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The Saturnian droplet
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Electrohydrodynamic instabilities at liquid interfaces continue to defy our intuition, from
the pioneering work of Taylor (Proc. R. Soc. Lond. A, vol. 280, issue 1382, 1964,
pp. 383–397) on conical tips of electrified droplets to a recent numerical study by Wagoner
et al. (J. Fluid Mech., vol. 904, 2020, R4). The problem studied by Wagoner et al.
(2020) consists of a droplet immersed in a more conducting and more dielectric liquid
medium, in a strong electrical field. When the droplet is more viscous than the outer
medium, the droplet develops a biconcave shape which might eventually evolve to a torus
shape (or doughnut). In contrast, when the droplet is less viscous, it adopts a lenticular
shape and emits a thin fluid sheet from its equator which in turn breaks up into droplets.
These droplets form a ring of satellites around the original droplet, which justifies its
appellation ‘Saturnian droplet’. The numerical simulations bring light to this complex
phenomenon and confirm the robustness of the leaky-dielectric framework (Melcher &
Taylor, Annu. Rev. Fluid Mech., vol. 1, 1969, pp. 111–146).
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1. Introduction

Our intuition stems from our everyday experiences. Even though we cannot observe
gravitational field lines, we can infer the trajectory of a falling apple under its own weight.
Unfortunately, this same intuition does not work well for electromagnetic fields, because
their interaction with matter is not part of our everyday experience. Electrohydrodynamics
(EHD), which results from the interaction of electromagnetic fields and liquid matter, is
even less in tune with our intuition.

This field dates back to the seventeenth century, when an English physician and
pioneering experimental physicist, William Gilbert, briefly described in his work de
Magnete (1600) how rubbed amber can exert attraction to a water droplet, deforming it
into a conical shape. Lord Rayleigh (1882) determined theoretically the maximum amount
of electrical charge that a droplet can hold before becoming unstable. We had to wait
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until the 20th century for controlled electrohydrodynamic experiments to be performed, in
particular on imperfect conductors which encompass most liquids in nature. For example,
the experimental work of Mason (Allan & Mason 1962; Torza et al. 1971) systematically
revealed a plethora of hidden phenomenology. Shortly afterwards came the acclaimed
work of Taylor in this field: first on conical singularities (Taylor 1964) and then, together
with James Melcher, their celebrated leaky-dielectric model (Melcher & Taylor 1969),
which established a very solid ground to study the complexity revealed by experiments.

The work of Taylor on conical tips stabilized by EHD stresses served as a basis to
understand more complex EHD phenomena like electrospray (Fernández De La Mora
2007). This became a standard technique for atomization, used extensively in mass
spectrometry, and it was the subject of the 2002 Nobel Prize in Chemistry awarded to Fenn
et al. (1989). Recently, Brosseau & Vlahovska (2017) found an instability, coincidentally
also briefly mentioned by Torza et al. (1971), with several analogies to EHD tip streaming.
While pointy tips (Taylor cones) develop when conducting droplets are exposed to intense
electrical fields in a non-conducting medium, the modes uncovered by Brosseau &
Vlahovska (2017) occur with liquid droplets surrounded by a more conducting and more
dielectric medium. Under these conditions, depending on the viscosity contrast with the
external medium, the droplet adopts either a biconcave or a lenticular shape when placed
in a strong, uniform electric field. The instabilities can grow further with discocyte-shaped
droplets eventually evolving into tori. Conversely, a lenticular droplet might develop sharp
edges; not at the poles of the droplet, but at its equator. If the electrical field is strong
enough, a thin sheet emanates from the droplet’s equator, which quickly breaks into
smaller droplets. This striking phenomenon is referred to as equatorial streaming, in
contrast with the better known tip streaming.

One of the most important questions to answer is whether the theoretical framework
left by Taylor, the leaky-dielectric model (Melcher & Taylor 1969), can explain the two
extreme modes observed, the biconcave (discocyte) and the lenticular droplet, with the
latter undergoing equatorial streaming as a Saturnian droplet. Do these two instabilities
arise due to the same mechanisms? The complexity of the problem requires a careful
numerical and theoretical analysis, which has been successfully achieved by Wagoner
et al. (2020) and is the purpose of this short review.

2. Overview

In their paper, Wagoner et al. (2020) solved the leaky-dielectric equations for two of the
extreme viscosity ratios explored experimentally by Brosseau & Vlahovska (2017). To
do so, Wagoner et al. (2020) solved the equations with a finite-element method, using
an adaptive parametrization to search systematically for steady-state solutions and identify
changes of stability in the solutions. With this method, the authors mapped droplet stability
with bifurcation diagrams of stable droplet shapes for different levels of electrification (see
figure 1).

The flow direction in both phases can be readily predicted by analysing the
leaky-dielectric model equations for low electrical fields following Melcher & Taylor
(1969), which concluded that electrical stresses at the poles are always compressive, and
electrical shear stresses drive flow from the poles to the equator. This is, however, not
enough to explain the different modes found. Focusing solely on asymptotic cases (perfect
conductor/insulator or limits of viscosity) does not provide the additional information
required, because electrical shear and normal hydrodynamic stresses are not important
in these limits. The numerical results of Wagoner et al. (2020) show how the different
interfacial stresses play different roles in different families of steady-state solutions.
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The Saturnian droplet
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Figure 1. Drop shapes obtained from steady-state solutions of the leaky-dielectric equations by Wagoner
et al. (2020) for (a) µmedium = 0.02 µdrop, showing a biconcave/discocyte shape and for (b) µmedium = 50 µdrop
showing the lenticular shape which eventually leads to equatorial streaming.

The biconcave shapes (see figure 1a) develop entirely due to the presence of electrical
shear stresses, with a marginal influence of normal electrical stresses. As the electric field
and the electrical shear stress increases, so does the interfacial flow, increasing the pressure
at the equator and decreasing it at the poles, causing discocyte-shaped droplets. To prove
this point, the electrical normal stresses can be turned off, and a comparable family of
stable solutions with discocyte shapes is obtained.

Surprisingly, the role of electrical stresses changes completely when the viscosity ratio
is switched so that the droplet is less viscous than the external medium. In this case,
the flow in the more viscous external medium is drawn towards the drop’s poles and
pushed from its equator. In the absence of electrical normal stresses, only stable oblate
shapes are found. However, the family of stable solutions changes dramatically when
electrical normal stresses are turned on: these counteract the effect of the capillary and
hydrodynamic stresses and stabilize the droplet deformation for increasing electrification.
Locally at the equator, although the stresses balance, they increase with electrification, thus
generating stronger flows, sharper curvatures at the equator and leading to lenticular shapes
(see figure 1b). Such a dramatic equilibrium of interfacial stresses shares similarities, but
also important differences, with the stability of Taylor cones, which results from a balance
between electric normal stresses and surface tension. Such a balance is eventually broken
by electrical shear stresses into EHD tip streaming (Collins et al. 2013) or electrosprays
(Fernández de La Mora & Loscertales 1994). In summary, these important results shed
light on the complex phenomena initially spotted by Torza et al. (1971), then carefully
studied experimentally by Brosseau & Vlahovska (2017), and confirm the strength of the
framework developed by Melcher & Taylor (1969).

3. Future

There is still work ahead: the results of Wagoner et al. (2020) are limited to steady-state
solutions and a proper description of the instability process is still lacking. In the same
way steady conical droplet shapes were explained by Taylor (1964), but it took years to
understand how they become unstable and eject their charge and mass according to precise
scaling laws (Fernández de La Mora & Loscertales 1994). Time-resolved simulations
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of these EHD instabilities are challenging because of the large disparities in length and
time scales: from the millimetric size of the drop, to the micrometric size of the ejected
film and droplets; from the slow deformation of the drop on the scale of a second, to
fast film formation and consequent breakup on millisecond scales. Nonetheless, the time
evolution of an EHD system of similar complexity to electrohydrodynamic tip streaming
has been recently computed numerically (Collins et al. 2008, 2013), and we expect
that similar methods could be applied to the Saturnian droplet to shed light on their
mass and charge transfer process. But there is also work ahead for experimentalists: the
equatorial streaming needs to be further investigated. For example, a comparison between
experiments and numerical simulations could be done through the flow field around the
droplet, but experimental data in this aspect are still missing. Additionally, the results
of Wagoner et al. (2020) have identified an interesting hysteresis for biconcave droplets,
which resembles that found numerically for dielectric sessile droplets, but has not yet been
observed experimentally.

A better understanding of the phenomenon could lead to potential applications of
the Saturnian droplet as an emulsification technique, covering a range of parameters
that submerged electrosprays (Marin et al. 2007) cannot reach, and without the local
hydrodynamic stresses required for hydrodynamic tip streaming (Suryo & Basaran 2006).
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