DEFORMATIONS OF SECONDARY CLASSES FOR SUBFOLIATIONS

DEMETRIO DOMÍNGUEZ

Abstract

The purpose of this paper is to study the rigidity and deformations of secondary characteristic classes for subfoliations.

1. Introduction. Let M be an n-dimensional manifold, $T M$ its tangent bundle. A (q_{1}, q_{2})-codimensional subfoliation on M is a couple (F_{1}, F_{2}) of integrable subbundles F_{i} of $T M$ of dimension $n-q_{i}, i=1,2$, and such that $F_{2} \subset F_{1}$. Feigin [9], CorderoMasa [3], Carballés [1], Wolak [16] and the author ([4], [5], [6], [7], [8]) have studied the secondary characteristic classes for subfoliations.

In this paper, using the techniques of Cordero-Masa [3], we discuss the rigidity and deformations of secondary characteristic classes for subfoliations. This generalizes the result of Heitsch [11] on the rigidity of secondary characteristic classes of a foliation under one-parameter deformations.

In Section 2 we prove the rigidity theorem for subfoliations which generalizes Heitsch's rigidity theorem [11] for foliations. This result is then applied in Section 3 to see which classes of the Vey basis of $H^{*}\left(W 0_{I}\right)$ (as defined in [4]) are rigid. It follows in particular that the Godbillon-Vey classes for subfoliations of codimension (q_{1}, q_{2}) are variable. A similar result holds for subfoliations with trivialized normal bundle (in the sense of [3]).

The variable classes are used in [8] to prove that the homology group $H_{2 q_{2}+2}\left(B \Gamma_{\left(q_{1}, q_{2}\right)} ; Z\right)$ admits an epimorphism onto Euclidean space, where $B \Gamma_{\left(q_{1}, q_{2}\right)}$ is the Haefliger classifying space for subfoliations of codimension (q_{1}, q_{2}) (as defined in [7]).

Throughout the paper all objects are of type C^{∞}.
2. Deformations of secondary classes for subfoliations. In this section, using the techniques of [3], [4] and [7], we discuss the rigidity and deformations of secondary characteristic classes for subfoliations.

For any manifold $M, T M$ denotes the tangent bundle of M, and $A^{*}(M)$ the algebra of differential forms on M. If $\left(F_{1}, F_{2}\right)$ is a subfoliation $\left(q_{1}, q_{2}\right)$-codimensional on M, then Q_{i} denotes the normal bundle $\nu F_{i}=T M / F_{i}$ of $F_{i}, i=1,2, Q_{0}$ the quotient bundle F_{1} / F_{2}, and $\nu\left(F_{1}, F_{2}\right)$ the normal bundle $Q_{1} \oplus Q_{0}$ of $\left(F_{1}, F_{2}\right)$. If ∇^{1} and ∇^{0} are two connections on a vector bundle E over M with structure group $\operatorname{GL}(q)=\operatorname{GL}(q ; R)$, and if

$$
\phi=y_{i_{1}} \wedge \cdots \wedge y_{i_{s}} \otimes c_{1}^{j_{1}} \cdots c_{q}^{j_{q}} \in \Lambda\left(y_{1}, \ldots, y_{q}\right) \otimes R\left[c_{1}, \ldots, c_{q}\right]
$$

is an element (here the $y_{i_{\alpha}}$ are the relative suspensions of the Chern polynomials $c_{i_{\alpha}} \in$ $I(\mathrm{GL}(q))=R\left[c_{1}, \ldots, c_{q}\right]$ with $\left.i_{1}<\cdots<i_{s}\right)$, then $\phi\left(\nabla^{1}, \nabla^{0}\right)$ denotes the differential form

$$
\Delta\left(\nabla^{1}, \nabla^{0}\right)\left(c_{i_{1}}\right) \wedge \cdots \wedge \Delta\left(\nabla^{1}, \nabla^{0}\right)\left(c_{i_{s}}\right) \wedge c_{1}\left(\Omega^{1}\right)^{j_{1}} \wedge \cdots \wedge c_{q}\left(\Omega^{1}\right)^{j_{q}} \in A^{*}(M),
$$

where Ω^{1} is the curvature of ∇^{1} and $\Delta\left(\nabla^{1}, \nabla^{0}\right)\left(c_{i_{\alpha}}\right)=\pi_{*}\left(c_{i_{\alpha}}(\Omega)\right)$, where Ω is the curvature of the connection $\nabla=t \nabla^{1}+(1-t) \nabla^{0}$ on the vector bundle $E \times[0,1]$ over $M \times[0,1]$ and $\pi_{*}: A^{r}(M \times[0,1]) \rightarrow A^{r-1}(M)$ denotes integration over the fiber of the disc bundle $M \times[0,1]$ over M.

Let $\left(F_{1}, F_{2}\right)$ and (F, F_{1}) be subfoliations on M of codimension $\left(m+q_{1}, m+q_{2}\right)$ and ($m, m+q_{1}$) respectively with $d=q_{2}-q_{1} \geqq 0$ and $m \geqq 1$. Let N be a leaf of F and $i_{N}: N \rightarrow M$ the canonical immersion. Then the subfoliation $\left(F_{1}, F_{2}\right)$ induces on N a $\left(q_{1}, q_{2}\right)$-codimensional subfoliation $\left(F_{1 N}, F_{2 N}\right)=\left(\left.F_{1}\right|_{N},\left.F_{2}\right|_{N}\right)$. Analogously, the exact sequences of vector bundles

$$
\begin{aligned}
& 0 \rightarrow Q_{0} \rightarrow Q_{2} \rightarrow Q_{1} \rightarrow 0 \\
& 0 \rightarrow F / F_{1} \rightarrow Q_{1} \rightarrow \nu F \rightarrow 0
\end{aligned}
$$

associated to $\left(F_{1}, F_{2}\right)$ and $\left(F, F_{1}\right)$ respectively with $\nu F=T M / F$, induce the following exact sequences of vector bundles over N :

$$
\begin{aligned}
& 0 \rightarrow Q_{0 N}=F_{1 N} /\left.\left.F_{2 N} \rightarrow Q_{2}\right|_{N} \rightarrow Q_{1}\right|_{N} \rightarrow 0 \\
& 0 \rightarrow Q_{1 N}=T N /\left.F_{1 N} \rightarrow Q_{1}\right|_{N} \rightarrow \nu N \quad \rightarrow 0
\end{aligned}
$$

where $\nu N=\left.\nu F\right|_{N}$ is the normal bundle of the leaf N of F. It is easy to verify that the vector bundle $\left(F / F_{1}\right) \oplus Q_{0}$ over M is canonically (F_{1}, F_{2})-foliated and that the canonical $\left(F_{1 N}, F_{2 N}\right)$-foliated bundle structure of the normal bundle $\nu\left(F_{1 N}, F_{2 N}\right)=Q_{1 N} \oplus Q_{0 N}$ of the subfoliation ($F_{1 N}, F_{2 N}$) on N is induced by the canonical (F_{1}, F_{2})-foliated bundle structure of $\left(F / F_{1}\right) \oplus Q_{0}$.

LEMMA 2.1. The following diagram is commutative

where $\Delta_{*\left(F_{1}, F_{2}\right)}$ and $\Delta_{*\left(F_{1 N}, F_{2 N}\right)}$ are the characteristic homomorphisms of $\left(F_{1}, F_{2}\right)$ and $\left(F_{1 N}, F_{2 N}\right)$ respectively (as defined in [3]), $W 0_{I^{\prime}}\left(\right.$ resp. $\left.W 0_{I}\right)$ is the complex corresponding to the pair $\left(m+q_{1}, m+q_{2}\right)\left(\right.$ resp. $\left(q_{1}, q_{2}\right)$), and $W(d \rho)^{*}$ denotes the homomorphism induced by the canonical inclusion

$$
\rho: \mathrm{GL}\left(q_{1}\right) \times \mathrm{GL}(d) \rightarrow\left(\mathrm{GL}(m) \times \mathrm{GL}\left(q_{1}\right)\right) \times \mathrm{GL}(d) \rightarrow \mathrm{GL}\left(m+q_{1}\right) \times \mathrm{GL}(d) .
$$

Proof. Let $z_{\left(i, i^{\prime}, j j^{\prime}\right)}=y_{(i)} \wedge y_{\left(i^{\prime}\right)}^{\prime} \otimes c_{(j)} c_{\left(j^{\prime}\right)}^{\prime} \in W 0_{I^{\prime}}$ be a cocycle of the Vey basis (see [4]). Denote by ϕ (resp. by ϕ^{\prime}) the element $y_{(i)} \otimes c_{(j)}=y_{i_{1}} \wedge \cdots \wedge y_{i_{s}} \otimes$
$c_{1}^{j_{1}} \cdots c_{m+q_{1}}^{j_{m+q_{1}}} \in \Lambda\left(y_{1}, y_{3}, \ldots\right) \otimes R\left[c_{1}, c_{2}, \ldots, c_{m+q_{1}}\right]\left(\right.$ resp. $y_{\left(i^{\prime}\right)}^{\prime} \otimes c_{\left(j^{\prime}\right)}^{\prime}=y_{i_{1}^{\prime}}^{\prime} \wedge \cdots \wedge y_{i_{s}^{\prime}}^{\prime} \otimes$ $\left.c_{1}^{\prime_{1}^{\prime}} \cdots c_{d}^{\prime_{d}^{\prime}} \in \Lambda\left(y_{1}^{\prime}, y_{3}^{\prime}, \ldots\right) \otimes R\left[c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{d}^{\prime}\right]\right)$ with $i_{1}<\cdots<i_{s}$ and $i_{1}^{\prime}<\cdots<i_{s_{s}^{\prime}}^{\prime}$, where the y_{i} (resp. the y_{i}^{\prime}) are the relative suspensions of the odd Chern polynomials $c_{i} \in$ $I\left(\mathrm{GL}\left(m+q_{1}\right)\right)=R\left[c_{1}, \ldots, c_{m+q_{1}}\right]\left(\right.$ resp. $\left.c_{i}^{\prime} \in I(\mathrm{GL}(d))=R\left[c_{1}^{\prime}, \ldots, c_{d}^{\prime}\right]\right), \operatorname{deg} c_{i}=$ $\operatorname{deg} c_{i}^{\prime}=2 i$ and $\operatorname{deg} y_{i}=\operatorname{deg} y_{i}^{\prime}=2 i-1$. Then $z_{\left(i, i^{\prime}, j j^{\prime}\right)}=\phi \cdot \phi^{\prime} \in W 0_{I^{\prime}}$. Consider now the exact sequence of vector bundles

$$
0 \rightarrow F / F_{1} \xrightarrow{i} Q_{1} \xrightarrow{\pi} \nu F \rightarrow 0
$$

associated to $\left(F, F_{1}\right)$. By Theorem 3.3 in [3], we can choose basic connections $\nabla_{1}^{\prime}, \nabla_{1}$, ∇_{F} (analogously, Riemannian connections $\nabla_{1}^{r r}, \nabla_{1}^{r}, \nabla_{F}^{r}$) on $F / F_{1}, Q_{1}$ and νF respectively, and such that they are compatible with the homomorphisms i and π (in the sense of [3]). Therefore, $\nabla^{\prime}=\nabla_{F} \oplus \nabla_{1}^{\prime}$ is a basic connection and $\nabla^{\prime r}=\nabla_{F}^{r} \oplus \nabla_{1}^{\prime r}$ is a Riemannian connection on $\nu F \oplus\left(F / F_{1}\right)$ (in the sense of [3]).

Let $\sigma_{1}, \ldots, \sigma_{m+q_{1}}$ be a local framing of Q_{1} such that $\pi\left(\sigma_{1}\right), \ldots, \pi\left(\sigma_{m}\right)$ is a local framing of νF and $\sigma_{m+1}, \ldots, \sigma_{m+q_{1}}$ is a local framing of F / F_{1}. An easy computation shows that with respect to the local framing $\sigma_{1}, \ldots, \sigma_{m+q_{1}}$, the local connection forms θ_{1} and θ_{1}^{r} of ∇_{1} and ∇_{1}^{r} are given by

$$
\begin{aligned}
& \theta_{1}=\left[\begin{array}{cc}
\theta_{F} & 0 \\
* & \theta_{1}^{\prime}
\end{array}\right], \\
& \theta_{1}^{r}=\left(\begin{array}{cc}
\theta_{F}^{r} & 0 \\
* & \theta_{1}^{\prime r}
\end{array}\right),
\end{aligned}
$$

respectively, where θ_{F} and θ_{F}^{r} (resp. θ_{1}^{\prime} and $\theta_{1}^{\prime r}$ are the local connection forms of ∇_{F} and ∇_{F}^{r} (resp. of ∇_{1}^{\prime} and $\nabla_{1}^{\prime r}$) with respect to the local framing $\pi\left(\sigma_{1}\right), \ldots, \pi\left(\sigma_{m}\right)$ (resp. $\left.\sigma_{m+1}, \ldots, \sigma_{m+q_{1}}\right)$. Hence we have

$$
\begin{equation*}
\phi\left(\nabla_{1}, \nabla_{1}^{r}\right)=\phi\left(\nabla^{\prime}, \nabla^{\prime r}\right) \in A^{*}(M) \tag{2.2}
\end{equation*}
$$

Now, let ∇_{0} be a basic connection and ∇_{0}^{r} a Riemannian connection on Q_{0}. Then $\nabla^{b}=\nabla_{1} \oplus \nabla_{0}$ (resp. $\nabla^{r}=\nabla_{1}^{r} \oplus \nabla_{0}^{r}$) is a basic connection (resp. a Riemannian connection) on $\nu\left(F_{1}, F_{2}\right)=Q_{1} \oplus Q_{0}$, and we can use ∇^{b} and ∇^{r} to compute the characteristic homomorphism $\Delta_{*\left(F_{1}, F_{2}\right)}$ of (F_{1}, F_{2}) (see [3]). From (2.2) it follows that the cohomology class $\Delta_{*\left(F_{1}, F_{2}\right)}\left[z_{\left(i, i^{\prime}, j j^{\prime}\right)}\right] \in H_{D R}^{*}(M)$ is represented by the closed form

$$
\phi\left(\nabla_{1}, \nabla_{1}^{r}\right) \wedge \phi^{\prime}\left(\nabla_{0}, \nabla_{0}^{r}\right)=\phi\left(\nabla^{\prime}, \nabla^{\prime r}\right) \wedge \phi^{\prime}\left(\nabla_{0}, \nabla_{0}^{r}\right) \in A^{*}(M) .
$$

Next, consider the canonical immersion $i_{N}: N \rightarrow M$. Then $\nabla_{N}=i_{N}^{*}\left(\nabla_{F}\right)$ (resp. $\nabla_{N}^{r}=i_{N}^{*}\left(\nabla_{F}^{r}\right)$) is the natural flat connection (resp. a Riemannian connection) on νN, and $\nabla_{N}^{b}=\nabla_{1 N} \oplus \nabla_{0 N}\left(\right.$ resp. $\left.\bar{\nabla}_{N}^{r}=\nabla_{1 N}^{r} \oplus \nabla_{0 N}^{r}\right)$ is a basic connection (resp. a Riemannian connection) on $\nu\left(F_{1 N}, F_{2 N}\right)=Q_{1 N} \oplus Q_{0 N}$, where $\nabla_{1 N}=i_{N}^{*}\left(\nabla_{1}^{\prime}\right), \nabla_{0 N}=i_{N}^{*}\left(\nabla_{0}\right)$, $\nabla_{1 N}^{r}=i_{N}^{*}\left(\nabla_{1}^{\prime r}\right)$ and $\nabla_{0 N}^{r}=i_{N}^{*}\left(\nabla_{0}^{r}\right)$. Whence, we can use ∇_{N}^{b} and $\bar{\nabla}_{N}^{r}$ to compute the characteristic homomorphism $\Delta_{*\left(F_{1 N}, F_{2 N}\right)}$ of $\left(F_{1 N}, F_{2 N}\right)$. Denote by $\nabla_{N}^{\prime}\left(\right.$ resp. by $\left.\nabla_{N}^{\prime r}\right)$ the
connection $\nabla_{N} \oplus \nabla_{1 N}$ (resp. the Riemannian connection $\left.\nabla_{N}^{r} \oplus \nabla_{1 N}^{r}\right)$ on $\nu N \oplus Q_{1_{N}}$. By (2.2) we have then

$$
\begin{equation*}
i_{N}^{*}\left(\phi\left(\nabla_{1}, \nabla_{1}^{r}\right) \wedge \phi^{\prime}\left(\nabla_{0}, \nabla_{0}^{r}\right)\right)=\phi\left(\nabla_{N}^{\prime}, \nabla_{N}^{\prime r}\right) \wedge \phi^{\prime}\left(\nabla_{0 N}, \nabla_{0 N}^{r}\right) \in A^{*}(N) \tag{2.3}
\end{equation*}
$$

In order to compute the differential form $\phi\left(\nabla_{N}^{\prime}, \nabla_{N}^{\prime r}\right)$ we consider the restriction homomorphism

$$
\begin{array}{ccc}
I\left(\mathrm{GL}\left(m+q_{1}\right)\right) & \xrightarrow[\rho_{1}^{*}]{ } & I(\mathrm{GL}(m)) \otimes I\left(\mathrm{GL}\left(q_{1}\right)\right) \\
\| & & \| \\
R\left[c_{1}, \ldots, c_{m+q_{1}}\right] & \longrightarrow & R\left[c_{1}^{\prime}, \ldots, c_{m}^{\prime}\right] \otimes R\left[c_{1}, \ldots, c_{q_{1}}\right]
\end{array}
$$

given by

$$
\begin{equation*}
\rho_{1}^{*} c_{i}=\sum_{j=0}^{i} c_{j}^{\prime} c_{i-j}, \quad i=1, \ldots, m+q_{1} \tag{2.4}
\end{equation*}
$$

with $c_{0}^{\prime}=1, c_{0}=1, c_{i}^{\prime}=0$ for $i>m$, and $c_{i}=0 \in I\left(\mathrm{GL}\left(q_{1}\right)\right)$ for $i>q_{1}$, where the c_{i} and c_{i}^{\prime} denote the Chern polynomials. By (2.4) we have

$$
\begin{equation*}
\rho_{1}^{*} c_{2 i-1}=\sum_{k=1}^{i}\left(c_{2 k-1}^{\prime} c_{2(i-k)}+c_{2(i-k)}^{\prime} c_{2 k-1}\right) \tag{2.5}
\end{equation*}
$$

$i=1, \ldots,\left[\left(m+q_{1}+1\right) / 2\right]$. Now, denote by $\Omega_{N}^{\prime}, \Omega_{N}$ and $\Omega_{1 N}$ the curvatures of $\nabla_{N}^{\prime}, \nabla_{N}$ and $\nabla_{1 N}$ respectively. Since $\Omega_{N}=0$, it follows from (2.4) that

$$
\begin{equation*}
c_{(j)}\left(\Omega_{N}^{\prime}\right)=c_{(j)}\left(\Omega_{1 N}\right) \tag{2.6}
\end{equation*}
$$

where $c_{(j)} \in I\left(\mathrm{GL}\left(m+q_{1}\right)\right)$ on the left, and $c_{(j)} \in I\left(\mathrm{GL}\left(q_{1}\right)\right)$ on the right. On the other hand, using (2.5), we obtain by an easy computation the formula

$$
\begin{align*}
\Delta\left(\nabla_{N}^{\prime}, \nabla_{N}^{\prime}\right)\left(c_{2 i-1}\right)= & \sum_{k=1}^{i} \Delta\left(\nabla_{N}, \nabla_{N}^{r}\right)\left(c_{2 k-1}^{\prime}\right) \wedge c_{2(i-k)}\left(\Omega_{1 N}\right) \tag{2.7}\\
& +\Delta\left(\nabla_{1 N}, \nabla_{1 N}^{r}\right)\left(c_{2 i-1}\right)+\text { exact }
\end{align*}
$$

Now, if $2 k-1 \leqq m$, and if $2 i-1+p_{1}>m+q_{1}$ or $2 i-1+p>m+q_{2}$, then $2(i-k)+p_{1}>q_{1}$ or $2(i-k)+p>q_{2}$, where $2 p_{1}=\operatorname{deg} c_{(j)}, 2 p_{2}=\operatorname{deg} c_{\left(j^{\prime}\right)}^{\prime}$ and $p=p_{1}+p_{2}$. Hence, by (2.3), (2.6) and (2.7) it follows that

$$
\begin{aligned}
i_{N}^{*}\left(\Delta_{*\left(F_{1}, F_{2}\right)}\left[z_{\left(i, i^{\prime}, j j^{\prime}\right)}\right]\right) & =\left[\phi\left(\nabla_{N}^{\prime}, \nabla_{N}^{\prime r}\right) \wedge \phi^{\prime}\left(\nabla_{0 N}, \nabla_{0 N}^{r}\right)\right] \\
& =\left[\left(\bigwedge_{\alpha=1}^{s} \Delta\left(\nabla_{1 N}, \nabla_{N N}^{r}\right)\left(c_{i_{\alpha}}\right)\right) \wedge c_{(j)}\left(\Omega_{1 N}\right) \wedge \phi^{\prime}\left(\nabla_{0 N}, \nabla_{0 N}^{r}\right)\right] \\
& =\Delta_{*\left(F_{1 N}, F_{2 N}\right)}\left(W(d \rho)^{*}\left[z_{\left(i, i^{\prime}, j j^{\prime}\right)}\right]\right)
\end{aligned}
$$

REmARKs. 1) In the previous results, the leaf N of F can be replaced by any ($n-m$)dimensional integral manifold of F, where n is the dimension of the manifold M.
2) A similar result holds for subfoliations with trivialized normal bundle (in the sense of [3]).

Let $f: M \rightarrow X$ be a submersion, where X is a manifold of dimension $m \geqq 1$. Consider now the case where F is the tangent bundle $T(f)$ along the fibers of f. Then the ($m+q_{1}, m+q_{2}$)-codimensional subfoliation (F_{1}, F_{2}) on M can be considered as a deformation of the subfoliations $\left(F_{1 x}, F_{2 x}\right)=\left(F_{1 N_{x}}, F_{2 N_{x}}\right)$ of codimension $\left(q_{1}, q_{2}\right)$ on the fibers $N_{x}=f^{-1}(x), x \in f(M) \subset X$. Then, from Lemma 2.1 we obtain the following result.

THEOREM 2.8. For every $x \in f(M) \subset X$, the following diagram is commutative

where $W(d \rho)^{*}$ is as in Lemma 2.1 and $i_{x}: N_{x}=f^{-1}(x) \rightarrow M$ denotes the canonical inclusion.

Let N be a manifold and X an m-dimensional connected manifold with $m \geqq 1$. Assume now that $M=N \times X$ and that $f: M \rightarrow X$ is the canonical projection. Then the homomorphism $i_{x}^{*}: H_{D R}^{*}(M) \rightarrow H_{D R}^{*}(N)$ induced by the canonical inclusion $i_{x}: N \cong N \times\{x\}=$ $f^{-1}(x) \rightarrow M=N \times X$ does not depend on the choice of $x \in X$. From Theorem 2.8 it follows then that the classes

$$
\left.\Delta_{*\left(F_{1 x}, F_{2 x}\right)}\right)(u) \in H_{D R}^{*}(N) \text { for } u \in \operatorname{Im} W(d \rho)^{*} \subset H^{*}\left(W 0_{I}\right)
$$

do not depend on the choice of $x \in X$. Hence, we have
COROLLARY 2.9. The classes $\Delta_{*\left(F_{1 x}, F_{2 \lambda}\right)}(u), u \in \operatorname{Im} W(d \rho)^{*}$, are rigid for $m \geqq 1$.
REmark. This generalizes the result of Heitsch [11] on the rigidity of secondary characteristic classes of a foliation under one-parameter deformations. That is the case where $F_{1}=F_{2}, q_{1}=q_{2}, m=1$ and $f: M=N \times R \rightarrow R$ is the canonical projection.

Let $\Delta_{*}: H^{*}\left(W 0_{I}\right) \rightarrow H^{*}(B \Gamma ; R)$ and $\Delta_{*}^{\prime}: H^{*}\left(W 0_{I^{\prime}}\right) \rightarrow H^{*}\left(B \Gamma^{\prime} ; R\right)$ be the universal characteristic homomorphisms for subfoliations of codimension $\left(q_{1}, q_{2}\right)$ and $\left(m+q_{1}, m+q_{2}\right)$ respectively (as defined in [7]), where $B \Gamma$ (resp. $B \Gamma^{\prime}$) denotes the Haefliger classifying space for subfoliations of codimension $\left(q_{1}, q_{2}\right)$ (resp. $\left(m+q_{1}, m+q_{2}\right)$). Then the following is easily verified.

Theorem 2.10. There is a commutative diagram

with canonical vertical homomorphisms.
3. Results on $H^{*}\left(W 0_{I}\right)$. In order to see which classes of the Vey basis of $H^{*}\left(W 0_{I}\right)$ are rigid, we consider the homomorphism $W(d \rho)^{*}: H^{*}\left(W 0_{I}\right) \rightarrow H^{*}\left(W 0_{I}\right)$ induced by the $D G$-algebra homomorphism $W(d \rho): W 0_{I^{\prime}} \rightarrow W 0_{I}$ given by

$$
\left.\begin{array}{c}
W(d \rho)\left(c_{i}\right)= \begin{cases}c_{i} & \text { for } 1 \leqq i \leqq q_{1}, \\
0 & \text { for } q_{1}+1 \leqq i \leqq m+q_{1},\end{cases} \\
W(d \rho)\left(y_{i}\right)= \begin{cases}y_{i} & \text { for } 1 \leqq i \leqq q_{1}, i \text { odd }, \\
0 & \text { for } q_{1}+1 \leqq i \leqq m+q_{1}, i \text { odd }\end{cases} \\
W(d \rho)\left(c_{i}^{\prime}\right)=c_{i}^{\prime} \text { for } 1 \leqq i \leqq d,
\end{array}\right] \begin{aligned}
& 1 \leqq(d \rho)\left(y_{i}^{\prime}\right)=y_{i}^{\prime} \text { for } 1 \leqq i \leqq d, i \text { odd } .
\end{aligned}
$$

Then, from Theorem 2.8 and Corollary 2.9 we obtain for $m=1$ the following result.
Theorem 3.1. Let the notation be as in [4]. Consider in $H^{*}\left(W 0_{I}\right)$ the cohomology classes $\left[z_{\left(i, i^{\prime}, j^{\prime}\right)}\right]$ of the cocycles $z_{\left(i, i^{\prime} j, j^{\prime}\right)}=y_{(i)} \wedge y_{\left(i^{\prime}\right)}^{\prime} \otimes c_{\left(j^{\prime}\right)} c_{\left(j^{\prime}\right)}^{\prime} \in W 0_{I}$ of the Vey basis with $\operatorname{deg} c_{(j)}=2 p_{1}, \operatorname{deg} c_{\left(j^{\prime}\right)}^{\prime}=2 p_{2}$ and $p=p_{1}+p_{2}$. Then we have
(i) An R-basis of the rigid classes of $H^{*}\left(W 0_{I}\right)$ is given by the elements $\left[z_{\left(i, i^{\prime} j j^{\prime}\right)}\right]$ of the Vey basis of $H^{*}\left(W 0_{I}\right)$ satisfying

$$
i_{0}+p_{1} \geqq q_{1}+2 \text { or } i_{0}+p \geqq q_{2}+2, \text { and } i_{0}^{\prime}+p \geqq q_{2}+2 \text {. }
$$

(ii) The elements $\left[z_{\left(i, i^{\prime}, j j^{\prime}\right)}\right]$ of the Vey basis of $H^{*}\left(W 0_{I}\right)$ satisfying at least one of the following conditions:
(a) $i_{0}+p_{1}=q_{1}+1, i_{0}+p \leqq q_{2}+1, i_{0}^{\prime}+p \geqq q_{2}+1$;
(b) $i_{0}+p_{1} \leqq q_{1}+1, i_{0}+p=q_{2}+1, i_{0}^{\prime}+p \geqq q_{2}+1$;
(c) $i_{0}+p_{1} \geqq q_{1}+1, i_{0}^{\prime}+p=q_{2}+1$;
(d) $i_{0}+p \geqq q_{2}+1, i_{0}^{\prime}+p=q_{2}+1$
are the only elements of the Vey basis of $H^{*}\left(W 0_{I}\right)$ which do not belong to $\operatorname{Im} W(d \rho)^{*} \subset$ $H^{*}\left(W 0_{I}\right)$. Thus these secondary classes are variable.

Corollary 3.2. The Godbillon-Vey classes $\left[y_{1} \otimes c_{1}^{q_{1}}\right] \in H^{2 q_{1}+1}\left(W 0_{I}\right)$, $\left[y_{1}^{\prime} \otimes c_{1}^{j} c_{1}^{q_{2}-j}\right] \in H^{2 q_{2}+1}\left(W 0_{I}\right)$ and $\left[y_{1} \wedge y_{1}^{\prime} \otimes c_{1}^{j} c_{1}^{q_{2}-j}\right] \in H^{2 q_{2}+2}\left(W 0_{I}\right), 0 \leqq j \leqq q_{1}$, for subfoliations of codimension $\left(q_{1}, q_{2}\right)$ are variable.

REMARKS. 1) Similar results hold for subfoliations with trivialized normal bundle.
2) For $q_{1}=q_{2}=q$, we have the result of Heitsch [11].
3) The computations for some examples of subfoliations with variable classes are given in [8].

References

1. J. M. Carballés, Characteristic homomorphism for $\left(F_{1}, F_{2}\right)$-foliated bundles over subfoliated manifolds, Ann. Inst. Fourier, Grenoble 33(1984), 219-245.
2. L. A. Cordero, Sheaves and cohomologies associated to subfoliations, Results in Math. 8 (1985), 9-20.
3. L. A. Cordero and X. Masa, Characteristic classes of subfoliations, Ann. Inst. Fourier, Grenoble 31(1981), 61-86.
4. D. Domínguez, Sur les classes caractéristiques des sous-feuilletages, Publ. RIMS, Kyoto Univ. 23 (1987), 813-840.
5. \quad, 11(1988), 177-204.
6. \qquad Classes caractéristiques non triviales des feuilles de sous-feuilletages localement homogènes, Geometriae Dedicata 28(1988), 229-249.
7. ___ On the linear independence of certain cohomology classes in the classifying space for subfoliations, Trans. Amer. Math. Soc., to appear.
8. \qquad Residues and secondary classes for subfoliations, preprint.
9. B. L. Feigin, Characteristic classes of flags of foliations, Functional Anal. Appl. 9(1975), 312-317.
10. Y. Hantout, Déformations de connexions, résidus et classes caractéristiques des feuilletages, Pub. IRMALille III 8(1987).
11. J. L. Heitsch, Deformations of secondary characteristic classes, Topology 12(1973), 381-388.
12. \qquad Independent variation of secondary classes, Ann. of Math. 108(1978), 421-460.
13. S. E. Hurder, Dual homotopy invariants of G-foliations, Topology 20(1981), 365-387.
14. S. Hurder and D. Lehmann, Homotopy characteristic classes of foliations, Illinois J. of Math. 34(1990), 628-655.
15. D. Lehmann, Classes caractéristiques résiduelles, Pub. IRMA-Lille VII 17(1989).
16. R. A. Wolak, Characteristic classes of almost-flag structures, Geometriae Dedicata 24(1987), 207-220.

Departamento de Matemáticas
Estadística y Computación
Universidad de Cantabria
39071 Santander
Spain

