Rearranging transfinite series of ordinals

Péter Komjath

A new, simplified proof is given of a theorem of J.L. Hickman (to be published; see also J. London Math. Soc. (2) 9 (1974), 239-244), giving an upper bound for the sums of a well-ordered series of ordinals under permutation.

In this paper we consider the following problem: let $s = \langle s_{\beta} : \beta < \alpha \rangle$ be a sequence of type α of ordinals where α is an ordinal. How many distinct sums can we obtain by permuting the members of the series? To put it in a more precise form, let $\Pi(\alpha)$ be the set of all permutations of α , $\Sigma(\pi) = \Sigma \langle s_{\pi(\beta)} : \beta < \alpha \rangle$ for $\pi \in \Pi(\alpha)$, $S(s) = \{\Sigma(\pi) : \pi \in \Pi(\alpha)\}$, and $\sigma(s) = |S(s)|$. Given s we want to get

upper estimates for $\sigma(s)$. An old theorem of Sierpiński [4] states that $\sigma(s) < \omega$ provided dom $(s) = \alpha = \omega$. A more recent result of Hickman [2, 3] gives the following upper estimate

$$\sigma(s) \leq |\alpha|$$

for an arbitrary sequence of ordinals s with $dom(s) = \alpha \ge \omega$.

Our aim is to give a new and considerably simpler proof of Hickman's Theorem.

Our notation is standard. Lower case Latin and Greekletters denote ordinals. $\alpha + \beta$, $\alpha.\beta$, α^{β} denote ordinal operations; thus $\alpha^{\beta+1} = \alpha^{\beta}.\alpha$, $\alpha^{\sup A} = \sup\{\alpha^{\gamma} : \gamma \in A\}$.

321

Received 30 November 1976. Communicated by J.L. Hickman.

04A10

First we formulate some preliminary statements.

1. If
$$\sum_{i<\delta} \alpha_i^{\alpha} = \omega^{\gamma}$$
, then $\sup_{i<\delta} \alpha_i \leq \gamma \leq (\sup_{i<\delta} \alpha_i) + \delta$.

Proof. Immediate.

2. Assume $\kappa \ge \delta$ a cardinal, F is a set of ordinals, $|F| \le \kappa$, $\alpha < \kappa^{+}$. Let $F_0 = F \cup \{x : x \text{ is a limit point of } F\}$ and

$$F_1 = \{x+\delta : x \in F_0, \delta \leq \alpha\}$$

Then $|F_1| \leq \kappa$, and, moreover, if $\sum_{i < \delta} \omega^a i = \omega^c$ where $\alpha_i \in F$, $\delta \leq \alpha$, then $c \in F_1$.

Proof. Straightforward.

3. If
$$\sum_{i < \delta} \omega^{\alpha_i} = \omega^{c_1} + \ldots + \omega^{c_n}$$
 where $c_1 \ge \ldots \ge c_n$ $(n < \omega)$ then

there exists a $\delta_1 \leq \delta$ such that

$$\sum_{i < \delta_1} \omega^{\alpha_i} = \omega^{c_1}$$

Proof. Put
$$\delta_{1} = \min\left\{\gamma : \sum_{i < \gamma} \omega^{\alpha_{i}} \ge \omega^{\alpha_{1}}\right\}$$
. If $\sum_{i < \delta_{1}} \omega^{\alpha_{i}} \ge \omega^{\alpha_{1}} + 1$,

the ω^{c_1} -th member of the sum is in some $\omega^{a_{i_0}}$. So $\sum_{i \leq i_0} \omega^{a_i} \geq \omega^{c_1} + 1$,

and
$$\sum_{i < i_0}^{\alpha} \omega^i = \beta < \omega^{i_1}$$
 and $\delta_1 = i_0 + 1$. But

$$\omega^{\alpha_{i_0}} \leq \sum_{i \leq \delta} \omega^{\alpha_i} \leq n \cdot \omega^{c_1} < \omega^{c_1+1}$$

so $\alpha_{i_0} \leq c_1$. As ω^{c_1} is additively indecomposable, $\alpha_{i_0} = c_1$, and $\sum_{i \leq i_0} \omega^{\alpha_i} = \beta + \omega^{c_1} = \omega^{c_1}$. //

322

4. If $\sum_{i < \delta} \omega^{\alpha} i = \omega^{c_1} + \ldots + \omega^{c_n}$ $(c_1 \ge \ldots \ge c_n)$ then there are

 $0 = \delta_0 < \delta_1 < \ldots < \delta_n = \delta$, such that

$$\sum_{\substack{\delta_t \leq i < \delta_{t+1}}} \omega^{\alpha_i} = \omega^{c_{t+1}} \quad (t = 0, 1, ..., n-1) .$$

Proof. By iterating 3.

THEOREM (Hickman [3]). Assume X is a set of ordinals, α is an ordinal, $|X| \leq \kappa$ and $\alpha < \kappa^{+}$. Then those α -series formed from members of X give at most κ distinct sums. (Multiple occurrence is admitted.)

Proof. We may assume that every element of X is a power of ω . As a well-known matter of fact, every ordinal is a finite sum of powers of ω . Hence if we prove the theorem for sums of lengths less than or equal to $\alpha.\omega$ and X having ω^x -type members only, then the general statement follows for sums of length α . So let $X = \{\omega^x : x \in F\}$. Then

by 2 and 4 the cardinality of $\left\{\sum_{i<\alpha} \omega^{\dot{\alpha}} i : \alpha_i \in F\right\}$ is at most as large as the set of finite subsets of F_1 , which is less than or equal to κ .

References

- [1] S. Ginsburg, "On the distinct sums of λ -type transfinite series obtained by permuting the elements of a fixed λ -type series", *Fund. Math.* **39** (1952), 131-132.
- [2] J.L. Hickman, "Concerning the number of sums obtainable from a countable series of ordinals by permutations that preserve the order-type", J. London Math. Soc. (2) 9 (1974/1975), 239-244.
- [3] J.L. Hickman, "Some results on series of ordinals", Z. math. Logik Grundlagen Math. (to appear).
- [4] Waclaw Sierpiński, "Sur les séries infinies de.nombres ordinaux", Fund. Math. 36 (1949), 248-253.

Department of Algebra and Number Theory, Eötvös Lorand University, Budapest, Hungary.