) in the second equality.

(5) We prove the first equality. Put x= α− α.β. Using (2.7), we have

LHS. of (2.9) =
(x

2

)2
− (x+ 1)2

2
+
(
β − α− 1 +

x

2

)2

= (β − α− 2)x+ (β − α− 1)2 − 1

2

= −∆α + P(α− β) = ∆β,

where we used (2.6) in the third equality.

Proposition 2.7. We have µ̄ (η(d)) = ε(d) for d ∈D.

Proof. Let d= p/2q with p odd. When q = 0, 1, the equality holds because

µ̄ (O(p, p)) = p, and

µ̄

(
O
(
p− 1

2
,
p+ 1

2

)
⊕O

(
p+ 1

2
,
p− 1

2

))
=
p

2
.

For q > 2, the equality follows by induction on q using Lemma 2.6(1).

Notation 2.8. Put E := ε(D). This is the set of µ̄’s of symmetric

exceptional bundles. We call elements of E symmetric exceptional slopes. A

symmetric exceptional bundle is determined uniquely by its value of µ̄; for

α ∈ E, Eα denotes the symmetric exceptional bundle such that µ̄(Eα) = α.

We say that a symmetric exceptional slope α is even (resp. odd) if rα is even

(resp. odd). (N.B. If α ∈ E is an integer, it is odd as a symmetric exceptional

slope. This might be a little confusing because α can be an even integer.

But in this paper we do not mention the parity as an integer, so it does not

cause confusion.)

§3. Existence of Semistable sheaves

In this section, we determine the Chern classes of semistable sheaves with

symmetric c1 on S.
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Lemma 3.1. Let F be a semistable sheaf with symmetric c1. Assume

that ∆(F )< 1/2. Then µ̄(F ) ∈ E and F is a direct sum of Eµ̄(F ).

Proof. We proceed by induction on the rank of F . If F is stable, then

F is an odd symmetric exceptional bundle and we are done. If F is not

stable, then let F1 be the first filter of a Jordan–Hölder filtration of F . Let

ν(F1) = (µ̄(F ) + t, µ̄(F )− t). Since χ(F1)/r(F1) = χ(F )/r(F ), we have, by

(2.1),

t2 + ∆(F1) = ∆(F ).

So we have ∆(F1)< 1/2, and F1 is an exceptional bundle. If we let c1(F1) =

(a1, a2), then t= a1−a2
2r(F1) . We have

1

2
>∆(F ) = ∆(F1) + t2 =

1

2
− 2− (a1 − a2)2

4r(F1)2
.

Therefore, |a1 − a2|= 0 or 1. If |a1 − a2|= 0, then F1 is an odd symmetric

exceptional bundle. F/F1 is a semistable sheaf with symmetric c1 such

that µ̄(F ) = µ̄(F/F1) and ∆(F ) = ∆(F/F1). By applying the induction

hypothesis to F/F1, we obtain the result. If |a1 − a2|= 1, then F1 is a direct

summand of an even symmetric exceptional bundle. Note that

χ(F1, F )

r(F1)r(F )
= 1− t2 −∆(F1)−∆(F ) = 1− 2∆(F )> 0.

By this we also have χ(ι∗F1, F )> 0, so hom(ι∗F1, F )> 0 because

Ext2(ι∗F1, F ) = 0. Then we can find a subbundle G of F that is S-equivalent

to F1 ⊕ ι∗F1. Since Ext1(F1, ι
∗F1) = 0, we have G' F1 ⊕ ι∗F1. Applying the

induction hypothesis to F/G, we obtain the result.

Proposition 3.2. Let F be a semistable sheaf on S with symmetric c1.

Let α ∈ E satisfy |µ̄(F )− α|< 2. Then the inequality

(3.1) P (−|µ̄(F )− α|)−∆(F )−∆α 6 0

holds unless µ̄(F ) = α and F is a direct sum of Eα.

Proof. If α− 2< µ̄(F )< α, then by semistability of F and Eα we have

Hom(Eα, F ) = Ext2(Eα, F ) = 0. Thus χ(Eα, F )6 0, which is equivalent to

(3.1). A similar argument shows (3.1) when α < µ̄(F )< α+ 2. Suppose that

α= µ̄(F ) and (3.1) does not hold. We have

(3.2) 1−∆(F )−∆α > 0.
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We show that F is a direct sum of Eα. Since χ(Eα, F )> 0, we have a

nonzero morphism Eα→ F . If rα is odd, then this is injective by µ-stability

of Eα. By semistability of F , we have ∆α >∆(F ). If rα is even, then

F has a subsheaf isomorphic to E′α or E′′α. Again by semistability of F ,

we have ∆(F )6 (1/rα)2 + ∆(E′α) = ∆α. In any case, ∆α >∆(F ). From

this and (3.2), we have ∆(F )< 1/2. Then F is a direct sum of Eα by

Lemma 3.1.

Remark 3.3. The inequality (3.1) holds for a µ-semistable sheaf F with

0< |µ̄(F )− α|< 2. (Indeed, in the above proof, for F with µ̄(F ) 6= α, only

the µ-semistability is used.) From this, we see that if a µ-semistable sheaf

F with 0< |µ̄(F )− α|< 2 satisfies

P (−|µ̄(F )− α|)−∆(F )−∆α = 0,

then it is locally free.

For α ∈ E, put xα := 1−
√

∆α + 1/2, which is the smaller solution of the

quadratic equation

P(−x)−∆α =
1

2
.

Put Iα := (α− xα, α+ xα).

Proposition 3.4. Q is the disjoint union of Iα ∩Q (α ∈ E).

Proof. The argument of the proof of [D, Théorème 1(1)] applies to our

quadratic surface case. Details are left to the reader.

By the above proposition, the union
⋃
α∈E Iα is a disjoint union, and

contains the set Q of rational numbers.

We define a function δ :
⋃
α∈E Iα→ R so that δ(µ̄) = P(−|µ̄− α|)−∆α

for µ̄ ∈ Iα (α ∈ E).

Lemma 3.5. Let (µ̄,∆) ∈Q2 satisfy ∆> δ(µ̄). Then for any β ∈ E with

|β − µ̄|6 1, we have

(3.3) P(−|µ̄− β|)−∆β 6∆.

Proof. Let α ∈ E be such that µ̄ ∈ Iα. If β = α, the inequality (3.3)

is nothing but ∆> δ(µ̄). Assume that β 6= α. From the definition of

xβ, it follows that for x ∈ [β − 2 + xβ, β − xβ] ∪ [β + xβ, β + 2− xβ], we

have P(−|x− β|)−∆β 6 1/2. Since µ̄ lies in this union of intervals, and

∆> δ(µ̄)> 1/2, the inequality (3.3) holds.
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Proposition 3.6. Let (µ̄,∆) ∈Q2 satisfy ∆> δ(µ̄). Let E be an excep-

tional bundle with ν(E) = (e1, e2). If µ̄6 µ̄(E)6 µ̄+ 1, then

(µ̄− e1 + 1)(µ̄− e2 + 1)−∆(E)6∆.

If µ̄− 16 µ̄(E)6 µ̄, then

(e1 − µ̄+ 1)(e2 − µ̄+ 1)−∆(E)6∆.

Proof. Assuming µ̄6 µ̄(E)6 µ̄+ 1, we show the first inequality. The

proof of the second inequality is similar. If E is an odd symmetric

exceptional bundle, the inequality follows from Lemma 3.5. If E is a direct

summand of an even symmetric exceptional bundle, then

(µ̄− e1 + 1)(µ̄− e2 + 1)−∆(E) = P(µ̄− µ̄(E))−∆(E ⊕ ι∗E)6∆

again by Lemma 3.5.

Suppose that E is neither an odd symmetric exceptional bundle nor a

direct summand of an even symmetric exceptional bundle. We show that

(3.4) (µ̄− e1 + 1)(µ̄− e2 + 1)−∆(E)6
1

2
.

The left-hand side of (3.4) attains the maximum for µ̄= µ̄(E). Thus

LHS of (3.4) 6 (µ̄(E)− e1 + 1)(µ̄(E)− e2 + 1)−∆(E)

=
1

2
+

2− (a1 − a2)2

4r(E)2
,

where c1(E) = (a1, a2). Since we are assuming that E is neither an odd

symmetric exceptional bundle nor a direct summand of an even symmetric

exceptional bundle, we have |a1 − a2|> 2, so (3.4) holds.

Now we come to the main theorem of this section.

Theorem 3.7.

(1) If F is a semistable sheaf with symmetric c1, then either ∆> δ(µ̄(F )),

or µ̄(F ) ∈ E and F is a direct sum of Eµ̄(F ).

(2) Assume that (r, µ̄,∆) ∈ Z>0 ×Q2 satisfies the following conditions:

(a) r(P(µ̄)−∆) ∈ Z and rµ̄ ∈ Z,

(b) ∆> δ(µ̄).
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Then there exists a µ-stable sheaf F with symmetric c1 such that

r(F ) = r, µ̄(F ) = µ̄ and ∆(F ) = ∆.

Proof. (1) This is a consequence of Proposition 3.2.

(2) Step 1. We show the existence of stable sheaves.

By Proposition 3.6, we see that the condition (D-L) in [R94, Theorem]

holds. Thus by the theorem in [R94], we have a desired stable sheaf F . For

reader’s convenience, we reproduce a sketch of proof of Rudakov’s theorem

(adapted for the symmetric c1 case).

Let t be the smallest integer such that P(t+ µ̄)−∆> 0 and t+ µ̄+ 1> 0.

Put A := r(P(t+ µ̄)−∆), B := r((t+ µ̄+ 1)(t+ µ̄)−∆) and C := r(P(t+

µ̄− 1)−∆). We have A> 0 and C < 0. If B > 0, then we set

F−1 := O(−t− 1,−t− 1)−C ⊕ (O(−t− 1,−t)⊕O(−t,−t− 1))B ,

F 0 := O(−t,−t)A.

If B < 0, then set

F−1 := O(−t− 1,−t− 1)−C ,

F 0 := O(−t,−t)A ⊕ (O(−t− 1,−t)⊕O(−t,−t− 1))−B.

Put H := Hom(F−1, F 0). Fix a smooth rational curve in the linear system

|O(1, 1)|. Then we can find a nonempty Zariski open subset U ⊂H such

that for any point [f ] ∈ U , the following hold:

(a) f is injective and G := Coker f is a torsion-free sheaf with symmetric

c1 such that r(G) = r, µ̄(G) = µ̄ and ∆(G) = ∆, and that G is locally

free along D and G|D is a rigid bundle,

(b) the Kodaira–Spencer map T[f ]U → Ext1(G, G) is surjective,

(c) Ext2(G, G) = 0.

Suppose that for [f ] ∈ U , G := Coker f is not semistable. Let

(3.5) 0 =G0 ⊂G1 ⊂ · · · ⊂Gl =G

be the Harder–Narasimhan filtration of G. By condition (a), we have

µ(G1)− µ(Gl/Gl−1)6 1. If G1 is not stable, then we can find (cf. [KO,

Proposition 4.4]) a subsheaf G′1 ⊂G1 such that

• G1 and G′1 have the same reduced Hilbert polynomial,

• G1 is S-equivalent to Ha for some stable sheaf H,
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• Hom(G′1, G1/G
′
1) = 0.

If G1 is stable, let G′1 =G1. Similarly, if Gl/Gl−1 is not stable, then we

can find a subsheaf Gl−1 ⊂G′l ⊂Gl such that

• Gl/Gl−1 and Gl/G
′
l have the same reduced Hilbert polynomial,

• Gl/G′l is S-equivalent to H ′b for some stable sheaf H ′,

• Hom(G′l/Gl−1, Gl/G
′
l) = 0.

If Gl/Gl−1 is stable, let G′l =Gl−1. We write

0 = Ḡ0 ⊂ · · · ⊂ Ḡm =G

for the filtration

0 =G0 ⊂G′0 ⊂G1 ⊂ . . . Gl−1 ⊂G′l ⊂Gl =G.

Then we have Ext2(Ḡi/Ḡi−1, Ḡj/Ḡj−1) = 0 for i6 j, and Hom(Ḡi/Ḡi−1,

Ḡj/Ḡj−1) = 0 for i < j. Moreover, Ḡ1 and Ḡm/Ḡm−1 are S-equivalent to

Ha and H ′b for some stable sheaves H and H ′.

Claim 3.7.1. dim Ext1
Ḡ•,+

(G, G)> 0.

Proof of Claim. If dim Ext1
Ḡ•,+

(G, G) = 0, then Ext1(gri(G), grj(G)) =

0 for i < j, hence we have

(3.6) χ(gri(G), grj(G)) = 0 for i < j.

If we let ν(gri(G)) = (µ̄i + ti, µ̄i − ti), then we have

0 = (µ̄m − µ̄1 + 1)2 − (t1 − tm)2 −∆(gr1(G))−∆(grm(G)).

We have ∆(gr1(G)) + ∆(grm(G))< 1 unless µ̄m − µ̄1 = 0 and t1 = tm. If

µ̄m − µ̄1 = 0 and t1 = tm, then ∆(gr1(G)) + ∆(grm(G)) = 1. If ∆(gr1(G)) =

∆(grm(G)) = 1/2, then

χ(grm(G))/r(grm(G)) = (µ̄m + 1)2 − t2m −∆(grm(G))

= (µ̄1 + 1)2 − t21 −∆(gr1(G))

= χ(gr1(G))/r(gr1(G)).

This is a contradiction. Therefore in any case, we have ∆(gr1(G))< 1/2

or ∆(grm(G))< 1/2. Suppose ∆(gr1(G))< 1/2. Recall that gr1(G) is S-

equivalent to Ha for some stable sheaf H. By ∆(H)< 1/2, H is an
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exceptional bundle. Moreover,

χ(H, G) =
1

a
χ(gr1(G), G) =

1

a
χ(gr1(G), gr1(G)) = aχ(H, H)> 0,

where the second equality follows from (3.6). This is a contradiction. In the

case ∆(grm(G))< 1/2, we lead to a contradiction by a similar argument.

This is the end of proof of the claim.

Using the claim, we can see (cf. the proof of [DL, Théorème 4.7]) that

there exists a nonempty Zariski open subset U ′ ⊂ U such that for any

[f ] ∈ U ′, Coker f is semistable.

Suppose that for [f ] ∈ U ′, G := Coker f is not stable. Then we can find a

filtration

0 =G0 ⊂G1 ⊂G2 =G

such that gr1(G) and gr2(G) have the same reduced Hilbert polynomial. If

we let ν(gri(G)) = (µ̄i + ti, µ̄i − ti), then

dim Ext1
G•,+(G, G) = dim Ext1(gr1(G), gr2(G))

> −χ(gr1(G), gr2(G))

> r1r2{−1 + (t2 − t1)2 + ∆(gr1(G)) + ∆(gr2(G))}

= r1r2{−1− 2t1t2 + 2∆}.

Here ri := r(gri(G)), and we used ∆(gri(G)) + t2i = ∆. By assumption, we

have ∆> 1/2. Since G has symmetric c1, we have t1t2 6 0. Hence we have

dim Ext1
G•,+(G, G)> 0. This implies (cf. the proof of [DL, Théorème 4.10])

that there exists a nonempty Zariski open subset U ′′ ⊂ U ′ such that for any

[f ] ∈ U ′′, Coker f is stable.

Step 2. We show the existence of µ-stable sheaves.

If r = 1, we are done, so assume that r > 2. Then there exists a nonempty

Zariski open subset U ′′′ ⊂ U ′′ such that for any [f ] ∈ U ′′′, G := Coker f is

locally free (cf. [Le, Section 17.1]). If G is not µ-stable, then the G∗ is not

semistable. But repeating the (first half of) argument in Step 1 for the

family {(Coker f)∗}[f ]∈U ′′′ of dual sheaves, we see that for general [f ] ∈ U ′′′,
(Coker f)∗ is semistable. So for general [f ] ∈ U ′′′, Coker f is µ-stable.

The theorem allows us to define an invariant height.
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Definition 3.8. Let ξ ∈K(S) be a semistable class with symmetric c1.

When dim M(ξ)> 0, we define the height of the moduli space M(ξ) to be

the nonnegative integer

r(Eγ)r(ξ) {∆(ξ)− δ(µ̄(ξ))},

where γ is the unique symmetric exceptional slope such that µ̄(ξ) ∈ Iγ .

§4. Bridgeland stability of symmetric exceptional bundles

In Section 4.1, we recall the Bridgeland semistability and walls. In

Section 4.2, we consider Bridgeland semistability of symmetric exceptional

bundles.

4.1 Abelian category As
Following [AB], we consider a particular kind of Bridgeland semistability.

The presentation in this section follows that in [ABCH, Sections 5, 6].

If 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E is the Harder–Narasimhan filtration of

a torsion-free sheaf E for µ-stability, that is, Ei/Ei−1, 16 i6 n, are µ-

semistable and µ(E1/E0)> · · ·> µ(En/En−1), then we put µ̄min(E) :=

µ̄(En/En−1) and µ̄max(E) := µ̄(E1/E0).

For s ∈ R, we let Qs be the full subcategory of coh(S) consisting of

coherent sheaves Q with µ̄min(Q/tor(Q))> s, and we let Fs be the full

subcategory of coh(S) consisting of torsion-free coherent sheaves F with

µ̄max(F )6 s. We define a full subcategory As of D(S) by

As =
{
E•
∣∣H0(E•) ∈Qs,H−1(E•) ∈ Fs and Hi(E•) = 0 for i 6= 0,−1

}
.

Then As is an abelian category.

For s, t ∈ R, we define the map Z(s,t) : D(S)→ C by

Z(s,t)(E) :=−
∫
S
e(s+ti)c1(L)ch(E),

where L=O(1, 1). Explicitly we have

Z(s,t)(E) =
(
sc1(E)c1(L)− r(E)(s2 − t2)− ch2(E)

)
+ t (c1(E)c1(L)− 2r(E)s) i.

Now assume that t > 0, then the pair (As, Z(s,t)) is a Bridgeland stability

condition (cf. [AB]).
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For E ∈ As, we put

µs,t(E) =−
Re Z(s,t)(E)

Im Z(s,t)(E)
,

where it is understood as +∞ if the denominator is zero. Explicitly we have

µs,t(E) =
r(E)(s2 − t2)− sc1(E)c1(L) + ch2(E)

t(c1(E)c1(L)− 2r(E)s)
.

An object E ∈ As is said to be (s, t)-semistable if for any nonzero subobject

F ⊂ E in As, the inequality µs,t(E)> µs,t(F ) holds.

For (r, c, d) ∈ R3, we define

µs,t(r, c, d) =
r(s2 − t2)− sc+ d

t(c− 2rs)
.

For (r, c, d) and (r′, c′, d′), we define the wall W(r,c,d),(r′,c′,d′) by

(4.1) W(r,c,d),(r′,c′,d′) =
{

(s, t) ∈ R× R>0

∣∣µs,t(r, c, d) = µs′,t′(r
′, c′, d′)

}
.

The equality in the condition of the definition of the wall is equivalent to

(4.2) (r′c− rc′)s2 − 2(r′d− rd′)s+ (r′c− rc′)t2 + c′d− cd′ = 0.

If (r, c, d) and (r′, c′, d′) are not proportional, then we have the following

cases.

Case (1). (r, r′) = (0, 0). In this case, the wall W(r,c,d),(r′,c′,d′) is empty.

Case (2). (r, r′) 6= (0, 0) and r′c= rc′. In this case, the wall is the vertical

line

s=
c′d− cd′

2(r′d− rd′)
.

So if r 6= 0, then it is s= c
2r .

Case (3). r′c 6= rc′. In this case, the wall is a semicircle in the (s, t)-half

plane R× R>0 with center (
r′d− rd′

r′c− rc′
, 0

)
and radius √(

r′d− rd′
r′c− rc′

)2

− c′d− cd′
r′c− rc′

.
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For E, E′ ∈D(S), we write WE,(r′,c′,d′) for W(r(E),c1(E)c1(L),ch2(E)),(r′,c′,d′),

and WE,E′ for W(r(E),c1(E)c1(L),ch2(E)),(r(E′),c1(E′)c1(L),ch2(E′)). If E is a

semistable sheaf, then WE,(r′,c′,d′) is either a vertical line s= µ̄(E) or a

semicircle with the center (x, 0), where

(4.3) x=
r(E)d′ − r′ch2(E)

r(E)(c′ − 2r′µ̄(E))
,

and the radius

(4.4)

√
(x− µ̄(E))2 −∆(E) +

c1(E)2

2r(E)2
− µ̄(E)2 6 |x− µ̄(E)|.

From this, we can see that for each point (s, t) ∈ R× R>0, there exists a

unique wall WE,∗ passing through the point.

Remark 4.1. It can happen that the radius (4.4) of the wall is zero.

Although, strictly speaking, such a wall is empty (because we consider walls

in the region t > 0), we call it a wall with radius zero.

4.2 (s, t)-semistability of symmetric exceptional bundles

We consider (s, t)-semistability of symmetric exceptional bundles. We

follow closely the argument in [H, Section 9]. The argument goes as follows.

Suppose that E, F and G are symmetric exceptional bundles (or their

shifts), and that there exists a triangle

E→ F →G→ E[1]

in D(S). Then WE,F =WF,G =WE,G(=:W ). Suppose, moreover, that for

a point (s, t) on the wall W , E, F and G belong to As. Then the above

triangle gives rise to an exact sequence

0→ E→ F →G→ 0

in the abelian category As. If two of E, F and G are (s, t)-semistable, then

the remaining one is also (s, t)-semistable since their values of µs.t are equal.

Since all symmetric exceptional bundles are obtained from the symmetric

exceptional triple (E0, E1/2, E1), the following lemma is the first step of the

argument.

Lemma 4.2. Let α be an integer or a half integer. Then the symmetric

exceptional bundle Eα is (s, t)-semistable for any s < α. The shift Eα[1] is

(s, t)-semistable for any α6 s.
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Proof. If α is an integer, then Eα is a line bundle. The (s, t)-semistability

of Eα and Eα[1] follows from [AM, Theorem 1,1] (or we can argue as in the

proof of Proposition 6.2 (d) in [ABCH]). If α is a half integer, then Eα is a

direct sum of two line bundles with the same µs,t. So the result follows.

Lemma 4.3. Let α, β, η ∈ E satisfy α < β < η < α+ 2 and χ(η, α) =

χ(β, α) = χ(η, β) = 0. Then the center of the semicircular wall WEα,Eβ

(resp. WEβ ,Eη) is (η − 1, 0) (resp. (α+ 1, 0)), and its radius is
√

∆η (resp.√
∆α).

Proof. We prove the lemma for WEα,Eβ . By (4.3), the center of WEα,Eβ

is (x, 0), where

x =
ch2(Eα)/r(Eα)− ch2(Eβ)/r(Eβ)

2(µ̄(Eα)− µ̄(Eβ))

=
α2 −∆α − (β2 −∆β)

2(α− β)
=
α+ β

2
+

∆β −∆α

2(α− β)
= η − 1,

where we used Lemma 2.6(4) in the last equality. By (4.4), the square of

the radius of WEα,Eβ is(
α− β

2
+

∆β −∆α

2(α− β)

)2

−∆β =

(
α− β

2

)2

−
∆α + ∆β

2
+

(
∆β −∆α

2(α− β)

)2

=

(
α− β

2

)2

− P(α− β)

2
+

(
∆β −∆α

2(α− β)

)2

= ∆η,

where we used χ(β, α) = 0 in the second equality, and Lemma 2.6(5) in the

last equality.

Now we come to the main theorem of this section.

Theorem 4.4. Consider symmetric exceptional slopes α, β and η given

by

α= ε
( p

2q

)
, β = ε

(
p+ 1

2q

)
, η = ε

(
p+ 2

2q

)
,

where p is even and q > 1. Then Eβ (resp. Eβ[1]) is (s, t)-semistable if (s, t)

with s < β (resp. s > β) lies on or outside the semicircular wall WEα,Eβ

(resp. WEβ ,Eη). When the radius of the wall is zero, this sentence should be

understood as “Eβ (resp. Eβ[1]) is (s, t)-semistable for any (s, t) with β > s

(resp. s > β).”
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The proof of Theorem 4.4 goes as that of [H, Theorem 9.1], but

occasionally gets more involved due to the appearance of walls with radius

zero.

Lemma 4.5. Let E be a semistable sheaf.

(1) Assume that E is (s0.t0)-semistable with s0 < µ̄(E). If (s, t) with

s < µ̄(E) is outside the wall WE,∗ passing through (s0, t0), then E is

(s, t)-semistable.

(2) Assume that E[1] is (s0.t0)-semistable with s0 > µ̄(E). If (s, t) with

s > µ̄(E) is outside the wall WE,∗ passing through (s0, t0), then E[1] is

(s, t)-semistable.

Proof. We prove (1). Let W be the unique wall WE,∗ passing through

(s, t). Let (s0, t
′) be the point on W . If E is not (s, t)-semistable, then it is

not (s0, t
′)-semistable. (In fact, if M → E is a (s, t)-destabilizing subobject

in As with minimum rank, then the argument of the proof of [ABCH,

Lemma 6.3] shows that M → E is also a (s0, t
′)-destabilizing subobject in

As0 .) Suppose that a subobject M ⊂ E in As0 (s0, t
′)-destabilizes E. The

inequality µs0,t′(M)> µs0,t′(E) is equivalent to

(1/2)(s2
0 − t′2)− s0µ̄(M) + (ch2(M)/2r(M))

µ̄(M)− s0

>
(1/2)(s2

0 − t′2)− s0µ̄(E) + (ch2(E)/2r(E))

µ̄(E)− s0
.

If µ̄(M) = µ̄(E), then ch2(M)/2r(M)> ch2(E)/2r(E), which contradicts

the semistability of E. Thus µ̄(M)< µ̄(E). Then we have µs0,t′′(M)<

µs0,t′′(E) for t′′� 0. This shows that the wall WE,M lies outside W . On the

other hand, we have µs0,t0(M)6 µs0,t0(E) because E is (s0, t0)-semistable.

This shows that the wall WE,M lies inside W . This is absurd.

We put

α= ε
( p

2q

)
, β = ε

(
p+ 1

2q

)
, η = ε

(
p+ 2

2q

)
ζ2 = ε

(
p− 2

2q

)
, ω2 = ε

(
p− 2

2q
+ 2

)
,

ω0 = ε

(
p+ 4

2q

)
, ζ0 = ε

(
p+ 4

2q
− 2

)
,

where p is even and q > 2.
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Notation 4.6. If E is a symmetric exceptional bundle, we put

χ̃(E, F ) =

{
χ(E, F )/2 if E is even,

χ(E, F ) if E is odd.

If F is a symmetric exceptional bundle, we put

χ̃∗(E, F ) =

{
χ(E, F )/2 if F is even,

χ(E, F ) if F is odd.

With this notation, we have the following lemma.

Lemma 4.7. Let i ∈ {0, 2}. For p≡ i (mod 4), there are exact sequences

0→ Eζi → E
χ̃(Eα,Eβ)
α → Eβ → 0,(4.5)

0→ Eβ → E
χ̃∗(Eβ ,Eη)
η → Eωi → 0.(4.6)

Proof. We prove the case i= 0. By the construction of symmetric

exceptional bundles, we have Eβ = LEη(Eω0)[−1]. Since right and left

mutations are inverses to each other, we have Eω0 =REη(Eβ)[1], which

shows (4.5). By [BS, Lemma 5.2], we have Eβ =REα(Eζ0)[1]. So we have

Eζ0 = LEα(Eβ)[1], which show (4.6).

Proof of Theorem 4.4. We prove the theorem by induction on q. When

q = 1, the theorem holds because of Lemma 4.2. Suppose q > 2. We show

that Eβ is (s, t)-semistable along and outside the semicircular wall WEα,Eβ .

The verification for Eβ[1] is similar and left to the reader.

Case (i) p≡ 0 (mod 4). The center of WEα,Eβ is (η − 1, 0) by Lemma 4.3.

Since ζ0 < η − 1< α, the wall WEα,Eβ =WEα,Eζ0
lies between the vertical

lines s= ζ0 and s= α. For any point (s, t) on WEα,Eβ , a shift of (4.5)

0→ E
χ̃(Eα,Eβ)
α → Eβ → Eζ0 [1]→ 0

is an exact sequence in As. In order to show the (s, t)-semistability of Eβ
for (s, t) ∈WEα,Eβ , we show that Eα and Eζ0 [1] are (s, t)-semistable. Here

note that Eα and Eζ0 [1] have the same value of µs,t because (s, t) is on

WEα,Eβ =WEα,Eζ0
.

If α is an integer or a half integer, then Eα is (s, t)-semistable by

Lemma 4.2. Otherwise, we have

u := ε

(
p′

2q′

)
, α=

(
p′ + 1

2q′

)
, v := ε

(
p′ + 2

2q′

)
,
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where p′ is even and q − 2> q′ > 2. By the induction hypothesis, Eα is

(s, t)-semistable on the wall WEu,Eα . To show that Eα is (s, t)-semistable

on WEα,Eβ , it suffices to show that WEu,Eα lies inside WEα,Eβ . The center of

WEu,Eα is (v − 1, 0) by Lemma 4.3. Note that v − 1< α and η − 1< v − 1.

This shows that both WEu,Eα and WEα,Eβ lie to the left of the vertical line

s= α, and the center of WEu,Eα is right to the center of WEα,Eβ . So WEu,Eα

lies inside WEα,Eβ .

Next we show that Eζ0 [1] is (s, t)-semistable on the wall WEα,Eβ . If ζ0 is

an integer or a half integer, this follows from Lemma 4.2. Otherwise, we have

σ′ := ε

(
p′

2q′

)
, ζ0 =

(
p′ + 1

2q′

)
, τ ′ := ε

(
p′ + 2

2q′

)
,

where p′ is even and q − 2> q′ > 2. Note that σ′ 6 α− 2. By the induction

hypothesis, Eζ0 [1] is (s, t)-semistable on WEζ0 ,Eτ ′
. The center of WEζ0 ,Eτ ′

is

(σ′ + 1, 0). Since ζ0 < σ′ + 1< η − 1, WEζ0 ,Eτ ′
lies inside WEα,Eβ .

Case (ii) p≡ 2 (mod 4). In this case, η can be an integer. So we consider

two cases.

Case (ii-a) η is not an integer. In this case the semicircle WEα,Eβ has

a positive radius with center (η − 1, 0). We have η − 1< ζ2. For (s, t) ∈
WEα,Eβ , the exact sequence

(4.7) 0→ Eζ2 → E
χ̃(Eα,Eβ)
α → Eβ → 0

in Lemma 4.7 is an exact sequence in As. In order to show the (s, t)-

semistability of Eβ, we show Eζ2 and Eα are (s, t)-semistable on WEα,Eβ .

If α is a half integer, then this follows from Lemma 4.2. Otherwise,

α= ζ2.η, and Eα is (s, t)-semistable on WEζ2 ,Eα
=WEα,Eβ by the induction

hypothesis.

If ζ2 is an integer or a half integer, then Eζ2 is (s, t)-semistable on WEα,Eβ

by Lemma 4.2. Otherwise, we have

σ := ε

(
p′

2q′

)
, ζ2 =

(
p′ + 1

2q′

)
, τ := ε

(
p′ + 2

2q′

)
,

where p′ is even and q − 2> q′ > 2. Then Eζ2 is (s, t)-semistable on WEσ ,Eζ2
by the induction hypothesis. The center of WEσ ,Eζ2

is (τ − 1, 0). Since η 6 τ ,

WEσ ,Eζ2
lies inside WEα,Eζ2

=WEα,Eβ .
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Case (ii-b) η is an integer. In this case WEα,Eβ has radius 0. We need

to show that Eβ is (s, t)-semistable for any s < β. Suppose that Eβ is not

(s, t)-semistable for some (s, t) with s < β. Then using the argument in the

proof of Lemma 4.5, we can see that Eβ is not (η − 1, t0)-semistable for

some t0 > 0. Consider a destabilizing subobject M ⊂ Eβ in Aη−1, that is,

µη−1,t0(M)> µη−1,t0(Eβ). Using the semistability of Eβ, we can see that

µη−1,t′(M)< µη−1,t′(Eβ) for t′� 0. Hence the point (η − 1, t0) lies inside

the wall WEβ ,M . It follows from this that

µη−1,t′(M)> µη−1,t′(Eβ)

for any 0< t′ < t0. Moreover, in the limit t′→ 0, we have

lim
t′→0

t′µη−1,t′(M)> lim
t′→0

t′µη−1,t′(Eβ).

In order to obtain a contradiction, we derive the opposite inequality

(4.8) lim
t′→0

t′µη−1,t′(M)6 lim
t′→0

t′µη−1,t′(Eβ).

We first consider the case q > 3. In this case, we have η − 1< ζ2. So the

sequence (4.7) is an exact sequence in Aη−1. By the induction hypothesis,

Eζ2 and Eα are (η − 1, t′)-semistable for any t′ > 0. Thus we have

µη−1,t′(M)6max
{
µη−1,t′(Eζ2), µη−1,t′(Eα)

}
.

Taking the limit, we obtain

lim
t′→0

t′µη−1,t′(M) 6 lim
t′→0

max
{
t′µη−1,t′(Eζ2), t′µη−1,t′(Eα)

}
= lim

t′→0
t′µη−1,t′(Eβ),

where the last equality holds because (η − 1, 0) is the center of the wall

WEα,Eβ =WEα,Eζ2
(of radius zero).

Finally we consider the case q = 2. In this case, we have η − 1 = ζ2 and

Eζ2 =O(ζ2, ζ2). So the shift of (4.7)

0→ E
χ̃(Eα,Eβ)
α → Eβ

f−→ Eζ2 [1]→ 0

is an exact sequence in Aη−1. By Lemma 4.8, the subobjects of Eζ2 [1]

in Aη−1 are 0 and Eζ2 [1]. If f(M) = 0, then µη−1,t′(M)6 µη−1,t′(Eα).
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By taking the limit, we obtain (4.8). If f(M) = Eζ2 [1], then

Z(η−1,t′)(M) = Z(η−1,t′)(Eζ2 [1]) + Z(η−1,t′)(Ker(f |M )).

By an easy calculation, we see that limt′→0 Z(η−1,t′)(Eζ2 [1]) = 0. So

lim
t′→0

t′µη−1,t′(M) = lim
t′→0

t′µη−1,t′(Ker(f |M ))

6 lim
t′→0

t′µη−1,t′(Eα) = lim
t′→0

t′µη−1,t′(Eβ).

This is the end of the proof of Theorem 4.4.

Lemma 4.8. Let a be an integer and V a finite-dimensional C-vector

space. The subobjects of V ⊗ Ea[1] in Aa are W ⊗ Ea[1] for subspaces

W ⊂ V .

To prove this lemma, we use the following lemma whose proof is left to

the reader.

Lemma 4.9. Let Y be a projective variety of dimension d. If F is a µ-

semistable sheaf with respect to an ample line bundle H such that c1(F ) ·
c1(H)d−1 = 0, then h0(Y, F )6 r(F ), where equality holds if and only if

F 'Or(F )
Y .

Proof of Lemma 4.8. We may assume that a= 0. Then Ea =OS . Let

U ⊂ V ⊗OS [1] be a subobject in A0. Then we have an exact sequence

0→H−1(U)→ V ⊗OS
g−→ F →H0(U)→ 0

of sheaves with F ∈ F0. Since µ̄max(F )6 0, we have µ̄(H−1(U)) = µ̄(Im g)

= 0, and H−1(U) and Im g are µ-semistable sheaves. By Lemma 4.9, Im g is

a trivial vector bundle. Now it is easy to show that H0(U) = 0 and H−1(U)

is W ⊗ Ea[1] for a subspace W ⊂ V .

§5. Height-zero moduli spaces

Fix ξ ∈K(S) such that r(ξ) = r, ν(ξ) = (µ̄, µ̄) and ∆(ξ) = ∆.

Throughout this section, we assume that the height of the moduli space

M(ξ) is zero. We show that M(ξ) is isomorphic to a moduli space of

representations of a quiver.

There is a unique γ ∈ E with µ̄ ∈ Iγ . We have either (i) µ̄ ∈ (γ − xγ , γ],

or (ii) µ̄ ∈ (γ, γ + xγ). We only consider the case (i). If we are in the case

(ii), then by taking a dual of sheaves we will be in the case (i). (Note that

in the case (ii), any F ∈M(ξ) is locally free by Remark 3.3.) So in the rest

of this section, we assume that γ − xγ < µ̄6 γ.
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5.1 Bridgeland semistability of semistable sheaves

In this section, we study for which (s, t) a sheaf F ∈M(ξ) is (s, t)-

semistable.

Express γ = ε(p/2q) where p is odd if q > 1. If q > 1, then we set

α= ε

(
p− 1

2q

)
and β = ε

(
p+ 1

2q

)
.

If q = 0, then we set

α= γ − 1

2
and β = γ + 1.

Then γ = α.β and (Eβ−2, Eα, Eγ) is a symmetric exceptional triple. Put

E(1) = Eβ−2, E(2) = Eα, E(3) = Eγ ,

G(1) = Eβ, G(2) = Eγ.β, G(3) = Eγ .

Then for F ∈D(S), there exists a spectral sequence

(5.1) Ep,q1 = Extq(G(p+3), F )⊗̂E(p+3)

converging to Hp+q(F ), where Ep,q1 = 0 unless −26 p6 0 (see (A5) for this

spectral sequence and the notation ⊗̂).

We consider the semicircular walls WEβ−2,Eα , WEβ−2,Eγ and WEα,Eγ in

the upper half (s, t)-plane.

The center of the walls WEβ−2,Eα , WEβ−2,Eγ and WEα,Eγ are (γ − 1, 0),

(γ.β − 1, 0) and (β − 1, 0), respectively. When q = 0, the walls WEβ−2,Eα

and WEα,Eγ have radii 0, and WEβ−2,Eγ has positive radius. When q = 1,

the wall WEα,Eγ has radius 0, the other two walls have positive radii; the wall

WEβ−2,Eα lies inside WEβ−2,Eγ . When q > 2, WEα,Eγ lies inside WEβ−2,Eα ,

and WEβ−2,Eα lies inside WEβ−2,Eγ . (See Figures 1–3.)

Lemma 5.1. If a point (s0, t0) with β − 2< s0 < α in the upper half

(s, t)-plane lies on or outside the wall WEβ−2,Eα, then Eα, Eγ and Eβ−2[1]

are (s0, t0)-semistable.

Proof. Since the proof is similar, we prove the lemma only for Eβ−2[1].

If β is an integer or a half integer, this is clear by Lemma 4.2. Otherwise,

we can write β = σ.τ , where σ, τ ∈ E with σ 6 α. By Theorem 4.4, Eβ−2[1]

is (s, t)-semistable outside the wall WEβ−2,Eτ−2 whose center is (σ − 1, 0).

Since the center of WEβ−2,Eα is (γ − 1, 0), which is to the right of (σ − 1, 0),

WEβ−2,Eα lies outside WEβ−2,Eτ−2 .
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Figure 1.

The case q = 0. The semicircle is WEβ−2,Eγ ; the dot at β − 2 is WEβ−2,Eα ;

the dot at γ is WEα,Eγ .

Figure 2.

The case q = 1. The outer semicircle is WEβ−2,Eγ ; the inner semicircle is

WEβ−2,Eα ; the dot at α is WEα,Eγ .

Figure 3.

The case q > 2. The outermost semicircle is WEβ−2,Eγ ; the innermost semicircle

is WEα,Eγ ; the semicircle in between is WEβ−2,Eα .

Proposition 5.2. A semistable (resp. stable) sheaf F ∈M(ξ) is (s0, t0)-

semistable (resp. (s0, t0)-stable) if the point (s0, t0) with β − 2< s0 < α in

the upper half (s, t)-plane lies outside the wall WEβ−2,Eα.

Proof. First we consider a semistable sheaf F . Note that F ∈ As0 since

s0 < µ̄ and F is semistable. Suppose that F is not (s0, t0)-semistable. Then

there exists a subobject S ⊂ F in As0 such that

(5.2) µs0,t0(S)> µs0,t0(F ).
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Then S is a sheaf and there exists an exact sequence

(5.3) 0→K→ S→ F →Q→ 0

of sheaves. We choose such an S with minimal rank. Then for any (s, t)

on the wall W :=WF,∗ passing through (s0, t0), S is a subobject of F and

µs,t(S)> µs,t(F ) (cf. the argument of the proof of [ABCH, Lemma 6.3]).

Claim. The wall W lies outside WEβ−2,Eα .

Proof of Claim. Using the spectral sequence (5.1), we see that there

exists a short exact sequence

(5.4) 0→ Emβ−2→ Enα→ F → 0,

where

(5.5) m=−χ̃(Eβ, F ) and n=−χ̃(Eγ.β, F ).

So WEβ−2,Eα =WF,Eα . Both W and WF,Eα are walls of the form WF,∗, so

they are disjoint. Since the point (s0, t0) is outside WF,Eα , W is outside

WF,Eα . This is the end of the proof of the claim.

Put s1 = γ − 1. Then (s1, 0) be the center of WEβ−2,Eα . Let (s1, t1) and

(s1, t2) be the point on W and WEβ−2,Eα , respectively. (When γ is an integer,

we understand that t2 = 0.) The exact sequence (5.3) and the semistability

of F imply either

(5.6) µ̄(S)< µ̄(F )

or

(5.7) K = 0 and µ̄(S) = µ̄(F ) and
ch2(S)

r(S)
6

ch2(F )

r
.

If (5.7) holds, then µs,t(S)6 µs,t(F ) for any s6 µ̄(F ), this contradicts the

inequality (5.2). If (5.6) holds, then µs1,t(S)< µs1,t(F ) for t� 0, so there

exists t3 > t1 such that µs1,t3(S) = µs1,t3(F ). This shows that

(5.8) µs1,t(S)> µs1,t(F )

for any 0< t < t3. Moreover, we have

(5.9) lim
t→+0

tµs1,t(S)> lim
t→+0

tµs1,t(F ).

In order to obtain a contradiction, we show the opposite inequality.
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Consider first the case when γ is not an integer. Then β − 2< s1 < α and

t2 > 0. By Lemma 5.1, Eβ−2[1] and Eα are (s1, t2)-semistable and from (5.4)

we obtain a short exact sequence

(5.10) 0→ Enα→ F
f−→ Eβ−2[1]m→ 0

in As1 . So we have µs1,t2(S)6 µs1,t2(F ). This contradicts the inequality

(5.8).

Finally consider the case when γ is an integer. In this case, we have

s1 = β − 2 and t2 = 0. By Lemma 4.2, Eβ−2[1] and Eα are (s1, t)-semistable

for any t > 0, and (5.10) is a short exact sequence in As1 . By Lemma 4.8,

the subobject f(S)⊂ Eβ−2[1]m is isomorphic to Eβ−2[1]l for some l > 0. We

have

Zs1,t(S) = lZs1,t(Eβ−2[1]) + Z(Ker (f |S))

and

Zs1,t(Eβ−2[1]) =−t2.

This implies that

lim
t→+0

tµs1,t(S) = lim
t→+0

tµs1,t(Ker (f |S))

6 lim
t→+0

tµs1,t(Eα) = lim
t→+0

tµs1,t(F ).

This contradicts (5.9).

Finally we have to show that if F is stable, then it is (s0, t0)-stable. But

this can be proved by a similar argument. In fact, we already know that F is

(s0, t0)-semistable. If F is not (s0, t0)-stable, then there exists a subobject

0 6= S ( F in As0 with µs0,t0(S) = µs0,t0(F ). Arguing in the semistable case,

we obtain a contradiction.

Conversely (s, t)-semistability implies usual semistability:

Proposition 5.3. Assume that the point (s0, t0) with β − 2< s0 < α in

the upper half (s, t)-plane lies outside the wall WEβ−2,Eα. Let F • be an object

in As0 with [F •] = ξ in K(S). Assume that F • is (s0, t0)-semistable (resp.

(s0, t0)-stable). Then F • is a semistable (resp. stable) sheaf.

Proof. We show the semistable case first.

Step 1. We show that F • is quasi-isomorphic to a 2-term complex

Emβ−2→ Enα, where Enα and Emβ−2 are in degree 0 and −1, respectively, and
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m, n are those in (5.5). We use the spectral sequence (5.1). Since Hi(F •) = 0

except i= 0,−1, the term Ep,q1 in the spectral sequence is zero unless

−16 q 6 2. If u ∈ {β, γ.β, γ}, then Ext2(Eu, F
•) = 0 because

Ext2(Eu,H
0(F •))'Hom(H0(F •), Eu−2) = 0

(note that µ̄min(H0(F •)/tor)> s0 > u− 2). We can also show that

Ext−1(Eu, F
•) = 0 by a similar argument.

Claim. We have E0,0
1 = 0.

Proof of Claim. We show that Hom(Eγ , F
•) = 0. By the (s0, t0)-

semistability of F •, it suffices to show that µs0,t0(Eγ)> µs0,t0(F •). Since

Zs0,t0(F •) = nZs0,t0(Eα) +mZs0,t0(Emβ−2[1])

by the condition on the K-class of F •, and µs0,t0(Eβ−2[1])> µs0,t0(Eα), we

have µs0,t0(F •)< µs0,t0(Eβ−2[1]). If (s0, t0) lies inside the wall WEβ−2,Eγ ,

then µs0,t0(Eγ)> µs0,t0(Eβ−2[1]), thus µs0,t0(Eγ)> µs0,t0(F •). For t� 0,

we have µs0,t(Eγ)> µs0,t(F
•) because µ̄(F •)< γ, or µ̄(F •) = γ and

ch2(F •)/r < ch2(Eγ)/r(Eγ). These show that µs0,t0(Eγ)> µs0,t0(F •) for any

(s0, t0) in the proposition. This is the end of the proof of the claim.

Since χ(Eγ , F
•) = 0, we have E0,1

1 = 0. Now we have shown that Ep,q1 is

zero except E−2,0
1 , E−2,1

1 , E−1,0
1 , E−1,1

1 . Since H−2(F •) = 0, the kernel of the

map d−2,0
1 : E−2,0

1 → E−1,0
1 is zero. The cokernel of d−2,0

1 is a subsheaf of

H−1(F •). Since Hom(Eα,H
−1(F •)) = 0 by the inequality µ̄max(H−1(F •))6

s0 < α, we have Coker d−2,0
1 = 0. Hence d−2,0

1 is an isomorphism. This occurs

only when E−2,0
1 = E−1,0

1 = 0.

Step 2. We let

F • = [Emβ−2
f−→ Enα].

We show that if f is not injective, or if f is injective and Coker is not

semistable, then there exists a surjection F •→ V in As0 , where V is a

semistable sheaf such that the following condition (a) or (b) holds:

(a) α6 µ̄(V )< µ̄,

(b) µ̄(V ) = µ̄ and ch2(F )/r > ch2(V )/r(V ).

To prove this, we consider 3 cases:

(i) f is not injective,
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(ii) f is injective and Coker f is not torsion-free,

(iii) f is injective, Coker f is torsion-free, and Coker f is not semistable.

Case (i): We have

µ̄(Coker f) =
deg Enα − deg Im f

2(r(Enα)− r(Im f))

6
deg Enα − µ(Eβ−2)r(Im f)

2(r(Enα)− r(Im f))
<

deg Enα − deg Emβ−2

2(r(Enα)− r(Emβ−2))

= µ̄(F •) = µ̄.

Let Coker f/tor� V be the quotient with minimum value of µ̄. Then the

composite of morphisms

(5.11) F •→H0(F •) = Coker f → Coker f/tor� V

is a surjection in As0 and V is a semistable sheaf satisfying (a).

Case (ii): We have µ̄(Coker f/tor)< µ̄(F •). We define V and F •→ V as

in Case (i). Then V satisfies (a).

Case (iii): There exists a surjective morphism Coker f → V of sheaves

such that V is a semistable sheaf satisfying (a) or (b). The composite (5.11)

(with tor = 0) is what we want.

Step 3. Let F •→ V be the surjection in As0 which we obtained in Step 2.

By the (s0, t0)-semistability of F •, we have

(5.12) µs0,t0(F •)6 µs0,t0(V ).

We have

µs0,t(F
•)> µs0,t(V )

for t� 0 because of the conditions (a) and (b). So we have

(5.13) µs0,t1(F •) = µs0,t1(V )

for some t1 > t0.

Suppose that the condition (b) in Step 2 holds. Then the wall WF •,V is

a vertical wall and we see that µs0,t(F
•)> µs0,t(V ) for any t > 0. This is a

contradiction.

Suppose that the condition (a) in Step 2 holds. The center of the

semicircular wall WF •,V is (x, 0), where

x=
ch2(F •)/r − ch2(V )/r(V )

µ(F •)− µ(V )
.
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Since the moduli space M(ξ) has height zero, we have

0 =
χ(Eγ , F

•)

r(Eγ)r
= χ(OS) +

ch2(F •)

r

− c1(Eγ)c1(F )

r(Eγ)r
+

ch2(Eγ)

r(Eγ)
+ µ(F •)− µ(Eγ).(5.14)

Since the semistable sheaf V satisfies (a), we have

0 >
χ(Eγ , V )

r(Eγ)r(V )
= χ(OS) +

ch2(V )

r(V )

− c1(Eγ)c1(V )

r(Eγ)r(V )
+

ch2(Eγ)

r(Eγ)
+ µ(V )− µ(Eγ).(5.15)

From (5.14) and (5.15), we obtain

x=− χ(Eγ , V )

r(Eγ)r(V )(µ(F •)− µ(V ))
+ γ − 1> γ − 1.

Since the center of the wall WEβ−2,Eα =WF •,Eα is (γ − 1, 0), the wall WF •,V

is equal to or lies inside WEβ−2,Eα . This contradicts (5.13).

Finally we consider the stable case. If F • is (s0, t0)-stable, we already

know it is a semistable sheaf F . If F is not stable, then there is a subsheaf

0 6=G( F with pG = pF . Then G is a subobject of F in As0 with µs0,t0(G) =

µs0,t0(F ). This contradicts the (s0, t0)-stability of F .

5.2 Isomorphism to moduli of quiver representations

In this section, we see that M(ξ) is isomorphic to a moduli space of quiver

representations.

A quiver is a quadruple Q= (Q0, Q1, s, t), where Q0 is the set of vertexes,

Q1 is the set of arrows, and the maps s, t :Q1→Q0 send an arrow to its

source and target respectively. A path of the quiver Q is a sequence of

arrows (αn, . . . , α1) such that t(αi) = s(αi+1). For a path f = (αn, . . . , α1),

we define s(f) := s(α1) and t(f) := t(αn). The path algebra A(Q) of a quiver

is the algebra whose elements are C-linear combinations of paths of Q. If f

and g are paths of Q such that s(f) = t(g), then fg is the path obtained by

connecting g and f .

Giving a left A(Q)-module is equivalent to giving data

(5.16)
(
{Vv}v∈Q0

, {ρα}α∈Q1

)
,
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where Vv is a C-vector space, and ρα : Vs(α)→ Vt(α) is a C-linear map.

We call the data (5.16) a representation of the quiver Q. The map

δ :Q0→ Z>0 given by δ(v) = dim Vv is called the dimension vector of the

representation. Fix a map θ :Q0→Q, called a weight vector, such that∑
v∈Q0

δ(v)θ(v) = 0. The representation (5.16) of the quiver is said to be

θ-semistable if for all subrepresentations({
V ′v
}
v∈Q0

,
{
ρα|V ′

s(α)

}
α∈Q1

)
,

of (5.16), the inequality
∑

v∈Q0
θ(v) dim V ′v > 0 holds.

In the following, in order to describe a quiver, we use the notation

Q= (Q0, {Nv,v′}(v,v′)∈Q0×Q0
),

where Nv,v′ means the number of arrows α with s(α) = v and t(α) = v′.

Recall α, β and γ defined at the beginning of Section 5.1. When α, β or

γ is even respectively, we define quivers Qα, Qβ and Qγ as follows.

The quiver Qα = (Qα0 , {Nv,v′}) is defined by Qα0 = {v1, v2, v3} and

Nv1,v2 =Nv1,v3 = χ̃(Eγ.β, Eβ), and Nvi,vj = 0 for other pairs (vi, vj) (see

Notation 4.6 for the notation χ̃).

The quiver Qβ = (Qβ0 , {Nv,v′}) is defined by Qβ0 = {v1, v2, v3} and

Nv2,v1 =Nv3,v1 = χ̃∗(Eγ.β, Eβ), and Nvi,vj = 0 for other pairs (vi, vj).

The quiver Qγ = (Qγ0 , {Nv,v′}) is defined by Qγ0 = {v1, v2} and Nv1,v2 =

χ(Eγ.β, Eβ), and Nvi,vj = 0 for other pairs (vi, vj). (See Figures 4–6.)

We define moduli spaces Nα, Nβ and Nγ of representations of quivers

as follows. Nα (resp. Nβ) is the coarse moduli space of θ-semistable

representations of the quiver Qα (resp. Qβ) with dimension vector

(δ(v1), δ(v2), δ(v3)) equal to (m, n, n) (resp. (n, m, m)), where the weight

vector (θ(v1), θ(v2), θ(v3)) is (−2n, m, m) (resp. (2m,−n,−n)). Nγ is the

Figure 4.

Qα.
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Figure 5.

Qβ .

Figure 6.

Qγ .

coarse moduli space of θ-semistable representations of the quiver Qγ with

dimension vector (δ(v1), δ(v2)) equal to (m, n), where the weight vector

(θ(v1), θ(v2)) is (−n, m).

Theorem 5.4. If the symmetric exceptional bundle Eα (resp. Eβ or Eγ)

is even, then the moduli space M(ξ) is isomorphic to Nα (resp. Nβ or Nγ).

For the proof of the theorem, we imitate the argument in [ABCH, Sections

7, 8], [Oh].

Fix a point with β − 2< s < α in the upper half (s, t)-plane such that

(s, t) lies outside the wall WEβ−2,Eα and inside WEβ−2,Eγ . Then we have

µs,t(Eγ)> µs,t(Eβ−2[1])> µ(Eα).

Fix 0< φ < 1 such that

arg Zs,t(Eγ)> φ > arg Zs,t(Eβ−2[1]).

Put

Qφ := 〈Q ∈ As |Q is (s, t)-semistable, arg Zs,t(Q)> φπ〉

Fφ := 〈F ∈ As | F is (s, t)-semistable, arg Zs,t(Q)6 φπ〉,

and define A[φ] := 〈Qφ, Fφ[1]〉 and Z[φ](E) := e−iπφZs,t(E). Then the pair

(A[φ], Z[φ]) is also a Bridgeland stability condition of D(S). Since the oper-

ation “[φ]” does not change the Bridgeland semistable objects, the moduli
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space of (s, t)-semistable objects with K-class equal to ξ is isomorphic to

the moduli space of Z[φ]-semistable objects in A[φ] with K-class −ξ by the

correspondence F • to F •[1].

Put

E := Eγ ⊕ Eγ.β ⊕ Eβ and A := End(E).

We define a functor

Φ :D(S)→D(Aop −mod)

by Φ(−) = RHom(E,−), where D(Aop −mod) is the bounded derived

category of right A-modules with finite-dimensional cohomology. This gives

an equivalence of triangulated categories (cf. [Bo, Theorem 6.2]).

The algebra Aop is isomorphic to the path algebra of a quiver mod-

ulo a certain ideal. We define quivers Q̃α, Q̃β and Q̃γ as follows.

Q̃α = (Q̃α0 , {Nv,v′}) is defined by Q̃α0 = {v1, v2, v3, v4} and Nv1,v2 =Nv1,v3 =

χ̃(Eγ.β, Eβ), Nv2,v4 =Nv3,v4 = χ̃∗(Eγ , Eγ.β) and Nvi,vj = 0 for other pairs

(vi, vj). Q̃
β = (Q̃α0 , {Nv,v′}) is defined by Q̃β0 = {v1, v2, v3, v4} and Nv2,v1 =

Nv3,v1 = χ̃∗(Eγ.β, Eβ), Nv1,v4 = χ(Eγ , Eγ.β) and Nvi,vj = 0 for other pairs

(vi, vj). Q̃
γ = (Q̃α0 , {Nv,v′}) is defined by Q̃γ0 = {v1, v2, v3, v4} and Nv1,v2 =

χ(Eγ.β, Eβ), Nv2,v3 =Nv2,v4 = χ̃(Eγ , Eγ.β) and Nvi,vj = 0 for other pairs

(vi, vj). (See Figures 7–9.)

When Eα (resp. Eβ) is even, the algebra Aop is isomorphic to the

path algebra A(Q̃α) (resp. A(Q̃β)) modulo an ideal generated by linear

combinations of paths from v1 to v4. When Eγ is even, the algebra Aop is

isomorphic to the path algebra A(Q̃γ) modulo an ideal generated by linear

combinations of paths from v1 to v4, and from v1 to v3.

Proof of Theorem 5.4. We give the proof of Theorem 5.4 in case Eα is

even. The other cases can be handled similarly.

Figure 7.

Q̃α.
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Figure 8.

Q̃β .

Figure 9.

Q̃γ .

The objects Eβ−2[2], E′α[1], E′′α[1] and Eγ in A[φ] are mapped, via Φ,

to simple A(Q̃α)-modules with dimension vector (δ(v1), . . . , δ(v4)) equal to

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), respectively. These simple

modules generate the abelian category mod(Aop) of finite- dimensional Aop-

modules. We have Φ(A[φ])⊃mod(Aop). Since both abelian categories A[φ]

and mod(Aop) are hearts of a t-structure, we have Φ(A[φ]) = mod(Aop). So

the Z[φ]-semistable objects in A[φ] correspond to (Z[φ] ◦ Φ−1)-semistable

objects in mod(Aop).

Consider a complex F • = [Emβ−2→ Enα], where m, n are those in (5.5), and

Enα is in degree 0. Then F •[1] ∈ A[φ] and Φ(F •[1]) is a representation of the

quiver Q̃α with dimension vector (δ(v1), . . . , δ(v4)) equal to (m, n, n, 0),

which can be regarded as a representation of the quiver Qα with dimension

vector (m, n, n).

Put

ζα := Z(s,t)(Eα), ζβ := Z(s,t)(Eβ−2[1]), ζγ := Z(s,t)(Eγ).

Then we have

Z[φ](E′α[1]) = Z[φ](E′′α[1]) =−1
2e
−iπφζα
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Z[φ](Eβ−2[2]) =−eiπφζβ, Z[φ](Eγ) = e−iπφζγ .

The representation Φ(F •) of the quiver Qα is (Z[φ] ◦ Φ−1)-semistable if

and only if for any subrepresentation {Vvi}16i63 of Φ(F •), the following

inequality holds

(5.17) Im
−me−iπφζβ − ne−iπφζα

−(dim Vv1)e−iπφζβ − 1
2(dim Vv2 + dim Vv3)e−iπφζα

> 0.

Using Im ζβ ζ̄α > 0, one can see that the inequality (5.17) is equivalent to

m(dim Vv2 + dim Vv3)− 2n dim Vv1 > 0.

This shows that (Z[φ] ◦ Φ−1)-semistability is equivalent to (−2n, m, m)-

semistability of a representation of the quiver Qα.

All in all, by associating Φ(F •[1]) to F •, we have an isomorphism M(ξ)'
Nα. This completes the proof of Theorem 5.4.

Remark 5.5. To F • = [Emβ−2

f−→ Enα], we associated Φ(F •[1]), a repre-

sentation of a quiver. Here is another way to associate the representation

of the quiver. Assume, for example, that α is even, and Eα = E′α ⊕ E′′α. We

can regard f as an element of

Hom(Cm, Cn)⊗
(
Hom(Eβ−2, E

′
α)⊕Hom(Eβ−2, E

′′
α)
)
.

We can see that there is a canonical isomorphism Hom(Eβ−2, Eα)∗→
Hom(Eγ.β, Eβ) compatible with the direct sum decompositions Eα = E′α ⊕
E′′α and Eγ.β = E′γ.β ⊕ E′′γ.β. Therefore, f gives a representation of the quiver

Qα with dimension vector (m, n, n). We can verify that this representation

is isomorphic to Φ(F •[1]).

5.3 Complements

Some arguments in this section remain valid even for moduli spaces

of positive height. Fix γ ∈ E, and define α and β as at the beginning of

Section 5.1 so that γ = α.β. Let ξ ∈K(S) with symmetric c1 and r(ξ)> 0.

Assume that

(5.18) γ − xγ < µ̄(ξ) and χ(Eγ , ξ) = 0.

We can easily check the condition in Theorem 3.7(2), so ξ is a semistable

class. If moreover µ̄(ξ)6 γ, then the moduli space M(ξ) is of height zero
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and isomorphic to one of Nα, Nβ, Nγ . But even if γ < µ̄(ξ), we can see that

M(ξ) is birational to one of Nα, Nβ, Nγ as follows.

Under the condition (5.18), we have

m :=−χ̃(Eβ, ξ)> 0 and n :=−χ̃(Eγ.β, ξ)> 0.

(This follows by verifying that the µ̄-coordinate of the intersection of the

parabolas ∆ = P(µ̄− γ)−∆γ and ∆ = P(µ̄− β)−∆β (resp. ∆ = P(µ̄−
γ.β)−∆γ.β) is smaller than γ − xγ .) Put H := Hom(Emβ−2, E

n
α), and define

U ⊂H to be the open subset consisting of such ϕ : Emβ−2→ Enα that ϕ is

injective and Coker ϕ is torsion-free. By a standard dimension estimate, we

can see that U 6= ∅. We can check that the family {Fϕ := Coker ϕ}ϕ∈U is a

complete family such that Ext2(Fϕ, Fϕ(−1,−1)) = 0. If we put

U ⊃ U ′ := {ϕ ∈ U | Fϕ is stable},

then we can see that U ′ 6= ∅ (repeat the argument of the proof of

Theorem 3.7). In the proof of Proposition 5.2, we only used the fact

• α < µ̄(F ),

• F is a (semi)stable sheaf fitting in a short exact sequence (5.4).

So by the same proof, we obtain the following.

Proposition 5.6. If a point (s0, t0) with β − 2< s0 < α in the upper

half (s, t)-plane lies outside the wall WEβ−2,Eα, then Fϕ is (s0, t0)-stable for

ϕ ∈ U ′.

Denote by M(ξ)� the open subscheme of M(ξ) parametrizing stable

sheaves fitting in a short exact sequence (5.4). By the same proof of

Theorem 5.4, we have the following.

Proposition 5.7. Let ? ∈ {α, β, γ}. If the symmetric exceptional bun-

dle E? is even, then M(ξ)� is isomorphic to an open subscheme of N?s,

where N?s is the subscheme of N? consisting of θ-stable representations. In

particular, N?s is nonempty.

5.4 Torsion-sheaves

We can also apply the same arguments in the preceding section to torsion-

sheaves. Fix a K-class ξ ∈K(S) with symmetric c1 such that

(5.19) r(ξ) = 0, deg ξ := c1(ξ) · c1(L)> 0 and γ :=
χ(ξ)

deg ξ
∈ E.
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Define α and β as at the beginning of Section 5.1. We have

m :=−χ̃(Eβ, ξ)> 0 and n :=−χ̃(Eγ.β, ξ)> 0.

As before we put H := Hom(Emβ−2, E
n
α), and define U ⊂H to be the open

subset consisting of such ϕ : Emβ−2→ Enα that ϕ is injective. Then for any

ϕ ∈ U , Fϕ := Coker ϕ is a semistable pure 1-dimensional sheaf. Indeed, since

F := Fϕ fits in a short exact sequence (5.4), we have Exti(Eγ , F ) = 0 for any

i. If F has a subsheaf F ′ with χ(F ′)/ deg F ′ > γ, then χ(Eγ , F
′)> 0, thus

Hom(Eγ , F
′) 6= 0. This contradicts Hom(Eγ , F ) = 0. Put

U ⊃ U ′ := {ϕ ∈ U | Fϕ is stable}.

We claim that U ′ 6= ∅. If F := Fϕ, ϕ ∈ U , is not stable, then F has a filtration

0 = F0 ⊂ · · · ⊂ Fl = F, l > 2

such that χ(Gi)/ deg Gi = γ for any i, where Gi = Fi/Fi−1. We can see, by

calculation, that dim Ext1
+(F, F )> 0 for this filtration. This implies that

U ′ 6= ∅ (see the argument in the proof of [DL, Theorem 4.10]). Adapting the

proof of Proposition 5.2, we can obtain the following.

Proposition 5.8. If a point (s0, t0) with β − 2< s0 < α in the upper

half (s, t)-plane lies outside the wall WEβ−2,Eα, then Fϕ is (s0, t0)-stable for

ϕ ∈ U ′.

Denote by M(ξ)� the moduli space of stable pure 1-dimensional sheaves

with K-class ξ fitting in a short exact sequence (5.4). By arguing as in the

proof of Theorem 5.4, we have the following.

Proposition 5.9. Let ? ∈ {α, β, γ}. If the symmetric exceptional bun-

dle E? is even, then M(ξ)� is isomorphic to an open subscheme of N?s,

where N?s is the subscheme of N? consisting of θ-stable representations. In

particular, N?s is nonempty.

§6. Dimension Estimate

The following proposition is the quadric surface counterpart of [Le,

Lemma 18.3.1].

Proposition 6.1. Let ξ ∈K(S) be a semistable class with symmetric

c1 such that the height of the moduli space M(ξ) is positive. Consider a

complete family {Ft} of torsion-free coherent sheaves on S with K-class ξ

parametrized by a smooth variety T . Assume that Ext2(Ft, Ft(−1,−1)) = 0

for any t ∈ T .
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(1) The set of points t ∈ T such that Ft is not stable forms a closed subset

of at least codimension 2.

(2) If r(ξ)> 3, then the set of points t ∈ T such that Ft is not a µ-stable

bundle forms a closed subset of at least codimension 2.

Only in the proof of the proposition, we use the terminology “multi-

stable”: a torsion-free sheaf F is said to be multistable if F is semistable

and S-equivalent to Ga with G a stable sheaf.

Proof. (1) By a similar argument as in the proof of [Le, Corollary 15.4.4],

we can see that the set of points t ∈ T such that µmax(Ft)− µmin(Ft)> 2

forms a closed subset of codimension at least 2. So we may assume that

µmax(Ft)− µmin(Ft)6 2 for any t ∈ T .

We first show that the set of points t ∈ T such that Ft is not semistable

is of codimension at least 2. To this end, it suffices to show that if F = Ft
is not semistable, then there exists a filtration

(6.1) 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fl = F

satisfying the following conditions (i), (ii) and (iii):

(i) Gi := Fi/Fi−1 is semistable, pG1 � · · · � pGl , pG1 � pGl , and µ̄(G1)−
µ̄(Gl)6 1;

(ii) Hom(Gi, Gj) = 0 for i < j;

(iii)
∑

i<j χ(Gi, Gj)<−1.

In fact, if the filtration (6.1) satisfies (i), (ii) and (iii), then

dim Ext1
+(F, F ) =−

∑
i<j

χ(Gi, Gj)> 2.

Using [DL, Propositions 1.5 and 1.7], we see that the subset of sheaves

having a filtration satisfying (i), (ii) and (iii) is of codimension at least 2.

In the following, we shall use repeatedly the fact that for the filtration

(6.1) satisfying (i) and (ii), we have χ(Gi, Gj)6 0 for i < j.

Step 1. We show that if F = Ft has a filtration (6.1) satisfying the

conditions (i), (ii) and the following condition (iv), then (iii) or (v) below

holds.

(iv) G1 and Gl are multistable.
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(v) χ(G1, Gl) =−1, and χ(Gi, Gj) = 0 for i < j with (i, j) 6= (1, l). More-

over, Gi is not multistable for i 6= 1, l.

Suppose that the filtration (6.1) satisfies (i), (ii) and (iv), and the

inequality

(6.2)
∑
i<j

χ(Gi, Gj)>−1

holds. Let us show that (v) holds.

Claim 6.1.1. If Gi is multistable, then ∆(Gi)> 1/2. In particular,

∆(G1)> 1/2 and ∆(Gl)> 1/2.

Proof of Claim 6.1.1. Suppose that Gi is multistable and ∆(Gi)< 1/2.

Then Gi is S-equivalent to Ea with E an exceptional bundle. If µ̄(Gi)>
µ̄(F ), then we have

0> χ(Gi, F ) =
∑
j<i

χ(Gi, Gj) + χ(Gi, Gi) +
∑
i<j

χ(Gi, Gj)

>
∑
j<i

χ(Gj , Gi) + χ(Gi, Gi) +
∑
i<j

χ(Gi, Gj)

> −1 + χ(Gi, Gi) =−1 + a2 > 0,

which is a contradiction. Here the first inequality follows from the assump-

tion that the height of M(ξ) is positive, and Proposition 3.6. If µ̄(Gi)<

µ̄(F ), then by considering χ(F, Gi), we obtain a contradiction as well.

Claim 6.1.2. If χ(Gi, Gj) = 0 for some i < j, then ∆(Gi) + ∆(Gj)6 1,

where the equality holds if and only if (ν ′(Gi), ν
′′(Gi)) = (ν ′(Gj), ν

′′(Gj)).

Proof of Claim 6.1.2. By χ(Gi, Gj) = 0, we have

(6.3)
(
ν ′(Gj)− ν ′(Gi) + 1

) (
ν ′′(Gj)− ν ′′(Gi) + 1

)
= ∆(Gi) + ∆(Gj).

Since −2 + ν ′(Gi) + ν ′′(Gi)6 ν ′(Gj) + ν ′′(Gj)6 ν ′(Gi) + ν ′′(Gi), we see,

by calculation, that the maximum of left-hand side of (6.3) is 1, and the

maximum is attained only when (ν ′(Gi), ν
′′(Gi)) = (ν ′(Gj), ν

′′(Gj)).

We have χ(G1, Gl)< 0. Indeed, if χ(G1, Gl) = 0, then Claims 6.1.1

and 6.1.2 imply that ∆(G1) = ∆(G2) = 1/2 and (ν ′(G1), ν ′′(G1)) =

(ν ′(Gl), ν
′′(Gl)). This shows that pG1 = pGl , which contradicts (i).
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By the inequality (6.2), we have χ(G1, Gl) =−1 and χ(Gi, Gj) = 0 for

i < j with (i, j) 6= (1, l). If Gi is multistable for i 6= 1, l, then by χ(G1, Gi) =

χ(Gi, Gl) = 0 and ∆(Gi)> 1/2, as in the preceding paragraph, we obtain

pG1 = pGi = pGl , which contradicts (i).

Step 2. We show that if F = Ft is not semistable, then either F has a

filtration (6.1) satisfying (i), (ii) and (iii), or F has a filtration

(6.4) 0 = F0 ⊂ F1 ⊂ F2 = F

such that G0 = F1/F0 and G2 = F2/F1 are stable, pG1 � pG2 and

χ(G1, G2) =−1.

Let

(6.5) 0 = F (0) ⊂ F (1) ⊂ · · · ⊂ F (k) = F

be the Harder–Narasimhan filtration of F . We have k > 2 because

F is not semistable. If F (i)/F (i−1), 16 i6 k, is not multistable,

then insert a filter F (i−1) ⊂ F̄ (i) ⊂ F (i) such that pF̄ (i)/F (i−1) = pF (i)/F̄ (i) ,

Hom(F̄ (i)/F (i−1), F (i)/F̄ (i)) = 0, and moreover for 16 i6 k − 1 (resp. for

i= k) F̄ (i)/F (i−1) (resp. F (k)/F̄ (k)) is multistable (cf. [KO, Proposition

4.4]). The resulting filtration

(6.6) 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fl = F

satisfies (i), (ii) and (iv).

If k > 3, then at least 3 of the graded sheaves of the resulting filtration

are multistable. So the filtration satisfies (iii) by Step 1.

Next we consider the case k = 2, and at least one of F (1)/F (0), F (2)/F (1)

is not multistable. We treat the case where F (1)/F (0) is not multistable.

(The case where F (2)/F (1) is not multistable can be handled similarly.) The

filtration (6.6) in this case is either

(6.7)
0 = F (0) ⊂ F̄ (1) ⊂ F (1) ⊂ F (2) = F

or 0 = F (0) ⊂ F̄ (1) ⊂ F (1) ⊂ F̄ (2) ⊂ F (2) = F.

If the filtration (6.7) satisfies (iii), then we are done. If not, then the

filtration satisfies (v) by Step 1. Then F̄ (1) must be stable because

χ(G1, Gl) =−1. Since F (1)/F̄ (1) is not multistable, we can find a subsheaf

F̄ (1) ⊂D ⊂ F (1) such that pF (1)/D = pD/F̄ (1) , Hom(D/F̄ (1), F (1)/D) = 0,
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and F (1)/D is multistable. If Hom(F̄ (1), F (1)/D) 6= 0, then F (1)/D is S-

equivalent to a direct sum of some F̄ (1)’s. Then we have χ(F (1)/D, Gl)< 0

since χ(G1, Gl) =−1. On the other hand, we have χ(F (1)/F̄ (1), Gl) = 0,

so we have χ(F (1)/D, Gl) = 0. This is a contradiction. Therefore, we have

Hom(F̄ (1), F (1)/D) = 0. Then the filtration obtained from (6.7) by inserting

D as a filter satisfies (i), (ii) and (iv), and at least 3 of the graded sheaves

are multistable. So it satisfies (iii) by Step 1.

Finally we consider the case where k = 2, and both F (1)/F (0) and

F (2)/F (1) are multistable. The filtration (6.5) satisfies (i), (ii) and (iv).

If (6.5) satisfies (iii), then we are done. If not, it satisfies (v) by Step 1.

Since χ(F (1), F (2)/F (1)) =−1, both F (1) and F (2)/F (1) must be stable. So

we obtain a desired filtration.

Step 3. To conclude that F = Ft that is not semistable has a filtration

(6.1) satisfying (i), (ii) and (iii), we have only to show that F does not have a

filtration (6.4) such that G0 = F1/F0 and G2 = F2/F1 are stable, pG1 � pG2

and χ(G1, G2) =−1.

Suppose that such a filtration exists. For i= 1, 2, put

ri = r(Gi), ∆i = ∆(Gi), µ̄i = µ̄(Gi),

and define δi by (
ν ′(Gi), ν

′′(Gi)
)

= (µ̄i + δi, µ̄i − δi).

From χ(G1, G2) =−1, we have

(6.8) (1 + µ̄2 − µ̄1)2 − (δ2 − δ1)2 = ∆1 + ∆2 −
1

r1r2
.

Define a nonnegative integer k by

2µ̄1 = 2µ̄2 +
k

r1r2
.

Since µ̄1 − µ̄2 6 1, we have k 6 2r1r2. By (6.8), we have(
1− k

2r1r2

)2

>∆1 + ∆2 −
1

r1r2
> 1− 1

r1r2
,

where the last inequality follows from Claim 6.1.1. From this, we have

(6.9) 1> k

(
1− k

4r1r2

)
>
k

2
.
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Thus k 6 2. If k = 2, then the inequalities in (6.9) are all equality. Thus

r1 = r2 = 1 and ∆1 = ∆2 = 1/2. This is absurd because the discriminant of

a rank one sheaf is an integer.

Before we consider the case k = 0, 1, we note that we have

(6.10) r1δ1 + r2δ2 = 0

because c1(ξ) is symmetric.

Consider the case k = 0. We have µ̄1 = µ̄2. From (6.8), we have

1

r1r2
= ∆1 + ∆2 − 1 + (δ1 − δ2)2

> (δ1 − δ2)2 =

(
r1 + r2

r2

)2

δ2
1 .(6.11)

If δ1 6= 0, then |δ1|> 1/(2r1) because 2r1δ1 is an integer. We have

0> (r1 − r2)2 from (6.11). Then r1 = r2, and the inequality in (6.11) is

an equality, thus ∆1 = ∆2 = 1/2. Then we have ∆1 + δ2
1 = ∆2 + δ2

2 , which

implies pG1 = pG2 , a contradiction.

If δ1 = 0, then both c1(G1) and c1(G2) are symmetric. Thus ∆i > 1/2.

More precisely, we have

∆i >
1

2
+

1

2r2
i

.

From (6.8), we have
1

r1r2
>

1

2r2
1

+
1

2r2
2

,

thus 0> (r1 − r2)2. Then we have r1 = r2 and ∆1 = ∆2, which implies a

contradiction as in the preceding paragraph.

Consider the case k = 1. From (6.8), we have(
1− 1

2r1r2

)2

− (δ2 − δ1)2 = ∆1 + ∆2 −
1

r1r2
.

From this, we have

1− (δ1 − δ2)2 = ∆1 + ∆2 −
1

4r2
1r

2
2

> 1− 1

4r2
1r

2
2

.(6.12)

Therefore, |δ1 − δ2|6 1/(2r1r2).
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If δ1 = δ2, then δ1 = δ2 = 0 by (6.10). Since both c1(G1) and c1(G2) are

symmetric, we have

(6.13) ∆i >
1

2
+

1

2r2
i

.

From (6.12) and (6.13), we have 1> 2r2
1 + 2r2

2, which is absurd.

If |δ1 − δ2|= 1/(2r1r2), then we have 2r2δ2 =±1/(r1 + r2) by (6.10). This

is a contradiction because 2r2δ2 is an integer.

From Steps 1 to 3, we can conclude that the set of points t ∈ T such that

Ft is not semistable is of codimension at least 2.

Step 4. We claim that the set of points t ∈ T such that Ft is not stable is

of codimension at least 2.

If F = Ft is semistable, but not stable, then there is a filtration

(6.14) 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fl = F, l > 2

such that each Gi := Fi/Fi−1 is stable, and its reduced Hilbert polynomial is

equal to pF . Put ri = r(Gi), ∆i := ∆(Gi) and define δi by (ν ′(Gi), ν
′′(Gi)) =

(µ̄+ δi, µ̄− δi), where µ̄ := µ̄(ξ). Put ∆ := ∆(ξ). To prove the claim in

Step 4, we shall show that dim Ext1
+(F, F )> 2 for this filtration.

We have ∑
i

(−1)i dim Exti+(F, F ) =
∑
i<j

χ(Gi, Gj).

By Ext2
+(F, F ) = 0, we have

dim Ext1
+(F, F )>−

∑
i<j

χ(Gi, Gj) =
∑
i<j

rirj(−1− 2δiδj + 2∆)

=
∑
i<j

rirj(2∆− 1) +
∑
k

r2
kδ

2
k,(6.15)

where we used
∑

i riδi = 0. This implies dim Ext1
+(F, F )> 0. Assuming the

value (6.15) is equal to 1, we shall obtain a contradiction.

Since each 2riδi is an integer, we have rirj(2∆− 1) ∈ 1
2Z. So we must

have l = 2. There are two cases:

(r1r2(2∆− 1), r1δ1, r2δ2) = (1, 0, 0) or

(
1

2
,±1

2
,∓1

2

)
.
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Case (r1r2(2∆− 1), r1δ1, r2δ2) = (1, 0, 0). In this case, both G1 and G2

have symmetric c1 and

∆ = ∆1 = ∆2 =
1

2

(
1 +

1

r1r2

)
.

Since χ(G1, G2) =−1, we have r1 = r2, so we have χ(G1, G1) =−1. Then

dimM(r1, µ̄,∆) = 2. This does not occur by Lemma 6.2.

Case (r1r2(2∆− 1), r1δ1, r2δ2) =
(

1
2 ,±

1
2 ,∓

1
2

)
. We have

(6.16) ∆ =
1

2

(
1 +

1

2r1r2

)
= ∆i +

1

4r2
i

.

We first consider the case r1 6= r2, say r1 < r2. Then ∆1 < 1/2, so G1 is

rigid and we have ∆1 = (1− 1/r1
2)/2. Combining this and (6.16), we have

r1 + r2 = 0, which is absurd. Finally consider the case r1 = r2 = r/2. Then

∆1 = ∆2 = 1/2. We have χ(Gi, Gi) = 0. Then

χ(F, F ) = χ(G1, G2) + χ(G2, G1) =−2.

We have dimM(ξ) = 3. By Lemma 6.2, µ̄ ∈ E. Since the height of M(ξ) is

positive, we have

(6.17) ∆> δ(µ̄) =
1

2

(
1 +

e

r2
µ̄

)
,

where e is 1 or 2, depending on whether rµ̄ is odd or even. From (6.16) and

(6.17), we have

(6.18) rµ̄ > r
√
e/2.

Since rµ̄ is an integer, and since rµ̄ is the denominator of the irreducible

fraction expression of µ̄, we have r > rµ̄. Moreover, when rµ̄ is odd, r > 2rµ̄
since r is even. This contradicts (6.18).

(2) By (1), we may assume that the complete family {Ft} consists of

stable sheaves. Since r(ξ)> 3, the set of points t ∈ T with Ft not locally free

has codimension at least 2 (see [Le, Section 17.1]). Thus we may assume

that Ft is locally free for all t ∈ T .

If F = Ft is not µ-stable, then there exists a surjection F �G such that G

is a torsion-free sheaf such that µ(F ) = µ(G) and χ(F )/r(F )< χ(G)/r(G).

Consider the dual mapG∗ ↪→ F ∗. We have µ(F ∗) = µ(G∗) and χ(F ∗)/r(F )<

χ(G∗)/r(G). So F ∗ is not stable. But applying (1) to the family {F ∗t } of

dual bundles, we see that the subset of t ∈ T such that F ∗t is not stable has

codimension at least 2. This proves (2).
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Lemma 6.2. Let ξ ∈K(S) be a semistable class with symmetric c1 such

that the height of the moduli space M(ξ) is positive. Then dimM(ξ)> 3. If

moreover µ̄(ξ) /∈ E, then dimM(ξ)> 4.

Proof. We imitate the proof of [D, Proposition 33].

Put (r, µ̄,∆) := (r(ξ), µ̄(ξ),∆(ξ)) and d := dimM(ξ)> 0. We have

1− d= χ(ξ, ξ) = r2(1− 2∆),

thus

(6.19) ∆ =
1

2

(
1 +

d− 1

r2

)
.

Take α ∈ E such that µ̄ ∈ Iα. We may assume that α− xα < µ̄6 α. (If α <

µ̄ < α+ xα, then consider the dual of sheaves.)

Claim. If d6 2, then we have µ̄ 6= α.

Proof of the Claim. If µ̄= α, then

(6.20) ∆> 1−∆α =
1

2

(
1 +

e

r2
α

)
,

where e= 1 or 2 depending on whether rα is odd or even. By (6.19) and

(6.20), we have
√
d− 1rα > r, thus rα > r. This is absurd because rα is the

denominator of the irreducible fraction expression of α. This is the end of

the proof of the claim.

To prove the lemma, we claim that if α− xα < µ̄ < α, then d> 4. Indeed,

when α− xα < µ̄ < α, we have xα >
1
rrα

. Denoting by h the height of the

moduli space, we have

0< h = rrα (∆ + ∆α − P(µ̄− α))< rrα

(
∆− 1

2

)
=

(d− 1)rα
2r

6
(d− 1)r2

αxα
2

=
(d− 1)e

4

(
1 +

√
1− e

2r2α

) 6 (d− 1)e

4
,

where the inequality in the second line follows from P(µ̄− α)−∆α > 1/2.

We have

d >
4h

e
+ 1> 3.
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§7. Properties of the set E

The goal of this section is Theorem 7.4, a counterpart of [CHW, Theorem

4.16].

7.1 Notation of continued fraction expansion

We use the same notation as in [H, Section 3], and follow the presentation

there.

For real numbers a0, . . . , ak, we define the number [a0; a1, . . . , ak] by

[a0; a1, . . . , ak] := a0 +
1

a1 +
1

. . . +
1

ak

,

when it makes sense.

Any rational number 06 α < 1 has a unique continued fraction expansion

α= [0; a1, . . . , ak] where ai are positive integers and k is even. This is called

the even length continued fraction expansion of α. If pn and qn are the

numerator and denominator of [0; a1, . . . , an], the nth convergent of α, then

we have the relation

(7.1)

(
qn qn−1

pn pn−1

)
=

(
a1 1
1 0

) (
a2 1
1 0

)
. . .

(
an 1
1 0

)
.

From this, it follows that qnpn−1 − qn−1pn = (−1)n. Moreover, taking the

transpose of the above equation, we obtain the following fact [H, Lemma

3.1].

Lemma 7.1. A continued fraction expansion [0; a1, . . . , ak] is palin-

dromic, that is, ai = ak+1−i, if and only if pk = qk−1.

By the same reasoning, we have the following.

Lemma 7.2. Assume that for continued fraction expansions α=

[0; a1, . . . , ak] and α′ = [0; a′1, . . . , a
′
k], the inequalities ai = a′k+1−i hold. Let

pn/qn and p′n/q
′
n be the nth convergents of α and α′, respectively. Then we

have pn = q′n−1.

7.2 Continued fraction expansion of symmetric exceptional

slopes

In the case of the projective plane, the even length continued fraction

expansion of an exceptional slope 06 α < 1 is palindromic (cf. [H, The-

orem 3.2]). In our quadric surface case, the behavior of the even length
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continued fraction expansion of a symmetric exceptional slope 06 α < 1/2

depends on the parity of α.

Theorem 7.3. Take γ ∈ E with 06 γ < 1/2. Let [0; c1, . . . , cn] and

[0; c′1, . . . , c
′
n′ ] be the even length continued fraction expansions of γ and

2γ, respectively. (If γ = 0, we understand n= n′ = 0.)

(1) We have c1 = 2 or 3, and c′1 = 1.

(2) If the symmetric exceptional slope γ is even, then n′ = n+ 2, and the

continued fraction expansions are palindromic.

(3) If the symmetric exceptional slope γ is odd, then n= n′ and ci = c′n+1−i.

Proof. We imitate the proof of [H, Theorem 3.2].

If γ = 0, then the theorem holds obviously.

Consider γ ∈ E with 0< γ < 1/2. It is expressed as

(7.2) γ = ε (p/2q)

with p odd and q > 2. We proceed by induction on q. But we first treat

the case γ = ε
(

1
2 −

1
2q

)
separately. This γ is an odd symmetric exceptional

slope. Since

ε

(
1

2
− 1

2q+1

)
= γ .

1

2
,

we have, by Lemma 2.6(2),

ε

(
1

2
− 1

2q+1

)
=

1

2
− 1

6 + 4γ
.

From this, by an easy calculation, we find

ε

(
1

2
− 1

2q+1

)
= [0; 2, 1 + γ], 2ε

(
1

2
− 1

2q+1

)
= [0; 1, 2 + 2γ].

Since ε(0) = [0; ∅], we have

ε

(
1

2
− 1

2q

)
= [0; (2, 1)q−1], 2ε

(
1

2
− 1

2q

)
= [0; (1, 2)q−1]

for q > 2. Thus the theorem holds in this case.
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Now let us consider 0< γ < 1/2 expressed as in (7.2). The case q = 2 is

covered by the above consideration, so we let q > 3. Let

α= ε

(
p− 1

2q

)
, β = ε

(
p+ 1

2q

)
so that γ = α.β. We put the even length continued fraction expansions as

follows:

α = [0; a1, . . . , am], 2α = [0; a′1, . . . , a
′
m′ ],

β = [0; b1, . . . , bl], 2β = [0; b′1, . . . , b
′
l′ ].

Claim 7.3.1. The even length continued fraction expansions of γ and

2γ are given as follows.

(1) If α is even, then

γ = [0; a1, . . . , am, 1, 1, b1 − 1, b2, . . . , bl](7.3)

2γ = [0; a′1, . . . , a
′
m′ , 3, b

′
2 + 1, b′3, . . . , b

′
l′ ].(7.4)

(2) If α is odd, then

γ = [0; a1, . . . , am, 3, b
′
2 + 1, b′3, . . . , b

′
l′ ](7.5)

2γ = [0; a′1, . . . , a
′
m′ , 1, 1, , b1 − 1, b2, . . . , bl].(7.6)

(3) If β is even, then

γ = [0; b1, . . . , bl−1, bl − 1, 1, 1, a1, . . . , am](7.7)

2γ = [0; b′1, . . . , b
′
l′−2, b

′
l′−1 + 1, 3, a′1, . . . , a

′
m′ ].(7.8)

(4) If β is odd, then

γ = [0; b1, . . . , bl−2, bl−1 + 1, 3, a′1, . . . , a
′
m′ ](7.9)

2γ = [0; b′1, . . . , b
′
l′−1, b

′
l′ − 1, 1, 1, a1, . . . , am].(7.10)

We first see that the claim implies the theorem. If γ is even, then

both α and β are odd. Comparing the two expressions (7.5) and (7.9)

of the continued fraction expansion of γ, we infer that the expansion is

palindromic, using the induction hypothesis. For the expansion of 2γ, we

can argue similarly. If γ is odd, then one of α, β is odd, and the other
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is even. Comparing (7.3), (7.4) and (7.9), (7.10), or (7.5), (7.6) and (7.7),

(7.8), we can see that the theorem holds in this case as well.

It remains to prove the claim. We give a proof for the equalities (7.4) and

(7.9); the other equalities can be proved similarly.

Assume that α is even. Let p′k/q
′
k be the kth convergent of 2α, that

is, p′k/q
′
k = [0; a′1, . . . , a

′
k]. We have q′m′ = rα/2 and p′m′ = αrα. Since the

continued fraction expansion of 2α is palindromic, we have q′m′−1 = p′m′ by

Lemma 7.1. By q′m′p
′
m′−1 − p′m′q′m′−1 = 1, we have p′m′−1 = 2α2rα + 2/rα.

Using by Lemma 2.6(2), we have

2γ = 2α+
2

r2
α(2 + α− β)

=
(4− 2β)αrα + 2α2rα + 2/rα

(4− 2β)rα/2 + αrα

=
(4− 2β)p′m′ + p′m′−1

(4− 2β)q′m′ + q′m′−1

= [0; a′1, . . . , a
′
m′ , 4− 2β].(7.11)

Using 4− 2β = [3; 1,−1, 2β], the continued fraction expansion (7.11) can be

rewritten as (7.4), using b′1 = 1.

Finally assume that β is odd. Let pk/qk and p′k/q
′
k be the kth convergents

of β and 2β, respectively. We have ql = rβ and pl = βrβ. Since l = l′ and

bi = b′l+1−i, we have ql−1 = p′l = 2βrβ by Lemma 7.2. So we have pl−1 =

2β2rβ + 1/rβ.

γ = β − 1

2r2
β(2 + α− β)

=
−(4 + 2α)βrβ + 2β2rβ + 1/rβ

−(4 + 2α)rβ + 2βrβ

=
−(4 + 2α)pl + pl−1

−(4 + 2α)ql + ql−1

= [0; b1, . . . , bl,−(4 + 2α)]

= [0; b1, . . . , bl−1, 1,−(4 + 2α)].(7.12)

Using [0; 1;−(4 + 2α)] = [1; 3 + 2α], we can rewrite (7.12) as (7.9).

Put C := R \
⋃
α∈E Iα. Any x ∈ C is irrational.

Theorem 7.4. If x ∈ C is not an endpoint of an interval Iα, then it is

not a quadratic irrational number.

To prove the theorem, we follow the argument in [CHW, Section 4]. In

our case, the argument becomes messier due to the parity of symmetric

exceptional slopes.
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To show that x ∈ C in the theorem is not a quadratic irrational number,

we use the following fact : if [a0; a1, a2, . . . ] is a continued fraction expansion

of an irrational number, then it is a quadratic irrational number if and only

if the continued fraction expansion is eventually periodic, that is, there exist

positive integers p and c such that ai = ai+p for all i > c. So, we will study

the continued fraction expansion of x.

We need some preparation.

Put C ′ = C ∩ (0, 1/2) and

Cn = (0, 1/2)
∖ ⋃

α∈E, ord α6n

Iα.

Here the order of a symmetric exceptional slope α= ε(p/2q), where p is odd

if q > 0, is defined by ord α= q.

To each x ∈ C ′, we associate an infinite sequence σx of letters L and R

as follows. We have C2 = [x0, 1/3− x1/3] t [1/3 + x1/3, 1/2− x1/2], and x

lies in one of the two intervals. If it lies in the left (resp. right) interval,

then the first term of σx is L (resp. R). If we denote by I2,x the interval of

C2 containing x, then I2,x ∩ C3 consists of two disjoint intervals, and x lies

in one of them. If it lies in the left (resp. right) interval, then the second

term of σx is L (resp. R). We can proceed inductively. More precisely, if we

denote by In,x the interval of Cn containing x, then In,x ∩ Cn+1 consists of

two disjoint intervals, and x lies in one of them. If it lies in the left (resp.

right) interval, then the nth term of σx is L (resp. R).

The correspondence x→ σx gives a bijection between the set C ′ and the

set {L, R}N of infinite sequences of letters L and R. The following lemma

is clear from the construction of σx.

Lemma 7.5. For x ∈ C ′, x is an endpoint of an interval Iα, α ∈ E, if and

only if the infinite sequence σx is eventually constant, that is, there exists

an N > 0 such that all letters in σx are the same after the N th term.

Consider a symmetric exceptional slope γ ∈ E expressed as γ = ε(p/2q)

where q > 0 and p is odd. Let α= ε((p− 1)/2q) and β = ε((p+ 1)/2q) so

that γ = α.β. We define the symmetric exceptional slopes γ · L and γ ·R
by γ · L= α.γ and γ ·R= γ.β. If σ = (S1, . . . , Sn) is a finite sequence of

letters L and R, then we define the symmetric exceptional slope γ · σ by

(. . . ((γ · S1) · S2) . . . ) · Sn.

Let E′ be the set of symmetric exceptional slopes α with 0< α < 1/2. If

we note 1/3 = ε(1/4), the following is clear.
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Lemma 7.6. Denote by {L, R}∗ the set of finite sequences of letters

L and R (including the empty sequence). The map {L, R}∗→ E′ given by

σ→ 1
3 · σ is a bijection.

Continued fractions Take α ∈ E, and let β be α · L or α ·R. Let

[0; a1, . . . , am] and [0; b1, . . . , bn] be the even length continued fraction

expressions of α and β respectively. Then from Claim 7.3.1, we see that

ai = bi for 16 i6m− 2.

Take x ∈ C ′ and consider the corresponding infinite sequence σx. Let

σ6nx be the finite sequence of initial n terms. Put φnx = 1
3 · σ

6n
x . We have

limn→∞ φnx = x. From the observation above, the following lemma is clear.

Lemma 7.7. If [0; a1, . . . , am] is the even length continued fraction

expansion of φnx, and [0; c1, c2, . . . ] is the continued fraction expansion of x,

then ai = ci for i6m− 2.

Now assume that x ∈ C ′ is not an endpoint of Iα, α ∈ E.

By Lemma 7.5, σx is not eventually constant. Then we can easily see that

there are infinitely many even symmetric exceptional slopes in the sequence

{φnx}n>0. We say that an even symmetric exceptional slope φnx is of Type A if

σn<x starts as RLkR . . . for some k > 0; of type B if σn<x starts as LRkL . . .

for some k > 0; and of Type C if σn<x starts as RRLL . . . , where σn<x is the

infinite sequence obtained from σx by deleting the initial n terms. We can

see that for at least one type of A, B or C, an infinite number of even φnx of

such type appear.

In the next lemma, we use the following notation. For a sequence a =

(a1, . . . , am) of integers, we let

+a = (3, a2 + 1, a3, . . . , am), −a = (a1 − 1, a2, . . . , am),

a+ = (a1, . . . , am−2, am−1 + 1, 3), a− = (a1, . . . , am−1, am − 1).

We define +a+, +a−, and so forth obviously.

Lemma 7.8. Assume that φnx is an even symmetric exceptional slope.

Put γ = φnx. Express γ = ε(p/2q) with p odd, and let α= ε((p− 1)/2q) and

β = ε((p+ 1)/2q). Let [0; c], [0; a] and [0; b] be the even length continued

fraction expansions of γ, α and β, respectively, and let [0; c′], [0; a′] and

[0; b′] be the even length continued fraction expansions of 2γ, 2α and 2β,

respectively.
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(1) If γ is of Type A, and σn< starts as RLkR . . . , then the even length

continued fraction expansion of γ ·RLkR(= φn+k+2
x ) is

(7.13) [0; c, 1, 1,− b+, (c′+)k−1, c′,+ c′,+ b′−, (1, 1, c−)k−2, 1, 1, c],

where when k = 1, the last part +b′−, (1, 1, c−)k−2, 1, 1, c reads +b′.

(2) If γ is of Type B, and σn< starts as LRkL . . . , then the even length

continued fraction expansion of γ · LRkL(= φn+k+2
x ) is

(7.14) [0; c−, 1, 1, a, (+c′)k−1, +c′+, c′+, a′, (1, 1,− c)k−1].

(3) If γ is of Type C, then the even length continued fraction expansion

of γ ·RRLL(= φn+4
x ) is

(7.15) [0; c, 1, 1,− b,+ c′,+ b′, 1, 1,− b+, c′,+ b′].

Proof. (1) By (7.3) and (7.4), we have

γ ·R= [0; c, 1, 1,− b], 2(γ ·R) = [0; c′,+ b′].

Using (7.9) and (7.10), we have

γ ·RLk = [0; c, 1, 1,− b+, (c′+)k−1, c′],

2(γ ·RLk) = [0; c′,+ b′−, (1, 1, c−)k−1, 1, 1, c].

Using (7.5), we obtain the result.

(2) The proof is similar as in (1).

(3) Using (7.3) and (7.4), we have

γ ·R= [0; c, 1, 1,− b], 2(γ ·R) = [0; c′,+ b′].

Using (7.5) and (7.6), we have

γ ·RR= [0; c, 1, 1,− b,+ b′], 2(γ ·RR) = [0; c′,+ b′, 1, 1,− b].

Using (7.7) and (7.8), we have

γ ·RRL = [0; c, 1, 1,− b,+ b′−, 1, 1, c, 1, 1,− b]

2(γ ·RRL) = [0; c′,+ b′, 1, 1,− b+, c′,+ b′].

Using (7.5), we have the result.
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We say that a sequence a1, a2, . . . , al is periodic with period p if ai = ai+p
for 16 i6 l − p.

Lemma 7.9. Let A, B and M be sequences. Assume that the concate-

nated sequence AMBM is periodic, and let d be the minimum period.

Assume moreover that |M |> d. (Here |M | denotes the length of the sequence

M .) Then d divides |MB|. In particular, the last term of A and B are the

same.

Proof. Let M = (z1, . . . , zm). Suppose that d does not divide |MB|.
Then considering the initial term of the latter M in AMBM , we have

z1 = zl with 26 l 6 d. Then AMBM has period l − 1, which contradicts

the minimality of d.

Proof of Theorem 7.4. Take x ∈ C ′ that is not an endpoint of an interval

Iα, and suppose that the continued fraction expansion [0; x1, x2, . . . ] of x

is eventually periodic with period p, that is, there exists c > 0 such that

xi = xi+p for all fi > c.

Consider the case that infinitely many φnx of Type A appear in {φnx}n>0.

Take a φnx of Type A for n� 0. We use the same notation as in Lemma 7.8

(for example γ = φnx = [0; c]). Since n is sufficiently large, we may assume

m′ := |c′| �max{c, p}. By Lemma 7.8, the even length continued fraction

expansion of φn+k+2
x is given by (7.13). If we delete the initial c terms and

the last two terms from (7.13), then the remaining sequence is periodic

with period p (see Lemma 7.7). In particular, the subsequence (c′,+ c′) is

periodic with period p. Put A= (c′1, c
′
2), M = (c′3, . . . , c

′
m′) and B = (3, c′2 +

1), where c′ = (c′1, . . . , c
′
m′). Applying Lemma 7.9, we see c′2 = c′2 + 1, which

is a contradiction.

Other cases can be handled similarly.

When infinitely many φnx of Type B appear, by arguing as in Type A case,

the subsequence (+c′+, c′+) in (7.14) is periodic. We put A= (3, c′2 + 1),

M = (c′3, . . . , c
′
m′−2) and B = (cm′−1 + 1, 3, c′1, c

′
2).

When infinitely many φnx of Type C appear, we see that the subse-

quence (+c′, +b′, 1, 1,− b+, c′) is periodic. We put A= (3, c′2 + 1), M =

(c′3, . . . , c
′
m′) and B = (+b′, 1, 1, −b+, c′1, c

′
2).

§8. Resolution of sheaves

In this section, imitating the argument in [CHW, Section 5], we construct

a resolution of a semistable sheaf with symmetric c1 on S.
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Fix a semistable element ξ ∈K(S) such that the height of the moduli

space M(ξ) is positive. In the (µ̄,∆)-plane, the parabola ∆ = P(µ̄+ µ̄(ξ))−
∆(ξ) intersects the line ∆ = 1/2 at two points. Let (µ̄0, 1/2) be the

intersection point with the larger µ̄ coordinate.

Lemma 8.1. There exists a unique γ ∈ E such that µ̄0 ∈ Iγ.

Proof. Once we have Theorem 7.4, the same proof of [CHW, Theo-

rem 3.1] applies.

There are 3 cases:

Case (1) P(γ + µ̄(ξ))−∆(ξ)>∆γ .

Case (2) P(γ + µ̄(ξ))−∆(ξ) = ∆γ .

Case (3) P(γ + µ̄(ξ))−∆(ξ)<∆γ .

We express γ = ε(p/2q), where q > 0, and p is odd if q > 1. If q = 0, then

put α= γ − 1/2 and β = γ + 1. If q > 0, then put

α= ε

(
p− 1

2q

)
, β = ε

(
p+ 1

2q

)
.

Then we have γ = α.β.

In Case (1) and Case (2), we put

m1 := χ̃(E−γ , ξ), m2 :=−χ̃(E−α.γ , ξ), m3 :=−χ̃(E−α, ξ),

and U := Em3
−α−2 and V := Em2

−β ⊕ E
m1
−γ . Here we have m2 > 0, m3 > 0; and

m1 > 0 in Case (1) andm1 = 0 in Case (2). (See Notation 4.6 for the notation

χ̃.)

In Case (3), we put

m1 :=−χ̃(E−γ , ξ)> 0, m2 := χ̃(E−β, ξ)> 0, m3 := χ̃(E−γ.β, ξ)> 0,

and U = Em1
−γ−2 ⊕ E

m3
−α−2 and V := Em2

−β . Using Lemma 8.3 below, we can see

thatHom(U, V ) is globally generated. By a standard dimension estimate, we

can see that there is a closed subset Z of codimension at least 2 in the affine

space Hom(U, V ) such that for any point [φ : U → V ] ∈Hom(U, V ) \ Z, φ

is injective and Coker φ is torsion-free. Put Y := Hom(U, V ) \ Z, and Fφ :=

Coker φ for φ ∈ Y .

One can see that the family {Fφ} parametrized by Y is a complete family

of sheaves with K-class ξ (cf. the proof of [CHW, Proposition 5.3]). More-

over, using Lemma 8.3(2) below, we can see that Ext2(Fφ, Fφ(−1,−1)) = 0

for any φ ∈ Y . Let Y ′ be the open subset of Y consisting of φ with Fφ stable.

Then by Proposition 6.1 (1), the codimension of Y \ Y ′ in Y is at least 2.
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Remark 8.2. When r(ξ)> 3, if we let Y ′′ be the open subset of Y

consisting of φ such that Fφ is a µ-stable bundle, then by Proposition 6.1(2),

the codimension Y \ Y ′′ in Y is at least 2.

Lemma 8.3. Let

α= ε
( p

2q

)
, β =

(
p+ 1

2q

)
with q > 0.

(1) The sheaf Hom(Eβ−2, Eα) is globally generated.

(2) We have Ext1(Eβ−1, Eα) = 0.

Proof. (1) The proof is identical to that of [H, Lemma 5.4]. For q = 0,

Eα =O(p, p) and Eβ−2 =O(p− 1, p− 1), thus Hom(Eβ−2, Eα)'O(1, 1).

The lemma holds.

Assume q > 1. When p is odd, put η = ε((p− 1)/2q), and

δ =


ε

(
p+ 3

2q
− 2

)
if p≡ 1 (mod 4),

ε

(
p− 3

2q

)
if p≡−1 (mod 4).

Then we have an exact sequence (cf. Lemma 4.7)

(8.1) 0→ Eδ→ E
χ̃(Eη ,Eα)
η → Eα→ 0.

So we have a surjective map Hom(Eβ−2, Eη)
χ̃(Eη ,Eα)→Hom(Eβ−2, Eα)

and Hom(Eβ−2, Eη) is globally generated by the induction hypothesis, so

Hom(Eβ−2, Eα) is globally generated. When p is even, considering the

isomorphism Hom(Eβ−2, Eα)'Hom(E−α−2, E−β), the proof is reduced to

the case p odd.

(2) For q = 0, 1, the vanishing of Ext1 can be checked directly. Assume

q > 2. As in (1), we may consider only the case where p is odd. We have a

short exact sequence (8.1). From this, we obtain an exact sequence

Ext1(Eβ−1, Eη)
χ̃(Eη ,Eα)→ Ext1(Eβ−1, Eα)→ Ext2(Eβ−1, Eδ).

By the induction hypothesis, we have Ext1(Eβ−1, Eη) = 0. We have

Ext2(Eβ−1, Eδ)'Hom(Eδ, Eβ−3)∗ = 0 since δ > β − 3. The result follows

from the above exact sequence.
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§9. Rational map to moduli of quiver representations

Retain the notation ξ, α, β and γ in the previous section. In this section,

we define three kinds of quivers, and construct a rational map of M(ξ) to

the moduli space of representations of a quiver.

9.1 Quivers

To describe a quiver Q, we use the notation

Q= (Q0, {Nv,v′}(v,v′)∈Q0×Q0
),

where Q0 is the set of vertexes of the quiver, and Nv,v′ is the number of

arrows having v as the source and v′ as the target.

We define quivers Rα, Rβ and Rγ as follows.

When α is even, the quiver Rα = (Rα0 , {Nv,v′}) is defined by Rα0 =

{v1, v2, v3} and Nv2,v1 =Nv3,v1 = χ̃(E−α−2, E−β) and Nvi,vj = 0 for other

pairs (vi, vj).

When β is even, the quiver Rβ = (Rβ0 , {Nv,v′}) is defined by Rβ0 =

{v1, v2, v3} and Nv1,v2 =Nv1,v3 = χ̃∗(E−α−2, E−β) and Nvi,vj = 0 for other

pairs (vi, vj).

When γ is even, the quiver Rγ = (Rγ0 , {Nv,v′}) is defined by Rγ0 = {v1, v2}
and Nv2,v1 = χ(E−α−2, E−β) and Nvi,vj = 0 for other pairs (vi, vj).

In summary, the quivers Rα, Rβ and Rγ are the quivers obtained from

the quivers Qα, Qβ and Qγ in Section 5.2 by reversing the arrows. (See

Figures 10–12.

Figure 10.

Rα.

We define moduli spaces Mα, Mβ and Mγ of representations of

quivers as follows. Mα (resp. Mβ) is the coarse moduli space of θ-

semistable representations of the quiver Rα (resp. Rβ) with dimension

vector (δ(v1), δ(v2), δ(v3)) = (m2, m3, m3) (resp. = (m3, m2, m2)), where
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Figure 11.

Rβ .

Figure 12.

Rγ .

the weight vector

(θ(v1), θ(v2), θ(v3)) = (2m3,−m2,−m2)

(resp. = (−2m2, m3, m3)). Mγ is the coarse moduli space of θ-semistable

representations of the quiver Rγ with dimension vector (δ(v1), δ(v2)) =

(m2, m3), where the weight vector (θ(v1), θ(v2)) = (m3,−m2). The nonemp-

tyness of these moduli spaces will be verified later.

9.2 Rational map

We define a rational map from M(ξ) to Mα, Mβ or Mγ depending on

which one of α, β, γ is even.

Case (1) or (2) A general sheaf F ∈M(ξ) has a resolution of the form

Em3
−α−2

(f,g)−−−→ Em2
−β ⊕ E

m1
−γ .

Let M(ξ)◦ be the open subscheme of M(ξ) consisting of stable sheaves

having the resolution of this form.

Subcase (1 or 2, α). If α is even, then E−α−2 = E′−α−2 ⊕ E′′−α−2. Giving

the map

f = f ′ + f ′′ : E′m3
−α−2 ⊕ E

′′m3
−α−2→ Em2

−β

is equivalent to giving linear maps

(9.1)

Cm3 →Hom(E′−α−2, E−β)m2 and Cm3 →Hom(E′′−α−2, E−β)m2 ,
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which are obtained from f ′ and f ′′ by applying Hom(E′−α−2,−) and

Hom(E′′−α−2,−), respectively. The linear maps (9.1) determine a representa-

tion of the quiver Rα, denoted by π(F ), with dimension vector (m2, m3, m3).

Subcase (1 or 2, β). If β is even, then E−β = E′−β ⊕ E′′−β. As in the

previous case, the map f determines a representation of the quiver Rβ,

denoted by π(F ), with dimension vector (m3, m2, m2).

Subcase (1 or 2, γ). If γ is even, then both E−α−2 and E−β are simple

bundles. Giving map f is equivalent to giving a linear map

(9.2) Cm3 →Hom(E−α−2, E−β)m2 ,

which is obtained from f by applying Hom(E−α−2,−). The map (9.2)

determines a representation of the quiver Rγ , denoted by π(F ), with

dimension vector (m2, m3).

Case (3). A general sheaf F ∈M(ξ) has a resolution of the form

(9.3) Em1
−γ−2 ⊕ E

m3
−α−2

g+f−−→ Em2
−β .

Let M(ξ)◦ be the open subscheme of M(ξ) consisting of stable sheaves

having the resolution of this form. We consider the map f : Em3
−α−2→ Em2

−β .

As in the preceding cases, we see that f determines a representation of the

quiver Rα, Rβ or Rγ , denoted by π(F ), depending on whether α, β or γ is

even.

For ? ∈ {α, β, γ}, let M?s be the open subscheme of M? consisting of

θ-stable representations, where the weight θ is the one defined before. Let

M(ξ)◦σ be the open subscheme of M(ξ)◦ consisting of such F that π(F ) ∈
M?s. The rational map π from M(ξ) to Mα, Mβ or Mγ is defined to map

F ∈M(ξ)◦σ to π(F ). The following proposition guarantees that the domain

of definition of the rational map π is nonempty.

Proposition 9.1. M(ξ)◦σ is nonempty. Moreover, in Case (2), we have

M(ξ)◦ =M(ξ)◦σ.

Proof. In Case (2), F ∈M(ξ) fits in a short exact sequence

0→ Em3
−α−2

f−→ Em2
−β → F → 0.

So the result follows from Proposition 5.7.

Next we consider Case (3). We have only to show that M?s is nonempty

(? ∈ {α, β, γ}). Consider f : Em3
−α−2→ Em2

−β . For general f , f is injective and

the rank of F := Coker f is positive.
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Claim 9.1.1. We have µ̄(F )>−γ − xγ .

Proof of Claim. Let (µ̄1,∆1) be the intersection of the parabolas

∆ = P(µ̄+ µ̄(ξ))−∆(ξ) and ∆ = P(µ̄− γ − 2)−∆γ

in the (µ̄,∆)-plane. The point (µ̄(F ),∆(F )) lies on the parabolas

∆ = P(µ̄+ γ)−∆γ and ∆ = P(µ̄+ µ̄1)−∆1.

By calculation, we have

µ̄(F ) =
−γ − µ̄1 − 2

2
+

∆1 −∆γ

2(µ̄1 − γ)

>
−γ − (γ + xγ)− 2

2
+

(1/2)−∆γ

2xγ
=−γ − xγ .

This is the end of proof of the claim.

So for the K-class η := [F ], we can apply Proposition 5.7 and conclude

that M?s 6= ∅.
Finally we consider Case (1).

Claim 9.1.2. We have −µ̄(ξ)< γ.

Proof. Recall that (µ̄0, 1/2) is the intersection point with larger µ̄-

coordinate of the parabola ∆ = P(µ̄+ µ̄(ξ))−∆(ξ) and the line ∆ = 1/2

in the (µ̄,∆)-plane. Since ∆(ξ)> 1/2, we have −µ̄(ξ)< µ̄0. Let ν ∈ E with

−µ̄(ξ) ∈ Iν . We have ν 6 γ. If ν < γ, then clearly −µ̄(ξ)< γ and we are

done.

Consider the case ν = γ. We claim that γ − xγ <−µ̄(ξ)< γ. Indeed, if γ 6
−µ̄(ξ)< γ + xγ , then−γ − xγ < µ̄(ξ)6−γ, and since the point (µ̄(ξ),∆(ξ))

in the (µ̄,∆)-plane is above the graph of the function δ(µ̄), we have ∆(ξ)>
P(µ̄(ξ) + γ)−∆γ . On the other hand, in Case (1), we have ∆γ < P(µ̄(ξ) +

γ)−∆(ξ). This is a contradiction. This is the end of proof of the claim.

Let (µ̄1,∆1) be the intersection of the parabolas

∆ = P(µ̄− γ)−∆γ and ∆ = P(µ̄+ µ̄(ξ))−∆(ξ).

Using Claim 9.1.2, we can easily check γ − xγ < µ̄1. We consider three cases:

Case (1-i) γ − xγ < µ̄1 < γ,

Case (1-ii). µ̄1 = γ,
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Case (1-iii). γ < µ̄1.

By calculation we can obtain

µ̄1 = γ +
1− 2∆γ − (P(µ̄(ξ) + γ)−∆(ξ)−∆γ)

2(γ + µ̄(ξ))

and

r(ξ)− r(Em1
−γ ) =

r(ξ) {1− 2∆γ − (P(µ̄(ξ) + γ)−∆(ξ)−∆γ)}
1− 2∆γ

.

From these equations, we see that the cases (1-i), (1-ii) and (1-iii) corre-

spond to r(Em3
−α−2)> r(Em2

−β ), r(Em3
−α−2) = r(Em2

−β ) and r(Em3
−α−2)< r(Em2

−β ),

respectively.

Let η be the K-class [Em2
−β ]− [Em3

−α−2].

Case (1-ii). In this case, we can apply Proposition 5.9 for the K-class η

and conclude M?s 6= ∅.
In cases (1-i) and (1-iii), put µ̄2 = µ̄(η) and ∆2 = ∆(η). Since the point

(µ̄2,∆2) in the (µ̄,∆)-plane lies on the parabolas

∆ = P(µ̄+ µ̄1)−∆1 and ∆ = P(µ̄+ γ)−∆γ ,

we have, by calculation,

µ̄2 =−γ +
1− 2∆γ

2(µ̄1 − γ)
.

Case (1-iii). In this case, we have −γ < µ̄2. So we can apply Proposi-

tion 5.7 for the K-class η and conclude that M?s 6= ∅.

Case (1-i). In this case, we consider the dual map

f∗ : Em2
β → Em3

α+2.

Let η† be the K-class [Em3
α+2]− [Em2

β ]. We have

µ̄(η†) =−µ̄2 = γ +
1− 2∆γ

2(γ − µ̄1)
> γ +

1− 2∆γ

2xγ
= γ + 2− xγ .

Then we can apply Proposition 5.7 for the K-class η† and conclude that

M?s 6= ∅.
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9.3 Moving curves

Let us see that there are moving curves in the domain of definition of the

rational map π.

Proposition 9.2. In Case (1) or Case (3), for a general point x of

M(ξ), there exists a complete curve C passing through x in M(ξ)◦σ such

that π(C) is a point.

Proposition 9.3. In Case (2), the map π is birational. More precisely,

it gives rise to an open immersion of M(ξ)◦ to M?s. For a general point x

of M(ξ), there exists a complete curve in M(ξ)◦ passing through x.

Proof of Proposition 9.2. We give a proof for Case (1). We first check

that the dimension of the fiber of the rational map π is positive. By

calculation, the dimension of the fiber of the rational map π is −χ(ξ, E−γ).

We need to show χ(ξ, E−γ)< 0.

When −µ̄(ξ) ∈ Iγ , we have

∆(ξ)> P(γ − 2 + µ̄(ξ))−∆γ

since the height of the moduli space M(ξ) is positive. From this, we have

χ(ξ, E−γ) = χ(E−γ+2, ξ)< 0.

When −µ̄(ξ) /∈ Iγ , we have −µ̄(ξ)< γ − xγ . Moving upward the graph

∆ = P(µ̄+ µ̄(ξ))−∆(ξ) in the (µ̄,∆)-plane, we can find a positive number

ρ such that the graph ∆ = P(µ̄+ µ̄(ξ))−∆(ξ) + ρ passes through the point

(γ − xγ , 1/2). Then by calculation,

P(−µ̄(ξ)− γ)−∆(ξ)−∆γ + ρ = (xγ − 2)
(
2(γ + µ̄(ξ))− xγ

)
−∆γ + 1/2

< xγ(xγ − 2)−∆γ + 1/2 = 0.

By this, we have χ(ξ, E−γ)< 0.

We turn to the existence of a complete curve in M(ξ)◦σ passing through

a general point. Recall that we put U := Em3
−α−2 and V := Em2

−β ⊕ E
m1
−γ . Put

H1 := Hom(U, Em1
−γ ) and H2 := Hom(U, Em2

−β )

so that Hom(U, V )'H2 ⊕H1. Take a general f ∈H2. Then the represen-

tation of the quiver corresponding to f is θ-stable. Consider the open

subset Yf ⊂H1 consisting of g ∈H1 such that the morphism (f, g) : U → V

is injective with stable cokernel. Since the open subset Yf is invariant under

the action of C× by multiplication, we can consider the projectivization
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P(Yf )⊂ P(H1). Since codim(H1 \ Yf ,H1)> 2 by the explanation before

Remark 8.2, a general line in P(H1) lies inside P(Yf ) and determines a

complete curve in M(ξ)◦σ. This curve is mapped to a point by π because f

is fixed.

The argument for Case (3) is similar (and easier).

Proof of Proposition 9.3. The argument goes as in the proof of Propo-

sition 9.2. We employ the same notation used there. In Case (2), we have

m1 = 0. In the last paragraph of Section 8, we considered the open subset

Y ′ ⊂Hom(U, V ) consisting of injective morphisms with stable cokernel.

By the action of C× by multiplication, Y ′ is invariant. Consider the

projectivization P(Y ′)⊂ PHom(U, V ). Since the complement of P(Y ′) in

PHom(U, V ) has codimension at least 2, a general line in PHom(U, V ) lies

in P(Y ′), which determines a complete curve in M(ξ)◦.

Remark 9.4. Let M(ξ)µs be the open subscheme of M(ξ) consisting of

µ-stable bundles. When r(ξ)> 3, substituting Y ′′ in Remark 8.2 for Y ′ in

the above proof, we can find a complete curve passing through a general

point in Propositions 9.2 and 9.3 inside M(ξ)◦σ ∩M(ξ)µs.

§10. Effective cone of the moduli space

10.1 Line bundles on moduli spaces

We fix notation for line bundles on a moduli space of sheaves.

For a flat family E of coherent sheaves on S parametrized by a scheme

T , we let λE :K(S)→ Pic(T ) be the composition of homomorphisms

K(S)
q∗−→K0(S × T )

·[E]−−→K0(S × T )
p!−→K0(T )

det−−→ Pic(T ),

where p : S × T → T and q : S × T → S are projections, and K0(?) is the

Grothendieck group of locally free sheaves on ?

Fix a semistable class ξ ∈K(S). Let H be a smooth divisor in the very

ample linear system |OS(1, 1)| and let h= [OH ].

As in [HL, Definition 8.1.4], we put

Kξ := ξ⊥ and Kξ,H := ξ⊥ ∩ {1, h, h2}⊥⊥.

Since a class η ∈K(S) is in {1, h, h2}⊥⊥ if and only if η has symmetric c1,

we can also describe Kξ,H as

Kξ,H = {η ∈Kξ | η has symmetric c1}.

So, from now on, we write Ksym
ξ for Kξ,H .
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By [HL, Theorem 8.1.5], we have a homomorphism

(10.1) λ :Ksym
ξ → Pic (M(ξ))

such that if E is a flat family of semistable sheaves with K-class ξ on S

parametrized by a scheme T , then φ∗E ◦ λ= λE , where φE : T →M(ξ) is the

classifying morphism.

As in [HL, Definition 8.1.9], we define a line bundle Li by

Li := λ (ui(ξ)),

where ui(ξ) =−r(ξ) · hi + χ(ξ ⊗ hi)[Ox] with x ∈ S a closed point.

For m� 0, L0 ⊗ Lm1 is an ample line bundle on M(ξ) (cf. [HL, Remark

8.1.12]).

10.2 Edges of the cone

In the rest of this section, we assume that the semistable class ξ ∈K(S)

has symmetric c1 such that the height of the moduli space M(ξ) is positive.

Let γ be the symmetric exceptional slope determined by Lemma 8.1.

We denote also by λ the map

(10.2) λ :Ksym
ξ ⊗ R→NS (M(ξ))R

induced by (10.1).

Lemma 10.1. The map λ in (10.2) is injective.

Proof. When r(ξ) = 1, the exceptional divisor of the Hilbert–Chow

morphism is effective but not ample, so rank λ= 2.

When r(ξ) = 2, the divisor of M(ξ) consisting of nonlocally free sheaves

is effective but not ample, so rank λ= 2.

The proof for the case r(ξ)> 3 is postponed after the proof of

Theorem 10.2.

Put V := λ(Ksym
ξ ⊗ R). In this section, we determine the cone

Eff (M(ξ)) ∩ V .

We define (µ̄+,∆+) as follows (see the paragraph after Lemma 8.1 for

Cases (1), (2) and (3)):

In Case (1), we define (µ̄+,∆+) to be the intersection of the parabolas

∆ = P(µ̄+ µ̄(ξ))−∆(ξ) and ∆ = P(µ̄− γ)−∆γ .

In Case (2), we define (µ̄+,∆+) := (γ,∆γ).

In Case (3), we define (µ̄+,∆+) to be the intersection of the parabolas

∆ = P(µ̄+ µ̄(ξ))−∆(ξ) and ∆ = P(µ̄− γ − 2)−∆γ .
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Let r+ be the smallest positive integer such that r+µ̄ ∈ Z and r+(P(µ̄+)−
∆+) ∈ Z. We define ξ+ to be an element of Ksym

ξ such that r(ξ+) = r+,

µ̄(ξ+) = µ̄+ and ∆(ξ+) = ∆+.

Theorem 10.2.

(a) The ray spanned by λ(−ξ+) in NS(M(ξ))R is an edge of Eff(M(ξ)) ∩ V .

(b) The other edge of Eff(M(ξ)) ∩ V is spanned by λ(η). Here η is the

element of Ksym
ξ ⊗ R with µ̄(η) =−µ̄(ξ) and r(η)> 0 when r(ξ) = 1;

η ∈Ksym
ξ ⊗ R is such that µ̄(η) =−1− µ̄(ξ) and r(η)> 0 when r(ξ) = 2;

and η = ((ξ∗ ⊗KS)+)∗ when r(ξ)> 3.

Sketch of Proof. The argument is the same as in [CHW].

We let ?= α, β or γ depending on whether α, β or γ is even.

(a) Case (1). To show R>0λ(−ξ+)⊂ Eff(M(ξ)), it suffices to find E ∈
M(ξ) and F ∈M(Nξ+) for some N > 0 such that Hi(E ⊗ F ) = 0 for all

i. In fact, then, λ(−Nξ+) is the class of the effective divisor ΘF := {E ∈
M(ξ) |H0(E ⊗ F ) 6= 0}.

Consider E ∈M(ξ)◦σ fitting in a short exact sequence

0→ Em3
−α−2

(f,g)−−−→ Em2
−β ⊕ E

m1
−γ → E→ 0,

and F ∈M(Nξ+) fitting in a short exact sequence

0→ Emβ−2
h−→ Enα→ F → 0,

where m=−χ̃(Eβ, F ) and n=−χ̃(Eγ.β, F ). Define two-term complexes C•1 ,

C•2 and D• with terms in degree −1, 0 by

C•1 = [Em3
−α−2

(f,g)−−−→ Em2
−β ⊕ E

m1
−γ ], C•2 = [Em3

−α−2
f−→ Em2

−β ],

D• = [Emβ−2
h−→ Enα].

We have χ(E ⊗ F ) = 0 and H2(E ⊗ F ) = 0. Moreover, we have

H1(E ⊗ F ) ' H1(C•1 ⊗ F )

' H1(C•2 ⊗ F )

' HomD(S)(D
•∨, C•2 [1])

' HomD(S)(C
•
2 , D

•∨ ⊗KS [1])∗,(10.3)
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where the second isomorphism follows from Hi(E−γ ⊗ F ) = 0, for all i, and

the last isomorphism from the duality. D•∨ ⊗KS [1] is the complex

(10.4) En−α−2
h′−→ Em−β

with terms in degree −1, 0, where h′ is the morphism induced by h. The

complex C•2 corresponds to the representation π(E) of the quiver R?, we let

τ(F ) be the representation of R? corresponding to the complex (10.4). Using

[DW, Theorem 1], we can see that for some N > 0 and general F ∈M(Nξ+),

we have Hom(π(E), τ(F )) = 0, hence H1(E ⊗ F ) = 0.

By Proposition 9.2, we have a moving complete curve C ⊂M(ξ)◦σ. From

(10.3), it follows that C ⊂ΘF or C ∩ΘF = ∅ because π(C) is a point. Then

the intersection number C ·ΘF = 0. This implies that the ray R>0λ(−ξ+)

is an edge of Eff(M(ξ)) ∩ V .

Case (2). In this case we have Hi(E ⊗ Eγ) = 0, for all i, for any E ∈
M(ξ)◦. The effective divisor ΘEγ = {E ∈M(ξ) |H0(E ⊗ Eγ) 6= 0} has the

class λ(−ξ+). Using Proposition 9.3 instead of Proposition 9.2, arguing as

in Case (1), we can see that the ray R>0λ(−ξ+) is an edge of Eff(M(ξ)) ∩ V .

Case (3). We can argue as in Case (1).

(b) In the case r(ξ) = 1 (resp. r(ξ) = 2), we can see, by calculation, that

the ray R>0λ(η) is spanned by the exceptional divisor of the Hilbert–Chow

morphism (resp. the morphism to the Donaldson–Uhlenbeck compactifica-

tion). So it is an edge of Eff(M(ξ)) ∩ V .

Consider the case r(ξ)> 3. By (a), for general E′ ∈M(ξ∗ ⊗KS) and F ′ ∈
M(N(ξ∗ ⊗KS)+) for some N > 0, we have Hi(E′ ⊗ F ′) = 0 for all i. This

implies, by considering the dual, that for general E ∈M(ξ) and F ∈M(Nη)

we have Hi(E ⊗ F ) = 0 for all i. Then ΞF := {E ∈M(ξ) |H2(E ⊗ F ) 6= 0} is

an effective divisor with the class λ(Nη). Let us show that the ray R>0λ(η)

is an edge of Eff(M(ξ)) ∩ V . Let M(ξ)µs and M(ξ∗ ⊗KS)µs be the open

subschemes of M(ξ) and M(ξ∗ ⊗KS), respectively consisting of µ-stable

bundles. We have an isomorphism

f :M(ξ)µs→M(ξ∗ ⊗KS)µs

by f(E) = E∗ ⊗KS . By Remark 9.4, we can find a moving complete

curve C in M(ξ∗ ⊗KS)µs that is orthogonal to the class λ((ξ∗ ⊗KS)+).

Then the moving curve f−1(C) is orthogonal to λ(η). So the ray R>0λ(η)

is extremal.
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Proof of Lemma 10.1 in the case r(ξ)> 3. We first claim that ξ+ and(
(ξ∗ ⊗KS)+

)∗
are linearly independent in Ksym

ξ ⊗ R. Indeed, by definition,

we have

µ̄(ξ+)>−1− µ̄(ξ) and µ̄
(
(ξ∗ ⊗KS)+

)
>−1− µ̄(ξ∗ ⊗KS).

From this, we have

µ̄(((ξ∗ ⊗KS)+)∗)<−1− µ̄(ξ)< µ̄(ξ+).

So ξ+ and
(
(ξ∗ ⊗KS)+

)∗
are linearly independent.

Now suppose that λ is not injective. Then rank λ= 1 because Im λ

contains an ample class. For τ ∈Ksym
ξ ⊗ R, λ(τ) is proportional to an

ample class. So, if there exists a complete curve C ⊂M(ξ) such that

the intersection number λ(τ) · C is zero, then λ(τ) = 0. In the proof of

Theorem 10.2, we showed that for ξ+ and
(
(ξ∗ ⊗KS)+

)∗
, such a curve exists.

So λ (ξ+) = λ
((

(ξ∗ ⊗KS)+
)∗)

= 0. But then, we have rank λ= 0 because

ξ+ and
(
(ξ∗ ⊗KS)+

)∗
span Ksym

ξ . This is a contradiction.

Remark 10.3. I mention related works. The effective and ample cones

of the Hilbert scheme of Del Pezzo surfaces are discussed in [BC]. Ryan [Ry]

studies the effective cone of the moduli space of sheaves on a quadric surface

without the assumption c1 symmetric. The ample and movable cone of the

moduli space of sheaves on a surface is also studied by several authors [BM],

[CH1], [CH2], [LZ], [Y].

§11. Strange duality

Let ξ, ξ′ ∈K(S) be semistable class with symmetric c1. Assume that µ(ξ ⊗
ξ′)> 0 and χ(ξ ⊗ ξ′) = 0. Define a subscheme Θ of M(ξ)×M(ξ′) by

Θ =
{

(F, F ′) ∈M(ξ)×M(ξ′)
∣∣H0(S, F ⊗ F ′) 6= 0

}
.

Assume that Θ 6=M(ξ)×M(ξ′). Then Θ is a Cartier divisor and we have

O(Θ)'D �D′,

where D = λ(ξ′)∗ and D′ = λ(ξ)∗. The section defining Θ induces a linear

map

(11.1) H0(M(ξ),D)∗→H0(M(ξ′),D′).
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Theorem 11.1. Assume that either M(ξ) or M(ξ′) is of height zero.

Then the map (11.1) is an isomorphism.

Once we have Proposition 6.1, and a rational map to moduli spaces

of quiver representations constructed in Section 9, the proof of the above

theorem is quite parallel to that of [A15, Theorem 1.1]. So we omit the proof.

Appendix

From a full exceptional collection, one obtains a Beilinson-type spectral

sequence (cf. [GK, Section 4.5]). For readers’ convenience, we present a

spectral sequence obtained from a full d-block exceptional collection.

We let D = D(Y ) for a smooth projective variety Y . Let

E = (E(1), . . . , E(d))

be a full d-block exceptional collection, where E(k) = (E
(k)
1 , . . . , E

(k)
Nk

). We

define a block G(k) = (G
(k)
1 , . . . , G

(k)
Nk

) of exceptional objects by

G(k) =RE(d) . . . RE(k+1)(E(k)).

Then we have

(A1) Homm(G
(k)
i , E

(l)
j ) =

{
C (k, i) = (l, j) and m= 0,

0 otherwise.

Let F ∈ D and put F1 := F . Since the pair (〈E(k)〉, 〈E(k+1), . . . , E(d)〉)
is a semi-orthogonal decomposition of 〈E(k), . . . , E(d)〉, we can define Fk
(26 k 6 d), and Ck (16 k 6 d− 1) inductively by a triangle

(A2) Fk+1→ Fk→ Ck→ Fk+1[1],

where Fk+1 ∈ 〈E(k+1), . . . , E(d)〉 and Ck ∈ 〈E(k)〉. Put Cd := Fd. Using the

triangle (A2), we can see that

Ck =
⊕

16α6Nk, j∈Z
Extj(G(k)

α , F )⊗ E(k)
α [−j].

From the triangle (A2), we see that Fk is quasi-isomorphic to the mapping

cone of Ck[−1]→ Fk+1. By considering inductively, we can see that F is

quasi-isomorphic to a complex A• with filtration

A• =A•1 ⊃ · · · ⊃A•d ⊃A•d+1 = 0
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such that the graded complex A•k/A
•
k+1 is quasi-isomorphic to Ck. So we

have a spectral sequence

(A3) Ep,q1 =
⊕

16α6Np, j∈Z
Extj(G(p)

α , F )⊗Hp+q−j(E(p)
α )

converging to Hp+q(F ).

Now suppose in addition that d= dim Y + 1 and all E
(k)
i are exceptional

sheaves. Put Ḡ
(k)
i :=G

(k)
i [d− k]. Then Ḡ

(k)
i are sheaves by [BS, Theorem

4.5 and Lemma 5.2]. We have a spectral sequence

(A4) Ep,q1 =
⊕

16α6Np

Extq(Ḡ(p+d)
α , F )⊗ E(p+d)

α

converging to Hp+q(F ).

We apply the above spectral sequence to symmetric exceptional triples.

Let E = (E(1), E(2), E(3)) be a symmetric exceptional triple on S. Put

(G(3), G(2), G(1)) := τR1 τ
R
2 τ

R
1 (E). Note the parity of E(k) and G(k) is the

same. Then for F ∈ D, we have a spectral sequence

(A5) Ep,q1 = Extq(G(p+3), F )⊗̂E(p+3)

converging to Hp+q(F ), where

Extq(G(k), F )⊗̂E(k) =


Extq(G(k), F )⊗ E(k) if G(k) and E(k) are odd,

Extq(G(k)′, F )⊗ E(k)′

⊕
Extq(G(k)′′, F )⊗ E(k)′′

if G(k) =G(k)′ ⊕G(k)′′

and E(k) = E(k)′ ⊕ E(k)′′

are even.
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