SOME REMARKS ON MODULARITY OF THE CONGRUENCE LATTICE OF REGULAR ω-SEMIGROUPS

C. BONZINI and A. CHERUBINI

(Received 14 April 1992; revised 10 August 1992)

Communicated by P. G. Trotter

Abstract

In this paper conditions of M-symmetry, strong, semimodularity and θ-modularity for the congruence lattice $L(S)$ of a regular ω-semigroup S are studied. They are proved to be equivalent to modularity. Moreover it is proved that the kernel relation is a congruence on $L(S)$ if and only if $L(S)$ is modular, generalizing an analogous result stated by Petrich for bisimple ω-semigroups.

1991 Mathematics subject classification (Amer. Math. Soc.): 20 M 10.
Keywords and phrases: M-symmetric lattice, strongly semimodular lattice, semimodular lattice, θ modular lattice, double covering property, kernel relation, regular ω-semigroup.

Introduction

In [3] and [4] the authors stated conditions under which the lattice of congruences $L(S)$ of a regular ω-semigroup S is respectively modular or semimodular. Two other conditions, M-symmetry and strong semimodularity, are usually examined for the congruence lattice of semigroups. So it is natural to ask for conditions implying M-symmetry and strong semimodularity for the congruence lattice of regular ω semigroups.

We remark that we use terminology consistent with that used by Mitsch in [6]. Following other authors, semimodularity and strong semimodularity are called, respectively, double covering property and semimodularity. It is well known that in every lattice modularity implies M-symmetry, M-symmetry implies strong semimodularity, which in turn implies semimodularity. Thus we begin with conditions for strong semimodularity. Firstly, we give a characterization of regular ω-semigroups

[^0]whose congruence lattice is strongly semimodular. Then we prove that this condition is equivalent to the modularity conditions given in [3]. Hence this paper becomes a revisit of regular ω-semigroups with modular lattice of congruences.

Petrich introduced two relations on the congruence lattice of a regular semigroup: the trace relation and the kernel relation. In general the latter one is not a congruence on the congruence lattice, so he studied conditions in order that the kernel relation \mathscr{K} is a congruence and in $[8,9]$ observed a strict connection between this fact and the modularity of the congruence lattice for classes of regular semigroups. We study the kernel relation for a regular ω-semigroup and prove that $L(S)$ is modular if and only if \mathscr{K} is a congruence on $L(S)$.

Finally we prove that the modularity of $L(S)$ is equivalent to θ-modularity.
Notation and terminology will be as in [3] and [4], and a knowledge of these papers is useful in the following. As usual σ denotes the least group congruence, \mathscr{H} and \mathscr{D} the Green's relations, ι the identity congruence on S, and \mathbb{N} the set of non-negative integers.

Section 1

For sake of completeness, we begin by recalling the main results on the structure of regular ω-semigroups and on the description of some their congruences.

DEFINITION 1.1 (see, for example, [10]). A regular ω-semigroup S is a regular semigroup whose set of idempotents $E(S)$, or shortly E, forms an ω-chain

$$
e_{0}>e_{1}>\cdots>e_{n}>\cdots
$$

under the natural order defined on E by the rule $e \geq f$ if and only if $e f=f=f e$.
For a regular ω-semigroup, Munn [7] proved the following result:
THEOREM A. Let S be a regular ω-semigroup.
(i) If S has no kernel, then it is the union of an ω-chain of groups.
(ii) If the kernel of S coincides with S, then S is a simple regular ω-semigroup.
(iii) If S has a proper kernel, then S is a (retract) ideal extension of a simple regular ω-semigroup K by a semigroup H^{0}, where H is a finite chain of groups and H^{0} is obtained from H by adjoining a zero. Moreover this extension is determined by means of a homomorphism of H into the group of units of K.

Thus, the following theorem completely determines the structure of regular ω semigroups:

Theorem B (Kocin [5] and Munn [7]). Let d be a positive integer and let $\left\{G_{i} \mid\right.$ $i=0, \ldots, d-1\}$ be a set of d pairwise disjoint groups. Let γ_{d-1} be a homomorphism of G_{d-1} into G_{0} and, if $d>1$, let γ_{i} be a homomorphism of G_{i} into $G_{i+1}(i=$ $0, \ldots, d-2)$. For every $n \in \mathbb{N}$ let $\gamma_{n}=\gamma_{n(\bmod d)}$ where $n(\bmod d)$ denotes the integer equivalent to n modulo d, belonging to N and less than d. For $m, n \in \mathbb{N}$ and $m<n$ write

$$
\alpha_{m, n}=\gamma_{m} \gamma_{m+1} \ldots \gamma_{n-1}
$$

and for all $n \in N$ let $\alpha_{n, n}$ denote the identity automorphism of $G_{n(\bmod d)}$
Let S be the set of ordered triples (m, a_{i}, n), where $m, n \in \mathbb{N}, 0 \leq i \leq d-1$ and $a_{i} \in G_{i}$. Define a multiplication in S by the rule

$$
\left(m, a_{i}, n\right)\left(p, b_{j}, q\right)=\left(m+p-r,\left(a_{i} \alpha_{u, w}\right)\left(b_{j} \alpha_{v, w}\right), n+q-r\right)
$$

where $r=\min \{n, p\}, u=n d+i, v=p d+j$ and $w=\max \{u, v\}$. Denote the so formed groupoid by $S\left(d, G_{i}, \gamma_{i}\right)$. Then $S\left(d, G_{i}, \gamma_{i}\right)$ is a simple regular ω-semigroup with exactly $d \mathscr{D}$-classes and any regular ω-semigroup is isomorphic to a semigroup $S\left(d, G_{i}, \gamma_{i}\right)$.

For $n \in \mathbb{N}$ and $i=0, \ldots, d-1$ write $e_{i}^{n}=\left(n, e_{i}, n\right)$ where e_{i} is the identity of the group G_{i}. The elements e_{i}^{n} are the indempotents of $S\left(d, G_{i}, \gamma_{i}\right)$ and we have

$$
e_{0}^{0}>e_{1}^{0}>\cdots>e_{d-1}^{0}>e_{0}^{1}>\cdots>e_{d-1}^{1}>e_{0}^{2}>\cdots .
$$

Hence in the remainder of the paper we will denote a simple regular ω-semigroup by $S\left(d, G_{i}, \gamma_{i}\right)$.

The congruences on $S\left(d, G_{i}, \gamma_{i}\right)$ belonging to the interval $[\iota, \sigma \vee \mathscr{H}]$ were completely described by Baird [1,2] and it was proved that all congruences on S which are not in $[\iota, \sigma \vee \mathscr{H}]$ are group congruences (see [1, Remark p.164]).

We need the following definitions:
DEfinition 1.2 (see [1, 2 and 3], [2, 2]). Let $S=S\left(d, G_{i}, \gamma_{i}\right)$. A congruence μ on the set $E(S)$ of indempotents is called uniform if $\left(e_{i}^{n}, e_{j}^{m}\right) \in \mu$ implies that $\left(e_{i}^{n+p}, e_{j}^{m+p}\right) \in \mu$ for all integers $p \geq-\min \{m, n\}$.

Put $G=G_{0} \times G_{1} \times \cdots \times G_{d-1}$, the cartesian product of the G_{i}. A subset A of G will be called γ-admissible if
(i) $A=A_{0} \times \cdots \times A_{d-1}$, for some $A_{i} \subseteq G_{i}, i=0,1, \ldots, d-1$.
(ii) $A_{i} \unlhd G_{i}$, for $i=0,1, \ldots, d-1$.
(iii) $A_{d-1} \gamma_{d-1} \subseteq A_{0}$ and $A_{i} \gamma_{i} \subseteq A_{i+1}$, for $i=0,1, \ldots, d-2$.

If $A=A_{0} \times \cdots \times A_{d-1}$ and $B=B_{0} \times \cdots \times B_{d-1}$ are γ-admissible subsets of G we define $A \cdot B=A_{0} \cdot B_{0} \times \cdots \times A_{d-1} \cdot B_{d-1}$. Obviously $A \cdot B$ is a γ-abmissible subset of G. Let μ be a uniform congruence on $E(S), A$ a γ-admissible subset of G
and i an integer with $0 \leq i<d$. Put $\mu-\operatorname{rad} A_{i}=\left\{a_{i} \in G_{i} \mid a_{i} \alpha_{n d+i, m d+j} \in A_{j}\right.$ for some positive integers n, m and for some j with $0 \leq j<d$ such that $\left(e_{i}^{n}, e_{j}^{m}\right) \in \mu$ and $\left.e_{j}^{m} \leq e_{i}^{n}\right\}$, and $\mu-\operatorname{rad} A=\mu-\operatorname{rad} A_{0} \times \cdots \times \mu-\operatorname{rad} A_{d-1}$.

If $\mu-\operatorname{rad} A=A, \mu$ and A are called linked.
We remark that the set of the γ-admissible subsets of G forms a lattice $\Gamma(S)$, with respect to the union gived by the previously defined product and set theoretical intersection (see [1, p. 164]). Moreover, for every uniform congruence μ, the set $\Gamma_{\mu}(S)$ of μ-linked subsets of G is a subsemilattice of $\Gamma(S)$, with respect to intersection. This is a lattice because the μ-linked subsets of G form a partially ordered set isomorphic to the set of congruences in $[\iota, \sigma \vee \mathscr{H}]$ having trace μ (see [10]).

Let $S=S\left(d, G_{i}, \gamma_{i}\right)$. Subsequently we will use the following notation:
(i) we let 1 be the γ-admissible subset $\left\{e_{0}\right\} \times \cdots \times\left\{e_{d-1}\right\}$ of G;
(ii) for any congruence τ on S, let $A^{\tau}=A_{0}^{\tau} \times \cdots \times A_{d-1}^{\tau}$ where $A_{i}^{\tau}=\left\{a_{i} \in\right.$ $\left.G_{i} \mid\left(0, a_{i}, 0\right) \tau e_{i}^{0}\right\}, i=0, \ldots, d-1$.
The following definition is well known (see [10]).
DEFINITION 1.3. Let ρ be a congruence on an inverse semigroup S. The trace of ρ, denoted by $\operatorname{tr} \rho$, is the restriction of ρ to the set $E(S)$.

Theorem C (see [1, Theorems 4.2, 5.1, 5.2, 5.3]). Let $S=S\left(d, G_{i}, \gamma_{i}\right)$, let μ be a uniform congruence on E, let A be a γ-admissible subset of G, and suppose that μ and A are linked. Then

$$
\begin{aligned}
& \tau=\left\{\left(\left(m, a_{i}, n\right),\left(p, b_{j}, q\right)\right) \in S \times S \mid\left(a_{i} \alpha_{u, w}\right)\left(b_{j}^{-1} \alpha_{v, w}\right) \in A_{w(\bmod d)},\right. \text { where } \\
& \left.\quad u=n d+i, v=q d+j, w=\max \{u, v\} ; m-n=p-q ;\left(e_{i}^{m}, e_{j}^{p}\right) \in \mu\right\}
\end{aligned}
$$

is a congruence on S contained in $[\iota, \sigma \vee \mathscr{H}]$ such that $\operatorname{tr} \tau=\mu$ and $A^{\tau}=A$.
Conversely, let τ be a congruence on $S=S\left(d, G_{i}, \gamma_{i}\right)$ contained in $[\iota, \sigma \vee \mathscr{H}]$. Then τ is of the above form with $\mu=\operatorname{tr} \tau$ and $A=A^{\tau}$. Moreover, let ρ, λ be congruences on $S=S\left(d, G_{i}, \gamma_{i}\right)$ contained in $[\iota, \sigma \vee \mathscr{H}]$. Then
(i) $\rho \leq \lambda$ if and only if $\operatorname{tr} \rho \leq \operatorname{tr} \lambda$ and $A^{\rho} \subseteq A^{\lambda}$,
(ii) $\operatorname{tr}(\rho \vee \lambda)=\operatorname{tr} \rho \vee \operatorname{tr} \lambda, \operatorname{tr}(\rho \wedge \lambda)=\operatorname{tr} \rho \wedge \operatorname{tr} \lambda$,
(iii) $A^{\rho \vee \lambda}=(\operatorname{tr} \rho \vee \operatorname{tr} \lambda)-\operatorname{rad} A^{\rho} \cdot A^{\lambda}, A^{\rho \wedge \lambda}=A^{\rho} \cap A^{\lambda}$.

We recall the following well-known definitions.
DEFINITION 1.4. Let L be a lattice and let $a, b \in L$. We say that a covers b, denoted $a \succ b$, if $a>b$ and there is no element $c \in L$ such that $a>c>b$.

DEFINITION 1.5 (see [7]). A lattice L is called strongly semimodular if, for every $a, b \in L, a \succ a \cap b$ implies $a \cup b \succ b$.

We prove the following.
Proposition 1.6. Let $S=S\left(d, G_{i}, \gamma_{i}\right)$. The following are equivalent.
(i) Let A, B be γ-admissible subsets of G. If $B \supseteq A$ and A is μ-linked, then B is μ-linked, for each uniform conqruence μ.
(ii) The interval $[\iota, \sigma \vee \mathcal{H}]$ of $L(S)$ is strongly semimodular.
(iii) The set Γ_{μ} of μ-linked subsets of G is a filter of the lattice Γ of γ-admissible subsets of G, for each uniform congruence μ.
(iv) The map $f:[\iota, \sigma \vee \mathcal{H}] \rightarrow \Gamma$ defined by $f(\rho)=A^{\rho}$ is a homomorphism of lattices.

Proof. (i) implies (ii). Let λ, ρ, be two congruences in $[\iota, \sigma \vee \mathscr{H}]$ such that $\lambda \succ \lambda \wedge \rho$. Denote by ν and μ the traces of λ and ρ respectively. We distinguish the following cases:

CASE 1: ν and μ are not comparable, or $\mu<\nu$. Then $\operatorname{tr}(\lambda \wedge \rho) \neq \nu$ and from [4, Lemma 2.6 (ii)], it follows that v covers $\operatorname{tr}(\lambda \wedge \rho)$ and $A^{\lambda \wedge \rho}=A^{\lambda}$. Hence $A^{\rho} \supseteq A^{\lambda}$. Since A^{λ} is v-linked, by hypothesis A^{ρ} is v-linked; thus A^{ρ} is ($\left.v \vee \rho\right)$-linked by [3, Lemma 1.3]. For the congruence $\lambda \vee \rho$, we have $A^{\lambda \vee \rho}=(\nu \vee \mu)-\operatorname{rad} A^{\rho} \cdot A^{\lambda}=$ $(\nu \vee \mu)-\operatorname{rad} A^{\rho}=A^{\rho}$ and $\operatorname{tr}(\lambda \vee \rho)=\nu \vee \mu$. It is well known that uniform congruences form a modular lattice; hence $\nu \vee \mu$ covers μ, and so $\lambda \vee \rho$ covers ρ by [4, Lemma 2.5. (ii)].

CASE 2: $\nu<\mu$. Since $\operatorname{tr}(\lambda \wedge \rho)=\operatorname{tr} \lambda, A^{\lambda}$ covers $A^{\rho} \cap A^{\lambda}$ in the semilattice Γ_{ν} of ν-linked subsets of G (by [4, Lemma 2.5 (1)]). Now let C be a γ-admissible subset of G containing $A^{\rho} \cap A^{\lambda}$. Then condition (i) implies that C is v-linked; hence A^{λ} covers $A^{\rho} \cap A^{\lambda}$ in the modular lattice Γ of γ-admissible subsets of G, and so $A^{\rho} \cdot A^{\lambda}$ covers A^{ρ} in Γ. Moreover, A^{ρ} is μ-linked, and by (i) $A^{\rho} \cdot A^{\lambda}$ is μ-linked; hence we have $A^{\rho \vee \lambda}=(\nu \vee \mu)-\operatorname{rad} A^{\rho} \cdot A^{\lambda}=A^{\rho} \cdot A^{\lambda}$. Thus, since $\operatorname{tr}(\rho \vee \lambda)=\operatorname{tr} \rho$, it follows that $\lambda \vee \rho$ covers ρ, using [4, Lemma 2.5.(i)].

CASE 3: $\mu=\nu$. The statement immediately follows from the fact that congruences having the same trace form a modular lattice (see [10, Corollary III.2.7]).
(i) implies (iv). Let λ and ρ be two congruences in $[1, \sigma \vee \mathscr{H}]$ having traces v and μ respectively. From (i) it follows that $A^{\rho} \cdot A^{\lambda}$ is ν-linked and μ-linked, so it is $(\nu \vee \mu)$-linked and $A^{\rho \vee \lambda}=(\nu \vee \mu)-\operatorname{rad} A^{\rho} \cdot A^{\lambda}=A^{\rho} \cdot A^{\lambda}$.
(iv) implies (iii). For all μ-linked subsets A, B of G, it is well known that $A \cap B$ is μ-linked. Now, let λ be the congruence with trace μ and $A^{\lambda}=A$, and let ρ be the congruenec with trace ι and $A^{\rho}=B$. Note that λ and ρ are in $[\iota, \sigma \vee \mathscr{H}]$. Hence $A^{\rho \vee \lambda}=(\mu \vee \imath)-\operatorname{rad} A^{\rho} \cdot A^{\lambda}=\mu-\operatorname{rad} A \cdot B$, but (iv) implies that $A^{\rho \vee \lambda}=A \cdot B$ and so $A \cdot B$ is μ-linked.
(iii) implies (i). If A is μ-linked and B is a γ-admissible subset containing A, then $A \cdot B=B$ is μ-linked by condition (iii).
(ii) implies (i). Let A be a μ-linked subset and let B be a γ-admissible subset containing A. Now B is v-linked for some uniform congruence $v \leq \mu$. Suppose that v is a maximal uniform congruence with $\nu \leq \mu$, such that B is ν-linked, suppose $\nu<\mu$, and consider a finite chain of uniform congruences $\mu \succ \nu_{1} \succ \nu_{2} \succ \nu_{3} \succ \cdots \succ \nu_{k}=\nu$. Then A is ν_{i}-linked for every $1 \leq i \leq k$. The congruence ρ having trace ν_{k-1} and satisfying $A^{\rho}=A$, and the congruence λ with $\operatorname{tr} \lambda=v$ satisfying $A^{\lambda}=B$, are in $[\iota, \sigma \vee \mathscr{H}]$. The congruence $\rho \wedge \lambda$ has trace v and $A^{\rho \wedge \lambda}=A$, and so $\rho \succ \rho \wedge \lambda$. Hence $\lambda \vee \rho \succ \lambda$ and $\operatorname{tr}(\lambda \vee \rho) \neq \operatorname{tr} \lambda$ implies $A^{\rho \vee \lambda}=v_{k-1}-\operatorname{rad} B=A^{\lambda}=B$. Then by [4, Remark 2.4], B is v_{k-1}-linked, contradicting the assumption of maximality of v. Hence $v=\mu$.

Section 2

In this section we prove the equivalence between the conditions of modularity and strong semimodularity for the congruence lattice of a simple regular ω-semigroup.

We recall that a lattice L is called modular if for every $a, b, c \in L$ with $a \leq b$, if $a \cup c=b \cup c$ and $a \cap c=b \cap c$, then $a=b$.

Lemma 2.1. Let $S=S\left(d, G_{i}, \gamma_{i}\right)$. If $[\iota, \sigma \vee \mathscr{H}]$ is strongly semimodular, then $L(S)$ is modular.

Proof. Since $[\iota, \sigma \vee \mathscr{H}$] is strongly semimodular, condition (i) of Proposition 1.6 holds. Let A be a γ-admissible subset of G and let μ be a uniform congruence on the idempotents $E(S)$. It is well known that $\mu-\operatorname{rad} 1 \subseteq A \cdot \mu-\operatorname{rad} 1$. Since $A \cdot \mu-\operatorname{rad} 1$ is a γ-admissible subset and μ-rad 1 is μ-linked; condition (i) of Proposition 1.6 implies that $A \cdot \mu-\operatorname{rad} 1$ is μ-linked, whence $A \cdot \mu-\operatorname{rad} 1=\mu-\operatorname{rad}(A \cdot \mu-\operatorname{rad} 1) \supseteq \mu-\operatorname{rad} A$. Thus $A \cdot \mu-\operatorname{rad} 1=\mu-\operatorname{rad} A$ and $L(S)$ is modular by [3, Theorem 1.8].

THEOREM 2.2. Let $S=S\left(d, G_{i}, \gamma_{i}\right)$.The congruence lattice $L(S)$ of S is modular if and only if it is strongly semimodular.

Proof. It is well known that $L(S)$ being modular implies that $L(S)$ is strongly semimodular.

Suppose that $L(S)$ is strongly semimodular. Then $[\iota, \sigma \vee \mathscr{H}]$ is strongly semimodular because it is a convex sublattice of $L(S)$ (see for instance [11, Lemma 2.2]), and the statement follows from Lemma 2.1.

We recall the following

DEFInITION 2.3. A lattice L is called M-symmetric if the modularity relation M, defined by $a M b$ if and only if for every $x \in[a \cap b, b]$ we have $x=(x \cup a) \cap b$, is symmetric.

From the above result we obtain the following
COROLLARY 2.4. Let $S=S\left(d, G_{i}, \gamma_{i}\right)$. The following are equivalent.
(i) $L(S)$ is modular.
(ii) $L(S)$ is M-symmetric.
(iii) $L(S)$ is strongly semimodular.

Proof. This result immediately follows from the well known fact that every modular lattice is M-symmetric and every M-symmetric lattice is strongly semimodular.

REMARK 2.5. Among the conditions similar to modularity quoted in [6, p.6] the only one strictly weaker than modularity for the congruence lattice of a regular ω semigroup is semimodularity.

We recall that a lattice L is called semimodular if, for every $a, b \in L$ such that a and b both cover $a \cap b$, then $a \cup b$ covers a and b. The authors studied this condition in [4].

Section 3

When we establish modularity conditions for the congruence lattice of a simple regular ω-semigroup S, we need consider only suitable sublattices of the congruence lattice of S.

First we prove the following.
Lemma 3.1. Let $S=S\left(d, G_{i}, \gamma\right)$. The following are equivalent.
(i) Let A, B be γ-admissible subsets of G and let μ be a uniform congruence μ covering ι. If $B \supseteq A$ and A is μ-linked, then B is μ-linked.
(ii) Let A, B be γ-admissible subsets of G and let μ be a uniform congruence. If $B \supseteq A$ and A is μ-linked, then B is μ-linked.

Proof. It is immediate that (ii) implies (i).
(i) implies (ii). Suppose v is a uniform congruence which does not cover l; then $\nu=v_{1} \vee v_{2} \vee \cdots \vee v_{h}$ with v uniform congruences covering ι. Now let A, B be two γ-admissible subsets of G, and suppose that $B \supseteq A$ and that A is v-linked. Then A is v_{i}-linked for every $1 \leq i \leq h$, and so B is v_{i}-linked from the hypothesis and by [3 , Lemma 1.3] it follows that B is $\left(v_{1} \vee \nu_{2} \vee \cdots \vee v_{h}\right)$-linked.

THEOREM 3.2. Let μ be any uniform congruence of simple regular ω-semigroup S covering ι in the lattice of uniform congruences. Let σ_{μ} be the least congruence having trace μ. Then $L(S)$ is modular if and only if $\left[\mathscr{H} \wedge \sigma_{\mu}, \mathscr{H} \vee \sigma_{\mu}\right]$ is strongly semimodular.

PROOF. [$\mathscr{H} \wedge \sigma_{\mu}, \mathscr{H} \vee \sigma_{\mu}$] is a sublattice of $L(S)$, so if $L(S)$ is modular, it is also modular and obviously strongly semimodular. Now let [$\mathscr{H} \wedge \sigma_{\mu}, \mathscr{H} \vee \sigma_{\mu}$] be a strongly semimodular lattice. In view of Lemma 2.1 it is enough to prove that [$\iota, \sigma \vee \mathscr{H}]$ is strongly semimodular. Suppose that μ is a uniform congruence covering ι, that A and B are γ-admissible subsets with $B \supseteq A$, and that A is μ-linked. Let λ be the congruence having trace ι and $A^{\lambda}=B$, and let ρ be the congruence having trace μ and $A^{\mu}=B$. Both the congruences are in [$\mathscr{H} \wedge \sigma_{\mu}, \mathscr{H} \vee \sigma_{\mu}$]. In fact $\mathscr{H} \wedge \sigma_{\mu}$ has trace $\iota, A^{\mathscr{H}}{ }_{\wedge \sigma_{\mu}}=\operatorname{rad} 1, \mathscr{H} \vee \sigma_{\mu}$ has trace μ and $A^{\mathscr{H} \vee \sigma_{\mu}}=G$. Thus $\lambda \wedge \rho$ has trace $\iota, A^{\lambda \wedge \rho}=A$ and ρ covers $\lambda \wedge \rho$. From the hypothesis it follows that $\lambda \vee \rho$ cover λ. But $\lambda \vee \rho$ has trace μ and $A^{\lambda \vee \rho}=\mu-\operatorname{rad} B$, so $\mu-\operatorname{rad} B=B$ [4, Remark 2.4], and the statement follows from the previous lemma and Proposition 1.6.

Section 4

The following definition is well-known (see [10]).
DEFINITION 4.1. Let S be an inverse semigroup. A full inverse subsemigroup K of S is called a kernel in S if it satisfies $a b \in K$ implies $a K b \subseteq K(a, b \in S)$. Denote by $K(S)$ the set of kernels in S ordered by inclusion. The kernel map is defined by $\kappa: \rho \rightarrow \operatorname{ker} \rho$. The map κ is a complete \cap-homomorphism of $L(S)$ onto $K(S)$. The equivalence relation \mathscr{K} on $L(S)$ induced by κ is called the kernel relation.

The relation \mathscr{K} is a congruence with respect to intersection but in general it is not a congruence on $L(S)$ (see either [10, Ex.III.4.11], or [8], or [9])

We prove the following
Theorem 4.2. Let $S=S\left(d, G_{i}, \gamma_{i}\right) . \quad L(S)$ is modular if and only if \mathscr{K} is a congruence on $L(S)$.

PROOF. Suppose that $L(S)$ is modular and let λ, ρ be two congruence on S such that $\lambda \mathscr{K} \rho$. Let τ be a congruence on S. We have to prove that $\lambda \vee \tau \mathscr{K} \rho \vee \tau$. Firstly we prove that $\operatorname{ker}(\rho \vee \tau)=\operatorname{ker} \rho \vee \operatorname{ker} \tau$ for every congruence ρ, τ on S. It is immediate that $\operatorname{ker}(\rho \vee \tau) \supseteq \operatorname{ker} \rho \vee \operatorname{ker} \tau$. In order to prove that $\operatorname{ker}(\rho \vee \tau) \subseteq \operatorname{ker} \rho \vee \operatorname{ker} \tau$ we distinguish two cases:

CASE 1. Both the congruences ρ, τ are in $[\iota, \sigma \vee \mathscr{H}]$. Firstly remark that from the definition of A^{ρ}, it follows immediately that $\operatorname{ker} \rho=\left\{(m, a, m) \mid m \in \mathbb{N}, a \in A^{\rho}\right\}$
for every congruence $\rho \in[\iota, \sigma \vee \mathscr{H}]$. Hence $\rho \vee \tau \in[\iota, \sigma \vee \mathscr{H}]$ gives $\operatorname{ker}(\rho \vee \tau)=$ $\left\{(n, c, n) \mid n \in \mathbb{N}, c \in A^{\rho \vee \tau}\right\}$. Moreover Proposition 1.6 implies that that $A^{\rho \vee \tau}=$ $A^{\rho} \cdot A^{\tau}$. Since ker $\rho \vee \operatorname{ker} \tau$ contains the set $\left\{(m, a b, m) \mid m \in \mathbb{N}, a \in A^{\rho}, b \in A^{\tau}\right\}$ we immediately deduce that $\operatorname{ker}(\rho \vee \tau) \subseteq \operatorname{ker} \rho \vee \operatorname{ker} \tau$.

CASE 2. At least one of the congruences ρ, τ is not in $[\iota, \sigma \vee \mathscr{H}]$. Let $\tau \notin$ $[\iota, \sigma \vee \mathscr{H}]$. Then τ is a group congruence. Since $\operatorname{ker}(\sigma \vee \mathscr{H}) \nsupseteq \operatorname{ker} \rho \vee \operatorname{ker} \tau$, $\operatorname{ker} \rho \vee \operatorname{ker} \tau$ is a kernel of a congruence $\theta \notin[\iota, \sigma \vee \mathscr{H}]$. Hence θ is a group congruence greater than ρ and τ, so $\theta \geq \rho \vee \tau$ and $\operatorname{ker} \theta \supseteq \operatorname{ker}(\rho \vee \tau)$.

Now it immediately follows that \mathscr{K} is also a congruence with respect to the join.
Conversely let \mathscr{K} be a congruence. Let B and A be γ-admissible subgroups such that $B \supseteq A$ and let A be μ-linked for some uniform congruence μ. Let ρ, λ, τ be three congruences in $[\iota, \sigma \vee \mathscr{H}]$ such that $\operatorname{tr} \lambda=\iota, \operatorname{tr} \rho=\mu, \operatorname{tr} \tau=\iota$ and $A^{\lambda}=A$, $A^{\rho}=A, A^{\tau}=B$. Thus we have $\lambda \mathscr{K} \rho$. Hence $\lambda \vee \tau \mathscr{K} \rho \vee \tau$. Since both $\lambda \vee \tau$ and $\rho \vee \tau$ are in $[\iota, \sigma \vee \mathscr{H}]$, we have $\operatorname{ker}(\lambda \vee \tau)=\left\{(m, a, m) \mid m \in \mathbb{N}, a \in A^{\lambda \vee \tau}\right\}$ and $\operatorname{ker}(\lambda \vee \tau)=\left\{(m, a, m) \mid m \in \mathbb{N}, a \in A^{\rho \vee \tau}\right\}$, but $A^{\lambda \vee \tau}=A \cdot B=B$ and $A^{\rho \vee t}=\mu-\operatorname{rad} A \cdot B=\mu-\operatorname{rad} B$. Thus $\mu-\operatorname{rad} B=B$ and $L(S)$ is modular from Proposition 1.6 and Lemma 2.1.

We extend the previous results in the following.

TheOrem 4.3. Let $S=S\left(d, G_{i}, \gamma_{i}\right)$. The following conditions are equivalent.
(1) $L(S)$ is modular.
(2) $L(S)$ is strongly semimodular.
(3) $L(S)$ is M-symmetric.
(4) \mathscr{K} is a congruence on $L(S)$.

Moreover all these equivalent properties are equivalent to the same properties on sublattices of $L(S)$. In fact the following theorem holds.

THEOREM 4.4. Let $S=S\left(d, G_{i}, \gamma_{i}\right)$. Let μ be any uniform congruence covering ι and let σ_{μ} be the least congruence having trace μ. The following are equivalent.
(1) $\left[\mathscr{H} \wedge \sigma_{\mu}, \mathscr{H} \vee \sigma_{\mu}\right]$ is modular.
(2) $\left[\mathscr{H} \wedge \sigma_{\mu}, \mathscr{H} \vee \sigma_{\mu}\right]$ is strongly semimodular.
(3) $\left[\mathscr{H} \wedge \sigma_{\mu}, \mathscr{H} \vee \sigma_{\mu}\right]$ is M-svmmetric
(4) \mathscr{K} is a congruence on $\left[\mathscr{H} \wedge \sigma_{\mu}, \mathscr{H} \vee \sigma_{\mu}\right]$.
(5) $L(S)$ is modular.

In Theorem 3.2 we proved the equivalence between (5) and (2). The other statements can be proved in an analogous way.

DEFINITION 4.5. For each congruence ρ on S, ρ^{K} denotes the greatest congruence having ker ρ as kernel.

For each uniform congruence μ, σ_{μ} denotes the least congruence having trace μ.
We can also prove the following
PROPOSITION 4.6. Let $S=S\left(d, G_{i}, \gamma_{i}\right)$. Let μ be a uniform congruence covering t. Then $L(S)$ is modular if and only if for every congruence ρ with $\mathscr{H} \wedge \sigma_{\mu} \leq \rho \leq \mathscr{H}$, ρ^{K} contains σ_{μ}.

PROOF. Let μ be a uniform congruence covering l. Suppose that $\mathscr{H} \wedge \sigma_{\mu} \leq \rho \leq \mathscr{H}$ implies $\rho^{K} \geq \sigma_{\mu}$. Let B and A be two γ-admissible subgroups with $B \supseteq A$ and let A be μ-linked. The congruence ρ has trace ι and $A^{\rho}=B$ contains $\mathscr{H} \wedge \sigma_{\mu}$. The congruence ρ^{K} is in $[\iota, \sigma \vee \mathscr{H}]$ because $\operatorname{tr} \rho^{K}=\omega_{E}=\operatorname{tr}(\sigma \vee \mathscr{H})$ and ker $\rho^{K}=$ $\{(m, B, m) \mid m \in \mathbb{N}\} \subseteq\{(m, G, m) \mid m \in \mathbb{N}\}=\operatorname{ker}(\sigma \vee \mathscr{H})$. So ρ^{K} has trace ν and $A^{\rho^{K}}=B$ is v-linked. Since $\rho^{K} \geq \sigma_{\mu}, v \geq \mu$ and B is μ-linked by [4, Remark 2.4]. Hence $L(S)$ is modular. Conversely let $L(S)$ be modular and let ρ belong to [$\mathscr{H} \wedge \sigma_{\mu}, \mathscr{H}$] for a uniform congruence μ covering ι. Then ρ has trace ι and $A^{\rho}=B$ with $B \supseteq \mu-\operatorname{rad} 1$. Now $\mu-\operatorname{rad} 1$ is μ-linked and by hypothesis B is also μ-linked. Let ν be the trace of $\rho^{K}, \nu \geq \mu$; since $\operatorname{ker} \rho^{K}=\{(m, B, m) \mid m \in \mathbb{N}\}$, we deduce $\rho^{K} \geq \sigma_{\mu}$.

Section 5

Now we examine the general case of regular ω-semigroups.
It is well-known that a non-simple regular ω-semigroup S is either an ω-chain of groups or the disjoint union of a finite chain of groups $H=\left[n, H_{j}, \phi_{j}\right]$ and a simple regular ω-semigroup $K=K\left(d, K_{i}, \psi_{i}\right)$ which is an ideal of S. In the latter case, as in [3,4], we will use the notation $S=S\left(\left[n, H_{j}, \phi_{j}\right] ; K, \phi\right)$ where ϕ is the homomorphism which induces the retract extension of K by H^{0}, and which is actually a homomorphism of H into K_{0}.

Modularity, M-symmetry and strong semimodularity of the congruence lattice of ω-chains $\left[\Omega, H_{j}, \phi_{j}\right]$ of groups are equivalent to the triviality of ϕ_{j} for every $j \in \mathbb{N}$ (see, for instance [11, Th.6.5 and Th.6.6]).

For a regular ω-semigroup $S=S\left(\left[n, H_{j}, \phi_{j}\right] ; K, \phi\right)$ we deduce from [11, Theorem 6.6] that $L(S)$ is modular if and only if K has a modular lattice of congruences and ϕ and all ϕ_{j} are trivial. Moreover if $L(S)$ is strongly semimodular then ϕ and all ϕ_{j} are trivial from [11, Theorem 6.5] and K is strongly semimodular. Then we immediately deduce from Corollary 2.4 that M-symmetry and strong semimodularity of the congruence lattice of $S=S\left(\left[n, H_{j}, \phi_{j}\right] ; K, \phi\right)$ are equivalent to modularity.

As concerns the relation \mathscr{K}, Petrich [9] proved the following
THEOREM D. Let $\left[Y ; S_{\alpha}, \phi_{\alpha, \beta}\right]$ be a strong semilattice of simple regular semigroups. \mathscr{K} is a congruence if and only if
(1) \mathscr{K} is a congruence on $L\left(S_{\alpha}\right)$ for every $\alpha \in Y$,
(2) $S_{\alpha} \phi_{\alpha, \beta} \subseteq E\left(S_{\beta}\right)$ whenever $\alpha>\beta$.

Then we easily deduce the following
ThEOREM 5.1. Let S be a regular ω-semigroup. The following conditions are equivalent
(1) $L(S)$ is modular.
(2) $L(S)$ is strongly semimodular.
(3) $L(S)$ is M-symmetric.
(4) \mathscr{K} is a congruence on $L(S)$.

Proof. We just observed the equivalence of conditions (1), (2), (3). If (1) holds then (4) follows from Theorem D and Theorem 4.3.

Suppose that (4) holds. Then if S is simple, (1) follows from Theorem 4.3. If S is an ω-chain of groups Theorem D implies that ϕ_{j} are trivial for every $j \in \mathbb{N}$, whence (1) follows. If $S=S\left(\left[n, H_{j}, \phi_{j}\right] ; K, \phi\right)$, from Theorem D we deduce that $H_{n-1} \phi \subseteq E\left(K_{0}\right)$ and $H_{j} \phi_{j} \subseteq E\left(H_{j+1}\right)$ for $0 \leq j \leq n-2$, whence ϕ and ϕ_{j} are trivial. Moreover Theorem D implies that \mathscr{K} is a congruence on $L(K)$. So by Theorem 4.3, $L(K)$ is modular and $L(S)$ is modular by [3, Lemma 3.4].

Section 6

Now we compare the condition of modularity for $L(S)$, with the condition of θ-modularity of S. We recall the following

DEFINITION 6.1 ([12]). A regular semigroup S is called θ-modular if for all congruences λ, ρ, τ on S, conditions $\lambda \wedge \rho=\lambda \wedge \tau, \lambda \vee \rho=\lambda \vee \tau, \rho \geq \tau$ and $\operatorname{tr} \rho=\operatorname{tr} \tau$ imply $\rho=\tau$.

We can prove the following
LEMMA 6.2. Let S be a regular semigroup, with a modular lattice of congruence traces. If S is θ-modular then $L(S)$ is modular.

Proof. Let S be θ-modular, and suppose that there exist three congruences λ, ρ, τ on S with $\lambda \wedge \rho=\lambda \wedge \tau, \lambda \vee \rho=\lambda \vee \tau, \rho \geq \tau$ and $\operatorname{tr} \rho>\operatorname{tr} \tau$. Since in a regular
semigroup every congruence is uniquely determined by the pair of its trace and kernel, it follows that $\operatorname{tr} \lambda$ is neither comparable with $\operatorname{tr} \rho$ nor with $\operatorname{tr} \tau$. So we have three congruences with $\operatorname{tr} \rho>\operatorname{tr} \tau, \operatorname{tr}(\lambda \wedge \rho)=\operatorname{tr}(\lambda \wedge \tau)$, and $\operatorname{tr}(\lambda \vee \rho)=\operatorname{tr}(\lambda \vee \tau)$, which contradicts the modularity of the lattice of congruence traces.

PROPOSITION 6.3. For a regular ω-semigroup S the following are equivalent.
(i) $L(S)$ is modular.
(ii) S is θ-modular.

Proof. It is obvious that $L(S)$ modular implies S is θ-modular. Now, let S be θ-modular. The traces, being a sublattice of the congruences lattice on a chain, form a modular lattice and the statement follows from the previous lemma.

REMARK 6.4. Notice that a result analogous to Theorem 4.4 can be proved for θ modularity. Actually θ-modularity of a simple regular ω-semigroup S can be proved to be equivalent to the following condition: let μ be a uniform congruence covering t. Then for all congruences $\lambda, \rho, \tau \in\left[\mathscr{H} \wedge \sigma_{\mu}, \mathscr{H} \vee \sigma_{\mu}\right]$, relations $\lambda \wedge \rho=\lambda \wedge \tau$, $\lambda \vee \rho=\lambda \vee \tau, \rho \geq \tau$ and $\operatorname{tr} \rho=\operatorname{tr} \tau$ imply $\rho=\tau$.

References

[1] G. R. Baird, 'Congruences on simple regular ω-semigroups', J. Austral. Math. Soc. (Ser. A) 14 (1972), 155-167.
[2] ——, 'On a sublattice of the lattice of congruences on a simple regular ω-semigroup', J. Austral. Math. Soc. (Ser. A) 13 (1972), 461-471.
[3] C. Bonzini and A. Cherubini, 'Modularity of the lattice of congruences of a regular ω-semigroup', Proc. Edinburgh Math. Soc. (2) 33 (1990), 405-417.
[4] _-, 'Semimodularity of the congruence lattice on regular ω-semigroups', Mh. Mat. 109 (1990), 205-219.
[5] B. P. Kocin, 'The structure of inverse ideally simple ω-semigroups', Vestnik Leningrad Univ. Math. 23 (1968), 41-50.
[6] H. Mitsch, 'Semigroups and their lattice of congruences', Semigroup Forum 26 (1983), 1-63.
[7] W. D. Munn, 'Regular ω-semigroups', Glasgow Math. J. 9 (1968), 46-66.
[8] M. Petrich, 'The kernel relation for a retract extension of Brandt semigroups', preprint.
[9] ——, 'The kernel relation for certain regular semigroups', preprint.
[10] —, Inverse semigroups (Wiley, New York, 1984).
[11] ——, 'Congruences on strongly semilattices of regular simple semigroups', Semigroup Forum 37 (1988), 167-199.
[12] C. Spitznagel, 'The lattice of congruences on a band of groups', Glasgow Math. J. 14 (1973), 189-197.

Universitá
Via Saldini 50
20133 Milano
Italia
email: bonzini@vmimat.mat.unimi.it

Politecnicó
Piazza L. ad Vinci 32
20133 Milano Italia email: aleche@ipmma1.polimi.it

[^0]: Work supported by M.U.R.S.T. and C.N.R.
 (C) 1995 Australian Mathematical Society 0263-6115/95 \$A2.00 +0.00

