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STABILITY THEOREMS FOR CONVEX DOMAINS OF 
CONSTANT WIDTH 

BY 

H. GROEMER 

ABSTRACT. It is known that among all plane convex domains of 
given constant width Reuleaux triangles have minimal and circular 
discs have maximal area. Some estimates are given concerning the 
following associated stability problem: If AT is a convex domain of 
constant width w and if the area of K differs at most e from the area 
of a Reuleaux triangle or a circular disc of width w, how close (in 
terms of the Hausdorff distance) is K to a Reuleaux triangle or a 
circular disc? Another result concerns the deviation of a convex 
domain M of diameter d from a convex domain of constant width if 
the perimeter of M is close to TTCI. 

In this note a convex domain is defined as a compact convex subset of the 
euclidean plane with nonempty interior. As usual, a convex domain K is said to 
be of constant width w if the distance between any pair of parallel support lines 
of K is w. In this case w = d(K), where d(K) denotes the diameter of K. The two 
best known domains of constant width are the circular disc and the Reuleaux 
triangle. The latter, which can be defined as a convex domain T of constant 
width that is bounded by three congruent circular arcs of radius d(T), has area 
c()d(T) , where 

(1) c0 = — r - . 

These two domains appear naturally as extremal cases in the following 
inequalities. If K is a convex domain of constant width d(K) and area a(K), 
then 

(2) a(K) ^ c0d(K)2 

with equality if and only if AT is a Reuleaux triangle, and 

(3) a(K) ^ -d(K)2 

4 
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with equality if and only if K is a circular disc. (2) is known as the inequality of 
Blaschke-Lebesgue, and (3), which actually holds for any convex domain, is 
called the inequality of Bieberbach. For references regarding these inequalities 
and all other results on convex bodies of constant width that will be cited see 
[1], [2], and [4]. 

In the present article we concern ourselves with stability questions associated 
with (2) and (3). They are of the following type: If a convex domain K of 
constant width d(K) has the property that a(K) differs not more than € from 

9 9 

c0d(Kf or (7T/4)d(Ky what can be said about the deviation of K from a 
Reuleaux triangle or, respectively, from a circular disc? To measure the 
deviation of two convex domains M, N from each other we let D(x, r) denote 
the circular disc of radius r centered at x and introduce the Hausdorff 
distance 

h(M, N) = 'mflr.M c U D(x, r), N c ( J D(x9 r) ). 

Using the convenient normalization d(K) = 1 our stability statements can now 
be given the following precise formulation. 

THEOREM 1. Let K be a convex domain and assume that e ~ 0. 
(a) If K is of constant width 1 and 

(4) a(K) â c0 + e 

(where c0 is defined by (1) ), then there is a Reuleaux triangle T such that 

(5) h(K9 T) ^ y/lte. 

(b) If K has diameter 1 and 

(6) a(K) ^ - - c, 
4 

then there is a circular disc D such that 

(7) h(K, D)^]-Vt. 

Furthermore, if K is of constant width 1 there is such a D with the additional 
property that d(D) = 1. 

It is worth noting that a stability statement of the type (a) implies 
immediately the original inequality (2). Indeed, if one had a(K) < c0 it would 
be possible to take e = 0, which would then imply h(K, T) = 0 and therefore 
K = T leading to the contradiction a(K) = c0. The same remark applies with 
regard to (b). The following corollary, which is obtained from Theorem 1 by 
setting, respectively € = a(K) — c0 or e = (77/4) — a(K), shows even more 
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strikingly that the above stability statements (a) and (b) can be viewed as 
improvements of the classical inequalities (2) and (3). 

COROLLARY 1. If K is a convex domain of constant width 1 there exist a 
Reuleaux triangle T and a circular disc Z), both of diameter 1, such that 

c0 + ~h(K, Tf ^ a(K) â ^ - 4h(K, D)\ 

Another well-known theorem on convex domains of constant width is the 
theorem of Barbier. It states that every convex domain of constant width w has 
perimeter TTW. Since every convex domain K is contained in a convex domain of 
constant width d(K) it follows that 

(8) p(K) ë „d(K), 

where p(K) denotes the perimeter of K and equality holds if and only if K is of 
constant width. The following theorem deals with the stability problem 
associated with (8). 

THEOREM 2. Let K be a convex domain of diameter 1 and e = 0. If 

P(K) ^ <TT - £, 

then there exists a convex domain C of constant width 1 such that K c C and 

(9) h(K, C) ^ — €2/3 

25 

The exponent 2/3 cannot be replaced by any larger constant. 

Analogously to Corollary 1 the content of this theorem can be expressed as an 
improvement of (8). 

COROLLARY 2. For any convex domain of diameter 1 there is a convex domain C 
of constant width 1 such that K c C and 

125 \3/2 

p(K)^ir-[—h(K,C)) -

For the purpose of proving these theorems we assume that the plane is 
equipped with the usual cartesian x, ^'-coordinate system having origin o. The 
euclidean norm will be denoted by ||-||. If K is a convex domain containing o 
and if u = (ul9 u2) is a unit vector forming an angle a with the positive jc-axis, 
then K has a support line, say LK(a), of the form uxx + u2y = HK(a), where 
HK(a) is the support function of K, i.e., the distance from o to LK(a). To prove 
part (a) of Theorem 1 we need two lemmas. We use frequently the known fact 
that a convex domain of constant width has a regular circumscribed hexagon. 
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LEMMA 1. Let K be a convex domain of constant width 1 and Q a regular 
hexagon circumscribed about K. Assume that for some t > 0 there is a vertex p of 
Q such that 

(10) D(p, t) O K ¥= 0 

Let T be the Reuleaux triangle of width 1 inscribed in Q with one vertex at p. 
Then, 

(11) h(K, T) ^ V(2 + t)t. 

PROOF. Let v and w be the other two vertices of Q that are, together with p, 
the vertices of an equilateral triangle. Because of (10) there is a q e K with 
\\q - p\\ ^ t. Thus, for any z e # we have ||z - p\\ ^ \\z - q\\ + \\q - p\\ ^ 
1 4- t and consequently 

(12) K c D(p9 1 4 /). 

Let now S be the half-line starting at v and containing the vertex of Q opposite 
p. Because of \\p — v\\ = 1 we have v e D(p, 1 4- t) and it follows that the 
circle bdrD(p, 1 4- t) intersects S in exactly one point, say s. Obviously 

||v - s\\ = V(l + tf - l2 = V(2 + t)t. 

Furthermore, since S contains a side of Q, there is a point of K between v and s. 
Hence, K n Z)(v, \/(2 4 t)t) ¥= 0, and using the same argument that led to 

(12) (with t replaced by V( 2 + 0 0 w e f i n d t h a t 

(13) K c Z)(v, 1 4- V(2 + 0 0 

and analogously 

(14) K c D(w, 1 4 V C ^ T 1 ^ ) . 

Let us now introduce the convex domain 

/ = D(p, l + V(2 + 00 n D(v, l 4 V(2 + 00 

n Z)(w, l + V(2 + 00 n g. 

Because of (12), (13), (14), and since K <z Q and f ^ V( 2 + 0 ' w e n a y e 
K cz J. Since it is easily seen that every point of J is within distance 
y/(2 + t)t of a point of T the corresponding support functions have the 
property that 

Hj(a) - HT{a) ^ V(2 + t)t. 

If a is an angle such that HK{a) â HT(a), then 

0 â HK(a) - HT(a) S // ,(«) - HT(a) ^ V(2 + ' ) ' • 
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But if HK(a) = HT(a), then, since both K and T have constant width 1, 

HK(a + TT) = 1 - HK(a) ^ 1 - HT(a) = HT(a + 77) 

and therefore 

0 ^ HT(a) - HK(a) = HK(a + 77) - / / r ( a -f TT) ^ V(2~+~7)7. 

Hence, for ail a we have |#^(a) — HT(a) | ^ \/(2 + i)t, and this implies 
obviously (11). 

LEMMA 2. L^/ K be a convex domain of constant width 1 which has a 
circumscribed regular hexagon Q with center at o and one vertex, say p, on the 
negative x-axis. Let T be the Reuleaux triangle of width 1 inscribed in Q with one 
vertex at p. If there exists an a with — 77/12 = a = 77/12 such that 

(15) O S HK(a) - HT(a) S s, 

then 

(16) D(p, 3.87 5) O K * 0. 

PROOF. Let us set / = [—77/12, 77/12]. Since (15), together with the 
relations 

HK(a + 77) = 1 - HK(a\ HT(a + 77) = 1 - / / r (a ) , 

implies 

0 ^ / / r (« + 77) - HK(a + 77) ^ 5 

it follows that for any a ^ I the distance between the support lines L r ( a + 77) 
and LK(a + 77) is at most 5. We also note that for a G / the line 
LT(a -f 77) contains the point /? and the line segment LK(a + 77) n Q must 
contain a point, say q, of T̂. The distance \\p — q\\, considered as a function of 
q, is clearly maximal if q is one of the endpoints of LK(a + 77) n g . From this 
fact and a e / we obtain 

H/7 - <?|| ^ s/sin— ^ 3.87 5. 

Hence, q e /)(/?, 3.87 5) n K and this implies obviously the desired rela
tion (16). 

PROOF OF THEOREM 1. We first prove part (a). If K is given we may assume 
that it is positioned so that Q, T, and p are as in Lemma 2. Let K and V be the 
convex domains obtained from K and T (respectively) by a rotation of angle 77 
about o. Our proof proceeds by showing that either T or T satisfies inequality 
(5). To establish this fact it will be shown that the validity of both 

(17) h(K, T) > -/We 
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and 

(18) h(K\ T) > yTto 

would imply that, contrary to (4), a(K) > c0 + e. We may assume that 

(19) ^/ÏÔe ^ 0.155 

since HK(a) â HT(a) implies 

HK(a) - HT(a) ^ HQ(a) - HT(a) ^ {II y/3) - 1 < 0.155, 

and HK(a) ^ HT(a) implies 

HT(a) ~ HK(a) = HK(a + 77) - HT(a + 77) 

^ HQ(a + 77) - / / r ( a + 77) ^ (2/V3) ~ 1 < 0.155. 

It is now convenient to introduce for n = 0, ± 1 the following intervals: 

77 

6 

277 77 277 

n—, - + n ,4 
77 277 77 277 
— + n—, — + n— 
12 3 12 3 

e ln(n = 0, ± 1 ) 

3 6 3 J 

Using this notation we can state that for all a 

(20) HK(a) ^ HT(a\ 

and 

(21) HK(a + 77) i= / / r (a) . 

For example, if « = 0 then (20) follows from the fact that in this case 
HK(a + 77) ^ HT(a + 77) (since the support line of T corresponding to a + 77 
contains /? and is also a support line of Q). The cases n = dzl are obtained by 
suitable rotations, and (21) can be shown by applying (20) to K'. 

If we now set / = 4.97c and use (19) then V( 2 + t)t ^ Ï/ÏÔC and 
Lemma 1 shows that under the assumption (17) D(p, 4.97 e) n K = 0. Hence, 
if Lemma 2 is applied with 

4.97 
S = € 

3.87 

we find that (17) implies that for all a 

(22) HK(a) 
4.97 

HT(a) > € ^ 1.28 €. 
T 3.87 

Since corresponding statements hold of course for the other three vertices of T 
we can state that (22) is valid for all a e Tn (n = 0, ± 1). Analogously we obtain 
from (18) that for all a <= In (n = 0, ±1 ) 

(23) HK(a + 77) - HT(a) > 1.28 c. 
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We can now complete the proof using an idea of Eggleston [3], [4]. It depends 
on the fact that the radius of curvature, say p(a), of K (at the point K n LK(a) ) 
exists for all a with at most countably many exceptions and has the property 
that p(a) 4- p(a + TT) = 1 and 

2 

In particular, if K = T this shows that 

a(K) = 1 J_v p(a)HK(a)da. 

a(T) = I 2 [ HT(a)da 

(where 2 indicates summation over n = 0, — 1, 1). Hence (20), (21), (22), and 
(23) implies that 

a(K) = \ 2 ( (p(a)HK(a) + p(a + *)#*(« + TT) )da 

> - 2 /7 (p(a)(HT(a) + 1.28 c) + p(a + TT)(HT(OL) + 1.28 c) )da 
2 «"n 

+ ^ 2 ( . , (P(a)// r(«) + P(« + *)HT(a))da 
2 Jln\ln 

= ~ 2 ( jj HT{a)da + J r 1.28 a/a) = tf(r) + -1.28 e ^ c0 + e. 

Part (b) of Theorem 1 is an almost immediate consequence of a theorem of 
Bonnesen (cf. [2], p. 83) which states that there are two concentric circular discs, 
say D(p, r) and D(p, R) with the property that D(p7 r) c K c D(p, R) 
and 

^-P(K)2 - a(K) i= (R -rf. 
ATT 

Because of p(K) ^ IT this can also be written as (R — r)2 ^ (77/4) — a(K). 
Thus, if (6) holds and if one writes 

R + r 

then /j(#, D) ê (/? — r) /2 and we obtain immediately the desired inequal
ity (7). 

If A' is of constant width 1 one may take for R the circumradius and for r 
the inradius of K (since for convex domains of constant width the circumcircle 
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and incircle are concentric). These radii are known to have the property that 
R + r = 1 and it follows that 

PROOF OF THEOREM 2. Let C be a convex domain of constant width 1 such 
that K c C. Setting h(K, C) = h we are going to prove that under the assump
tion p(K) ^ 77 - £ we have h ^ (34/25)€2/3. There is an angle a such that the 
two corresponding support lines LK = LK(a) and Lc = Lc(a) have mutual 
distance h. Let LK and Lc denote, respectively, the corresponding support 
half-spaces with the property that K c K%, C c L^ and therefore L% c Lç. If 
we set 

M = C n L^ , 

then h(M, C) = h(K, C) = h and 

(24) p(M) ^ p(K) ^ 77 - c. 

The set C\M is bounded by an arc (L^\L^) n bdrC, whose length will be 
denoted by s, and a line segment C n LK, whose length will be denoted by t. 
Because of (24) we have 

(25) s - t = p(C) - p(M) = 7T - p(M) ^ c 

If one inscribes in C\M a triangle with two vertices at the endpoints of C n LK 

and the third vertex at a point q e C C\ Lc, then we see that 

s ^ Vh2 4- x2 + \ 4 2 + (/ - *)2, 

where 0 ^i JC = /. Hence, 5- and because of (25) we find 

V4/*2 + t2 - f e e . This can also be written as 

(26) 4/z2 ^ 6(V4/z2 + t2 + 0 

If g* is the point on bdrC with \\q - q*\\ = 1, then C c £>(<?*, 1) and 
consequently C n LK c D(#*, 1). Since this fact implies 

t ^ 2VF"- (i - /o2 ^ V ^ 

it follows from (26) that 2/z2 ^ c( V(/z2 + 2h) + \/2^) and therefore 

hV2 ^ -(V/TFI + V2). 

The desired result (9) is now an immediate consequence of this inequality and 
h ^ 1. 

https://doi.org/10.4153/CMB-1988-048-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1988-048-3


336 H. GROEMER [September 

Finally, to show that the exponent 3/2 in (9) cannot be improved let Pm 

denote the regular m-gon (m odd) of diameter 1, and Qm the convex domain 
obtained from Pm by replacing m — 1 sides of Pm by circular arcs of radius 1 
with centers at the vertices opposite the respective sides. Then, there is only one 
convex domain of constant width 1 that contains Qm, namely the Reuleaux 
polygon, say Rm, that is obtained from Qm by replacing the remaining straight 
side by a circular arc. A simple calculation shows that 

h(Qm, RJ = 1 - cos(77/2m) 

and 

P(Rm) - P(QJ = (*'"0 ~ 2 sin(77/2m). 

Thus, setting e = 77 - p(Qm) = p(Rm) ~ p(Qm) we find 

e2 

lim ~ = 108. 
m-00 h(Qm9 RJ3 

It is therefore impossible that h(Qm, Rm) ^ œ with some constant c and 
$ > 2/3. 

We conclude with some remarks concerning generalizations of our results to 
euclidean ^-dimensional space En. In view of the fact that it is not even known 
which convex bodies in E of constant width 1 have minimal volume it is 
presently impossible to prove an exact analogue of part (a) of Theorem 1. Since 
the proof of part (b) of Theorem 1 is essentially based on a stability version 
of the isoperimetric inequality and since such stability statements can be proved 
for En (cf. Osserman [5] ) it is possible to derive analogues of part (b) of 
Theorem 1 that are valid for all n. However, it appears not to be possible to 
obtain a result as strong as (7) by restricting these general statements to the case 
n = 2. A possible way to generalize Theorem 2 is to estimate the Hausdorff 
distance between a convex body and a nearest convex body of constant width if 
the diameter of the body differs at most e from its mean width. Professor P. 
Goodey has noted (private communication) that results of this kind can be 
obtained from an inequality of Vitale [6] concerning metrics on classes of 
convex bodies defined in terms of Lx and L ^ norms. Again, if these results are 
specialized to the two-dimensional case the resulting inequalities are weaker 
than Theorem 2. 
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