DEFORMATIONS OF SECONDARY CLASSES FOR SUBFOLIATIONS

DEMETRIO DOMÍNGUEZ

ABSTRACT. The purpose of this paper is to study the rigidity and deformations of secondary characteristic classes for subfoliations.

1. Introduction. Let M be an n-dimensional manifold, TM its tangent bundle. A (q_1, q_2) -codimensional subfoliation on M is a couple (F_1, F_2) of integrable subbundles F_i of TM of dimension $n - q_i$, i = 1, 2, and such that $F_2 \subset F_1$. Feigin [9], Cordero-Masa [3], Carballés [1], Wolak [16] and the author ([4], [5], [6], [7], [8]) have studied the secondary characteristic classes for subfoliations.

In this paper, using the techniques of Cordero-Masa [3], we discuss the rigidity and deformations of secondary characteristic classes for subfoliations. This generalizes the result of Heitsch [11] on the rigidity of secondary characteristic classes of a foliation under one-parameter deformations.

In Section 2 we prove the rigidity theorem for subfoliations which generalizes Heitsch's rigidity theorem [11] for foliations. This result is then applied in Section 3 to see which classes of the Vey basis of $H^*(W0_I)$ (as defined in [4]) are rigid. It follows in particular that the Godbillon-Vey classes for subfoliations of codimension (q_1, q_2) are variable. A similar result holds for subfoliations with trivialized normal bundle (in the sense of [3]).

The variable classes are used in [8] to prove that the homology group $H_{2q_2+2}(B\Gamma_{(q_1,q_2)}; Z)$ admits an epimorphism onto Euclidean space, where $B\Gamma_{(q_1,q_2)}$ is the Haefliger classifying space for subfoliations of codimension (q_1, q_2) (as defined in [7]).

Throughout the paper all objects are of type C^{∞} .

2. **Deformations of secondary classes for subfoliations.** In this section, using the techniques of [3], [4] and [7], we discuss the rigidity and deformations of secondary characteristic classes for subfoliations.

For any manifold M, TM denotes the tangent bundle of M, and $A^*(M)$ the algebra of differential forms on M. If (F_1, F_2) is a subfoliation (q_1, q_2) -codimensional on M, then Q_i denotes the normal bundle $\nu F_i = TM/F_i$ of F_i , $i = 1, 2, Q_0$ the quotient bundle F_1/F_2 , and $\nu(F_1, F_2)$ the normal bundle $Q_1 \oplus Q_0$ of (F_1, F_2) . If ∇^1 and ∇^0 are two connections on a vector bundle E over M with structure group GL(q) = GL(q; R), and if

$$\phi = y_{i_1} \wedge \cdots \wedge y_{i_s} \otimes c_1^{j_1} \cdots c_q^{j_q} \in \Lambda(y_1, \dots, y_q) \otimes R[c_1, \dots, c_q]$$

Received by the editors February 4, 1991.

AMS subject classification: 53C12, 57R32, 55R40.

[©] Canadian Mathematical Society 1992.

D. DOMÍNGUEZ

is an element (here the $y_{i_{\alpha}}$ are the relative suspensions of the Chern polynomials $c_{i_{\alpha}} \in I(GL(q)) = R[c_1, \ldots, c_q]$ with $i_1 < \cdots < i_s$), then $\phi(\nabla^1, \nabla^0)$ denotes the differential form

$$\Delta(\nabla^1, \nabla^0)(c_{i_1}) \wedge \cdots \wedge \Delta(\nabla^1, \nabla^0)(c_{i_s}) \wedge c_1(\Omega^1)^{j_1} \wedge \cdots \wedge c_q(\Omega^1)^{j_q} \in A^*(M),$$

where Ω^1 is the curvature of ∇^1 and $\Delta(\nabla^1, \nabla^0)(c_{i_\alpha}) = \pi_*(c_{i_\alpha}(\Omega))$, where Ω is the curvature of the connection $\nabla = t\nabla^1 + (1-t)\nabla^0$ on the vector bundle $E \times [0, 1]$ over $M \times [0, 1]$ and $\pi_*: A^r(M \times [0, 1]) \to A^{r-1}(M)$ denotes integration over the fiber of the disc bundle $M \times [0, 1]$ over M.

Let (F_1, F_2) and (F, F_1) be subfoliations on M of codimension $(m + q_1, m + q_2)$ and $(m, m + q_1)$ respectively with $d = q_2 - q_1 \ge 0$ and $m \ge 1$. Let N be a leaf of F and $i_N: N \to M$ the canonical immersion. Then the subfoliation (F_1, F_2) induces on N a (q_1, q_2) -codimensional subfoliation $(F_{1N}, F_{2N}) = (F_1 \mid_N, F_2 \mid_N)$. Analogously, the exact sequences of vector bundles

associated to (F_1, F_2) and (F, F_1) respectively with $\nu F = TM/F$, induce the following exact sequences of vector bundles over N:

where $\nu N = \nu F |_N$ is the normal bundle of the leaf N of F. It is easy to verify that the vector bundle $(F/F_1) \oplus Q_0$ over M is canonically (F_1, F_2) -foliated and that the canonical (F_{1N}, F_{2N}) -foliated bundle structure of the normal bundle $\nu(F_{1N}, F_{2N}) = Q_{1N} \oplus Q_{0N}$ of the subfoliation (F_{1N}, F_{2N}) on N is induced by the canonical (F_1, F_2) -foliated bundle structure of $(F/F_1) \oplus Q_0$.

LEMMA 2.1. The following diagram is commutative

$$\begin{array}{ccc} H^{*}(W0_{l'}) & \xrightarrow{\Delta_{*}(F_{1},F_{2})} & H^{*}_{DR}(M) \\ & \downarrow W(d\rho)^{*} & \downarrow t^{*}_{N} \\ H^{*}(W0_{l}) & \xrightarrow{\Delta_{*}(F_{1N},F_{2N})} & H^{*}_{DR}(N) \end{array}$$

where $\Delta_{*(F_1,F_2)}$ and $\Delta_{*(F_{1N},F_{2N})}$ are the characteristic homomorphisms of (F_1,F_2) and (F_{1N},F_{2N}) respectively (as defined in [3]), $WO_{l'}$ (resp. WO_l) is the complex corresponding to the pair $(m + q_1, m + q_2)$ (resp. (q_1,q_2)), and $W(d\rho)^*$ denotes the homomorphism induced by the canonical inclusion

$$\rho: \operatorname{GL}(q_1) \times \operatorname{GL}(d) \longrightarrow \left(\operatorname{GL}(m) \times \operatorname{GL}(q_1)\right) \times \operatorname{GL}(d) \longrightarrow \operatorname{GL}(m+q_1) \times \operatorname{GL}(d).$$

PROOF. Let $z_{(i,i',j,j')} = y_{(i)} \wedge y'_{(i')} \otimes c_{(j)}c'_{(j')} \in W0_{l'}$ be a cocycle of the Vey basis (see [4]). Denote by ϕ (resp. by ϕ') the element $y_{(i)} \otimes c_{(j)} = y_{i_1} \wedge \cdots \wedge y_{i_s} \otimes$

 $c_{1}^{j_{1}}\cdots c_{m+q_{1}}^{j_{m+q_{1}}} \in \Lambda(y_{1}, y_{3}, \ldots) \otimes R[c_{1}, c_{2}, \ldots, c_{m+q_{1}}] \text{ (resp. } y_{(i')}' \otimes c_{(j')}' = y_{i'_{1}}' \wedge \cdots \wedge y_{i'_{s'}}' \otimes c_{1}^{j'_{1}} \cdots c_{d}^{j'_{d}} \in \Lambda(y_{1}', y_{3}', \ldots) \otimes R[c_{1}', c_{2}', \ldots, c_{d}'] \text{ with } i_{1} < \cdots < i_{s} \text{ and } i_{1}' < \cdots < i_{s'}',$ where the y_{i} (resp. the y_{i}') are the relative suspensions of the odd Chern polynomials $c_{i} \in I(GL(m+q_{1})) = R[c_{1}, \ldots, c_{m+q_{1}}]$ (resp. $c_{i}' \in I(GL(d)) = R[c_{1}', \ldots, c_{d}']$), deg $c_{i} = deg c_{i}' = 2i$ and $deg y_{i} = deg y_{i}' = 2i - 1$. Then $z_{(i,i',j,j')} = \phi \cdot \phi' \in W0_{i'}$. Consider now the exact sequence of vector bundles

$$0 \longrightarrow F/F_1 \xrightarrow{i} Q_1 \xrightarrow{\pi} \nu F \longrightarrow 0$$

associated to (F, F_1) . By Theorem 3.3 in [3], we can choose basic connections ∇'_1, ∇_1 , ∇_F (analogously, Riemannian connections $\nabla''_1, \nabla'_1, \nabla'_F$) on F/F_1 , Q_1 and νF respectively, and such that they are compatible with the homomorphisms *i* and π (in the sense of [3]). Therefore, $\nabla' = \nabla_F \oplus \nabla'_1$ is a basic connection and $\nabla'^r = \nabla_F^r \oplus \nabla'_1^r$ is a Riemannian connection on $\nu F \oplus (F/F_1)$ (in the sense of [3]).

Let $\sigma_1, \ldots, \sigma_{m+q_1}$ be a local framing of Q_1 such that $\pi(\sigma_1), \ldots, \pi(\sigma_m)$ is a local framing of νF and $\sigma_{m+1}, \ldots, \sigma_{m+q_1}$ is a local framing of F/F_1 . An easy computation shows that with respect to the local framing $\sigma_1, \ldots, \sigma_{m+q_1}$, the local connection forms θ_1 and θ_1^r of ∇_1 and ∇_1^r are given by

$$egin{aligned} heta_1 &= \left(egin{aligned} heta_F & 0 \ st & heta_1' \end{matrix}
ight), \ heta_1^{\,r} &= \left(egin{aligned} heta_F^{\,r} & 0 \ st & heta_1'' \end{matrix}
ight), \end{aligned}$$

respectively, where θ_F and θ_F' (resp. θ_1' and θ_1'' are the local connection forms of ∇_F and ∇_F' (resp. of ∇_1' and ∇_1'') with respect to the local framing $\pi(\sigma_1), \ldots, \pi(\sigma_m)$ (resp. $\sigma_{m+1}, \ldots, \sigma_{m+q_1}$). Hence we have

(2.2)
$$\phi(\nabla_1, \nabla_1^r) = \phi(\nabla', \nabla'^r) \in A^*(M).$$

Now, let ∇_0 be a basic connection and ∇_0^r a Riemannian connection on Q_0 . Then $\nabla^b = \nabla_1 \oplus \nabla_0$ (resp. $\nabla^r = \nabla_1^r \oplus \nabla_0^r$) is a basic connection (resp. a Riemannian connection) on $\nu(F_1, F_2) = Q_1 \oplus Q_0$, and we can use ∇^b and ∇^r to compute the characteristic homomorphism $\Delta_{*(F_1,F_2)}$ of (F_1, F_2) (see [3]). From (2.2) it follows that the cohomology class $\Delta_{*(F_1,F_2)}[z_{(i,i',j,j')}] \in H^*_{DR}(M)$ is represented by the closed form

$$\phi(\nabla_1,\nabla_1')\wedge \phi'(\nabla_0,\nabla_0')=\phi(\nabla',\nabla'')\wedge \phi'(\nabla_0,\nabla_0')\in A^*(M).$$

Next, consider the canonical immersion $i_N: N \to M$. Then $\nabla_N = i_N^*(\nabla_F)$ (resp. $\nabla_N^r = i_N^*(\nabla_F^r)$) is the natural flat connection (resp. a Riemannian connection) on νN , and $\nabla_N^b = \nabla_{1N} \oplus \nabla_{0N}$ (resp. $\overline{\nabla}_N^r = \nabla_{1N}^r \oplus \nabla_{0N}^r$) is a basic connection (resp. a Riemannian connection) on $\nu(F_{1N}, F_{2N}) = Q_{1N} \oplus Q_{0N}$, where $\nabla_{1N} = i_N^*(\nabla_1')$, $\nabla_{0N} = i_N^*(\nabla_0)$, $\nabla_{1N}^r = i_N^*(\nabla_1')$ and $\nabla_{0N}^r = i_N^*(\nabla_0^r)$. Whence, we can use ∇_N^b and $\overline{\nabla}_N^r$ to compute the characteristic homomorphism $\Delta_{*(F_{1N}, F_{2N})}$ of (F_{1N}, F_{2N}) . Denote by ∇_N' (resp. by ∇_N'') the connection $\nabla_N \oplus \nabla_{1N}$ (resp. the Riemannian connection $\nabla_N^r \oplus \nabla_{1N}^r$) on $\nu N \oplus Q_{1N}$. By (2.2) we have then

(2.3)
$$i_N^* \Big(\phi(\nabla_1, \nabla_1^r) \wedge \phi'(\nabla_0, \nabla_0^r) \Big) = \phi(\nabla_N', \nabla_N') \wedge \phi'(\nabla_{0N}, \nabla_{0N}^r) \in A^*(N).$$

In order to compute the differential form $\phi(\nabla'_N, \nabla''_N)$ we consider the restriction homomorphism

$$\begin{split} I\big(\mathrm{GL}(m+q_1)\big) & \stackrel{\rho_1^-}{\longrightarrow} & I\big(\mathrm{GL}(m)\big) \otimes I\big(\mathrm{GL}(q_1)\big) \\ & \parallel & \parallel \\ R[c_1,\ldots,c_{m+q_1}] & \longrightarrow & R[c_1',\ldots,c_m'] \otimes R[c_1,\ldots,c_{q_1}] \end{split}$$

given by

(2.4)
$$\rho_1^* c_i = \sum_{j=0}^i c'_j c_{i-j}, \quad i = 1, \dots, m + q_1$$

with $c'_0 = 1$, $c_0 = 1$, $c'_i = 0$ for i > m, and $c_i = 0 \in I(GL(q_1))$ for $i > q_1$, where the c_i and c'_i denote the Chern polynomials. By (2.4) we have

(2.5)
$$\rho_1^* c_{2i-1} = \sum_{k=1}^{i} (c'_{2k-1} c_{2(i-k)} + c'_{2(i-k)} c_{2k-1})$$

 $i = 1, ..., [(m + q_1 + 1)/2]$. Now, denote by Ω'_N , Ω_N and Ω_{1N} the curvatures of ∇'_N , ∇_N and ∇_{1N} respectively. Since $\Omega_N = 0$, it follows from (2.4) that

(2.6)
$$c_{(j)}(\Omega'_N) = c_{(j)}(\Omega_{1N}),$$

where $c_{(j)} \in I(GL(m + q_1))$ on the left, and $c_{(j)} \in I(GL(q_1))$ on the right. On the other hand, using (2.5), we obtain by an easy computation the formula

(2.7)
$$\Delta(\nabla'_{N}, \nabla''_{N})(c_{2i-1}) = \sum_{k=1}^{i} \Delta(\nabla_{N}, \nabla'_{N})(c'_{2k-1}) \wedge c_{2(i-k)}(\Omega_{1N}) + \Delta(\nabla_{1N}, \nabla'_{1N})(c_{2i-1}) + \text{ exact }.$$

Now, if $2k-1 \le m$, and if $2i-1+p_1 > m+q_1$ or $2i-1+p > m+q_2$, then $2(i-k)+p_1 > q_1$ or $2(i-k)+p > q_2$, where $2p_1 = \deg c_{(j)}, 2p_2 = \deg c'_{(j')}$ and $p = p_1 + p_2$. Hence, by (2.3), (2.6) and (2.7) it follows that

$$\begin{split} i_{N}^{*}(\Delta_{*(F_{1},F_{2})}[z_{(i,i',j,j')}]) &= [\phi(\nabla_{N}',\nabla_{N}') \wedge \phi'(\nabla_{0N},\nabla_{0N}')] \\ &= [(\bigwedge_{\alpha=1}^{s} \Delta(\nabla_{1N},\nabla_{1N}')(c_{i_{\alpha}})) \wedge c_{(j)}(\Omega_{1N}) \wedge \phi'(\nabla_{0N},\nabla_{0N}')] \\ &= \Delta_{*(F_{1N},F_{2N})} (W(d\rho)^{*}[z_{(i,i',j,j')}]). \end{split}$$

REMARKS. 1) In the previous results, the leaf N of F can be replaced by any (n-m)-dimensional integral manifold of F, where n is the dimension of the manifold M.

2) A similar result holds for subfoliations with trivialized normal bundle (in the sense of [3]).

Let $f: M \to X$ be a submersion, where X is a manifold of dimension $m \ge 1$. Consider now the case where F is the tangent bundle T(f) along the fibers of f. Then the $(m + q_1, m + q_2)$ -codimensional subfoliation (F_1, F_2) on M can be considered as a deformation of the subfoliations $(F_{1x}, F_{2x}) = (F_{1Nx}, F_{2Nx})$ of codimension (q_1, q_2) on the fibers $N_x = f^{-1}(x), x \in f(M) \subset X$. Then, from Lemma 2.1 we obtain the following result.

THEOREM 2.8. For every $x \in f(M) \subset X$, the following diagram is commutative

$$\begin{array}{ccc} H^*(W0_{l'}) & \stackrel{\Delta_{*(F_1,F_2)}}{\longrightarrow} & H^*_{DR}(M) \\ & \downarrow W(d\rho)^* & \downarrow i_x^* \\ H^*(W0_{l}) & \stackrel{\Delta_{*(F_1,rF_2,r)}}{\longrightarrow} & H^*_{DR}(N_x) \end{array}$$

where $W(d\rho)^*$ is as in Lemma 2.1 and $i_x: N_x = f^{-1}(x) \to M$ denotes the canonical inclusion.

Let *N* be a manifold and *X* an *m*-dimensional connected manifold with $m \ge 1$. Assume now that $M = N \times X$ and that $f: M \to X$ is the canonical projection. Then the homomorphism $i_x^*: H_{DR}^*(M) \to H_{DR}^*(N)$ induced by the canonical inclusion $i_x: N \cong N \times \{x\} = f^{-1}(x) \to M = N \times X$ does not depend on the choice of $x \in X$. From Theorem 2.8 it follows then that the classes

$$\Delta_{*(F_{1x},F_{2x})}(u) \in H^*_{DR}(N)$$
 for $u \in \operatorname{Im} W(d\rho)^* \subset H^*(W0_I)$

do not depend on the choice of $x \in X$. Hence, we have

COROLLARY 2.9. The classes $\Delta_{*(F_{1x},F_{2x})}(u)$, $u \in \text{Im } W(d\rho)^*$, are rigid for $m \ge 1$.

REMARK. This generalizes the result of Heitsch [11] on the rigidity of secondary characteristic classes of a foliation under one-parameter deformations. That is the case where $F_1 = F_2$, $q_1 = q_2$, m = 1 and $f: M = N \times R \rightarrow R$ is the canonical projection.

Let $\Delta_*: H^*(W0_l) \to H^*(B\Gamma; R)$ and $\Delta'_*: H^*(W0_{l'}) \to H^*(B\Gamma'; R)$ be the universal characteristic homomorphisms for subfoliations of codimension (q_1, q_2) and $(m + q_1, m + q_2)$ respectively (as defined in [7]), where $B\Gamma$ (resp. $B\Gamma'$) denotes the Haefliger classifying space for subfoliations of codimension (q_1, q_2) (resp. $(m+q_1, m+q_2)$). Then the following is easily verified.

THEOREM 2.10. There is a commutative diagram

$$\begin{array}{ccc} H^*(W0_{I'}) & \stackrel{\Delta'_{\star}}{\longrightarrow} & H^*(B\Gamma';R) \\ & & \downarrow^{W(d\rho)^*} & & \downarrow^{i^*} \\ H^*(W0_I) & \stackrel{\Delta_{\star}}{\longrightarrow} & H^*(B\Gamma;R) \end{array}$$

with canonical vertical homomorphisms.

D. DOMÍNGUEZ

3. **Results on** $H^*(W0_l)$. In order to see which classes of the Vey basis of $H^*(W0_l)$ are rigid, we consider the homomorphism $W(d\rho)^*$: $H^*(W0_{l'}) \rightarrow H^*(W0_l)$ induced by the DG-algebra homomorphism $W(d\rho)$: $W0_{l'} \rightarrow W0_l$ given by

$$W(d\rho)(c_i) = \begin{cases} c_i & \text{for } 1 \leq i \leq q_1, \\ 0 & \text{for } q_1 + 1 \leq i \leq m + q_1, \end{cases}$$
$$W(d\rho)(y_i) = \begin{cases} y_i & \text{for } 1 \leq i \leq q_1, i \text{ odd}, \\ 0 & \text{for } q_1 + 1 \leq i \leq m + q_1, i \text{ odd} \end{cases}$$
$$W(d\rho)(c'_i) = c'_i \text{ for } 1 \leq i \leq d,$$
$$W(d\rho)(y'_i) = y'_i \text{ for } 1 \leq i \leq d, i \text{ odd }.$$

Then, from Theorem 2.8 and Corollary 2.9 we obtain for m = 1 the following result.

THEOREM 3.1. Let the notation be as in [4]. Consider in $H^*(W0_I)$ the cohomology classes $[z_{(i,i',j,j')}]$ of the cocycles $z_{(i,i',j,j')} = y_{(i)} \wedge y'_{(i')} \otimes c_{(j')}c'_{(j')} \in W0_I$ of the Vey basis with deg $c_{(j)} = 2p_1$, deg $c'_{(j')} = 2p_2$ and $p = p_1 + p_2$. Then we have

(i) An R-basis of the rigid classes of $H^*(W0_I)$ is given by the elements $[z_{(i,i',j,j')}]$ of the Vey basis of $H^*(W0_I)$ satisfying

$$i_0 + p_1 \ge q_1 + 2 \text{ or } i_0 + p \ge q_2 + 2$$
, and $i'_0 + p \ge q_2 + 2$.

(ii) The elements $[z_{(i,i',j,j')}]$ of the Vey basis of $H^*(W0_I)$ satisfying at least one of the following conditions:

- (a) $i_0 + p_1 = q_1 + 1$, $i_0 + p \le q_2 + 1$, $i'_0 + p \ge q_2 + 1$;
- (b) $i_0 + p_1 \leq q_1 + 1$, $i_0 + p = q_2 + 1$, $i'_0 + p \geq q_2 + 1$;
- (c) $i_0 + p_1 \ge q_1 + 1$, $i'_0 + p = q_2 + 1$;
- (d) $i_0 + p \ge q_2 + 1$, $i'_0 + p = q_2 + 1$

are the only elements of the Vey basis of $H^*(W0_I)$ which do not belong to $\operatorname{Im} W(d\rho)^* \subset H^*(W0_I)$. Thus these secondary classes are variable.

COROLLARY 3.2. The Godbillon-Vey classes $[y_1 \otimes c_1^{q_1}] \in H^{2q_1+1}(W0_l)$, $[y'_1 \otimes c'_1 c'_1^{q_2-j}] \in H^{2q_2+1}(W0_l)$ and $[y_1 \wedge y'_1 \otimes c'_1 c'_1^{q_2-j}] \in H^{2q_2+2}(W0_l)$, $0 \leq j \leq q_1$, for subfoliations of codimension (q_1, q_2) are variable.

REMARKS. 1) Similar results hold for subfoliations with trivialized normal bundle. 2) For $q_1 = q_2 = q$, we have the result of Heitsch [11].

3) The computations for some examples of subfoliations with variable classes are given in [8].

REFERENCES

- **1.** J. M. Carballés, *Characteristic homomorphism for* (F_1, F_2) -foliated bundles over subfoliated manifolds, Ann. Inst. Fourier, Grenoble **33**(1984), 219–245.
- 2. L. A. Cordero, Sheaves and cohomologies associated to subfoliations, Results in Math. 8 (1985), 9-20.
- **3.** L. A. Cordero and X. Masa, *Characteristic classes of subfoliations*, Ann. Inst. Fourier, Grenoble **31**(1981), 61–86.

- 4. D. Domínguez, Sur les classes caractéristiques des sous-feuilletages, Publ. RIMS, Kyoto Univ. 23 (1987), 813–840.
- 5. _____, Classes caractéristiques non triviales de sous-feuilletages localement homogènes, Kodai Math. J. 11(1988), 177–204.
- 6. _____, Classes caractéristiques non triviales des feuilles de sous-feuilletages localement homogènes, Geometriae Dedicata 28(1988), 229–249.
- 7. _____, On the linear independence of certain cohomology classes in the classifying space for subfoliations, Trans. Amer. Math. Soc., to appear.
- 8. _____, Residues and secondary classes for subfoliations, preprint.
- 9. B. L. Feigin, Characteristic classes of flags of foliations, Functional Anal. Appl. 9(1975), 312-317.
- Y. Hantout, Déformations de connexions, résidus et classes caractéristiques des feuilletages, Pub. IRMA-Lille III 8(1987).
- 11. J. L. Heitsch, Deformations of secondary characteristic classes, Topology 12(1973), 381-388.
- 12. _____, Independent variation of secondary classes, Ann. of Math. 108(1978), 421-460.
- 13. S. E. Hurder, Dual homotopy invariants of G-foliations, Topology 20(1981), 365-387.
- 14. S. Hurder and D. Lehmann, *Homotopy characteristic classes of foliations*, Illinois J. of Math. 34(1990), 628–655.
- 15. D. Lehmann, Classes caractéristiques résiduelles, Pub. IRMA-Lille VII 17(1989).
- 16. R. A. Wolak, Characteristic classes of almost-flag structures, Geometriae Dedicata 24(1987), 207-220.

Departamento de Matemáticas Estadística y Computación Universidad de Cantabria 39071 Santander Spain 173