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SOLUTION TO A PROBLEM OF SPECTOR 

A. H. LACHLAN 

Introduction. In [6, p. 586] Spector asked whether given a number e 
there exists a unary partial function e from the natural numbers into {0, 1} 
with coinfinite domain such that for any function/ into {0, 1} extending e it 
is the case that 

[g is recursive in / with Gôdel number e] 
—» [g is recursive or / is recursive in g]. 

We answer this question affirmatively in Corollary 1 below and show that e 
can be made partial recursive (p.r.) with recursive domain. The reader who 
is familiar with Spector's paper [6] will find the new trick that is required in 
the first paragraph of the proof of Lemma 2 below. 

From one point of view, this is a theorem about trees which branch twice at 
every node. We shall formulate a generalization which applies to trees which 
branch n times at every node. This generalization was inspired by Thomason's 
paper [7]. The generalization is combined with some ideas developed in [2] to 
yield a proof that any countable upper semilattice which can be represented 
as an initial segment of the many-one degrees can be simultaneously repre­
sented as an initial segment of the degrees. We also indicate another applica­
tion, again inspired by [7], to the problem of embedding finite lattices as 
initial segments of the degrees, and we partially solve this problem here. 
However, recently, Lerman completely solved the problem (see [4]), when he 
showed that every finite lattice can be represented as an initial segment of the 
degrees. 

1. Preliminaries. Our notation and terminology is in the style of Shoenfield 
[5]. By a string we shall mean a finite, possibly empty, sequence of zeroes 
and ones. Lower case Greek letters will be used to denote strings and partial 
functions from N, the set of natural numbers, into itself. The number of 
elements in a string a is called its length and is denoted lh(<7). A string a of 
length I will be regarded as identical with the finite function a defined by 

/ N _ i (^ + l)st member of a if x < I, 
(undefined otherwise. 

The string whose members are i0» ii, . . . , ii-i in that order will be denoted 
by (ioy ii, . . . , ii-i). If 0" and r are strings, then cr * r denotes the string 
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formed by juxtaposing r to the right of a. The strings a and r are said to be 
adjacent written Adj(o-, r) if a and r differ on just one argument x, say, and 
further, cr(x) = 0. Note that Adj (o-, r) implies that a and r have the same 
length. The empty string is denoted by 0. 

A tree is a mapping T of the set of all strings into itself such that for all c, 
T(<J * (0)) and T(a * (1)) are incompatible extensions of T(a). Since strings 
can be coded by natural numbers in an effective way, the notion of a recursive 
tree is clear. If r extends o-, written a Ç r , then r — a denotes the string v such 
that r = o- * v. The tree T is said to be a 1-tree if for all cr: 

(i) for i = 0, 1 the string r(<r * (i)) — r(<r) depends only on i and the 
length of o-, and 

(ii) r(or * (0)) and T{<r * (1)) are adjacent. 
The reason for this nomenclature is that if T is a 1-tree, A C JV has charac­
teristic function/, and J5 C TV is the set whose characteristic function extends 
T((f(0), . . . ,f(n — 1))) for all n, then A is uniformly one-to-one reducible 
to B, and conversely B is uniformly the disjoint union of a recursive set and 
a set one-to-one reducible to A. 

The domain and range of a map M are abbreviated to dom M and rng M, 
respectively. A set A Ç iV is said to be o?z the tree T if every initial segment 
of the characteristic function of A has an extension in rng T. 

For any unary function/, let {e\f denote the eth partial function p.r. i n / . 
If A is a set, then {e)A denotes {e)f, where/ is the characteristic function of A. 
In the usual way we can regard {e}" as being defined and in fact as being a 
finite function uniformly recursive in e and a. We say that a and r split for e 
if for some n, {e}a(n) and {e}T(n) are both defined and different. T is called 
e-regular if for every a, T(a * (0)) and T(a * (1)) split for e. 

2. Solution of Spector's problem. Given e we show how to construct a 
recursive 1-tree T such that either {e}A is not total for any A on T, or 
{e}A is recursive for every A on T, or 4̂ is recursive in {e)A for every A on 7\ 

LEMMA 1. For each e there exists a recursive 1-tree T such that either {e}A is 
total for all A on T, or there exists x such that \e}A(x) is not defined for any 
A on T. 

Proof. We attempt to construct a 1-tree T such that {e\A is total for all 
A on T as follows. Define T(0) = 0. For induction purposes, suppose that T 
has been defined on all strings of length Si such that for any a of length / 
and any x < I, [e}T(<r) (x) is defined. Let r0, . . . , rm be all the strings of length /. 
Let 2 be the set of strings a such that \e)ff(l) is defined. Choose strings 
cr0, cr</, . . . , am, <jm

r in that order such that each is an extension of the one 
before and such that for each i S m, T(TI) * (0) * at and T(ji) * (1) * a/ 
are both in 2. If one of the choices cannot be made, say that of <r;, j > 0, then 
T{TJ) * (0) * <Tj-i has no extension in 2, whence Tf defined by 

T O ) = T(TJ) *<0> *O>_I ' *<r 
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establishes the lemma. Otherwise, T can be appropriately defined on sequences 
of length / + 1 by setting 

T(rt * (j)) = T(Ti) * (j) * <rm' 

for each i ^ m and j ^ 1. Since o-0, oV, . . . , crm, aj can be chosen effectively 
if a t all, T can be made recursive. 

L E M M A 2. Let e0, £i, • • • » £«. ^^ ^wcfe that for each i ^ n and each set A, {et}A 

is total. Either there exist o-, <J' such that Adj (cr, o-') and 5 ^ ^ that for each i ^ w, 
o- and G' split for eu or for some i ^ n there exists a recursive 1-tree T such that 
\ei}A is independent of A for A on T. 

Proof. We first t rea t the case n = 0, and for brevity e0 is replaced by e. If 
no pair r, r splits for e, then 7, the identi ty tree, is a 1-tree such t ha t \e\A is 
independent of A for A on 7, and so the lemma is t rue. Suppose tha t r and r ' 
split for e and let x be a number such t ha t \e\T(x), {e)T'(x) are both defined 
and distinct. Wi thou t loss of generality, r and T have the same length. Choose 
a sequence r0, n , . . . , rm such t ha t r0 = r, rw = r ' and such t h a t Adj (TU TI+I) 
for each i < m. Choose p0 such t ha t \e}v(x) is defined when v = r0 * *% then 
choose *>i such t ha t {^"(x) is defined when v = r i * v0 * ?i, and so on. For 
i ^ m define oot = T* * J>O * vi * . . . * ^m- Then Adj(wi, w i + i ) for each i < m, 
and {e}wf(x) is defined for each i tk w. Since \e}u0(x) ^ {e}Wm(x), there exists 
q < m such t h a t {e}w«(x) 9e {e}œq+1(x). The conclusion of the lemma is 
satisfied by taking r, r to be coç, coff+i, respectively. 

For the case n = k + I assume, for induction purposes, t h a t the lemma 
holds for n = k. For reductio ad absurdum let e0, ei, . . . , ekj e const i tute a 
counterexample for n = & + 1. By the lemma for n = & there exist <r0, oV 
such t h a t Adj ((To, oV) and such t ha t o-0, oV split for each e*, i ^ &. Suppose 
t h a t CTJ and <r/ have been defined for each j ^ / such tha t a0 * <j\ * . . . * o f̂ 

cr0 * o"i * . . . * o-j-i * a/ split for each e*, i ^ &. For each i ^ &, choose e / 
such t h a t for all £, {e/}* = {e*}77, where 77 = <r0 * 0-1 . . . * <re * £. Now apply 
the lemma for n = & to eo', . . . , ek'. If there were a 1-tree T' and i ^ k such 
t h a t {e /} A was independent of A for 4̂ on 7V, defining T by r ( £ ) = 
<ro * . . . * <ri * T'(£), then {e*}A would be independent of A for 4̂ on T, 
contradict ing the assumption t ha t e0, #i, . . . , e*» e consti tute a counterexample 
for n = k + 1. Hence there exist <rl+ll ai+i such t ha t Adj(o- i+i, <ri+i) and 
such t ha t for each i ^ k, cr^i and o-j+i' split for e/. T h u s cr; and a/ can be 
found for all j and further may clearly be found effectively. Consider the 
unique recursive 1-tree U whose range consists of all strings of the form 
£i * . . . * £m where n runs through the natural numbers and £* is at or a/. 
Since the lemma fails for e0, . . . , ^ , e, {e}A is not independent of A for 4̂ on U. 
T h u s for some x there exist X and X' in rng U such t ha t {e}x(x) and {e}x '(x) 
are defined and distinct. Since {e}A(x) is defined for all A, we may suppose 
t h a t X and Xr have the same length / and t h a t \e}(T(x) is defined for every a of 
length / on U. Wi thou t loss of generality, choose X such tha t [7_1(X) is a 
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sequence all of whose members are zero. Choose A' amongst all the sequences 
of length / on ?7 such that |e}x'(x) ^ {e}x(x) and such that ^y[U~1(X\ y) 9e 0] 
is as large as possible. Let v and v be defined by v = U"1(X,)i 

, . _ (o if x ^ m, 
v(x) - l ^ - i ^ / ^ ) nm < x < i i 

where m = ixy[U~l(X', y) ^ 0]. Then U(v) and U(yf) extend aQ * . . . * am 

and (7o * • • • * o'm-i * 0"™', respectively, and hence split for et for each i ^ k. 
From the definition of v, either U{v) = X which happens if / = m + 1, or 
liy\y(y) T6- 0] if it exists is >m which happens if / > m + 1. In the latter case, 
{e}x(x) = \e\U{v)(x) by choice of X' while in the former case this is obvious 
from X = U(y). Hence U(v) and U(yf) also split for e. But Adj (£/(?), U(y')) 
by inspection and since the conclusion is satisfied for eo, . . . , ek} e by letting 
a and o-' be U(v) and £/(/) respectively; the lemma is proved. 

THEOREM 1. For each e there exists a recursive 1-tree T such that either for 
some x, {e}A(x) is not defined for any A on T, or {e}A is a fixed recursive function 
for A on T, or T is e-regular and {e)A is total for every A on T. 

Proof. From Lemma 1 we obtain either the conclusion of the theorem 
immediately or a 1-tree 7\ such that {e}A is total for all A on 1\. Replacing 
e by e' such that {e')a = {e}Tl((r) for all o-, suppose that T' is a 1-tree satisfying 
the conclusion of the theorem for e' \ then T\ o T', the composite function, is 
clearly a 1-tree satisfying the conclusion for e. Thus we may assume that 
\e\A is total for all A. We attempt to construct a recursive 1-tree which is 
e-regular. Define 7 (0) = 0, and suppose, for induction purposes, that T has 
been defined on all strings of length ^ / . Let TO, . . . , rn be all the strings of 
length /. For each i ^ n choose et such that {ez}

ff = {e}T^Ti)*a for a u (Tm From 
Lemma 2, either there exists i ^ n and a recursive 1-tree T2 such that {ei\A is 
independent of A for A on T2, or there exist a and <r' which split for each eu 

i ^ n, and such that Adj (o-, o-'). In the former case, TV defined by TV(<r) = 
r ( r i ) * r2(o-) is a 1-tree, establishing the theorem. In the latter case, a and a' 
can be found effectively, and T may be suitably extended to sequences of 
length / + 1 by letting T(n * (0)) = T(Ti) * o-, r ( r , * (1)) = T(Ti) * a' for 
each i ^ n. This completes the proof. 

COROLLARY 1. For every e there exists a p.r. function e in (2N)* whose domain 
is recursive and coinfinite such that either 

(i) {e}f is not total for any / 2 e , / f 2N, or 
(ii) for every f 3 e, / £ 2^, {e}/ is recursive, or 

(iii) /or ez;er;y / 3 e, / G 2A, {e}7 w to/a/ and &as /&e 5awg degree as f. 

Proof. Applying Theorem 1 to e we obtain a recursive 1-tree T satisfying 
the conclusion of the theorem. From the definition of 1-tree, it is clear that 
the length of T(a) depends only on the length of o\ For a of length i denote 
the length of 7 » by /« and let T(a * <0» - T(a) and T{a * <1» - Z » be 
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denoted by af and or*1. Let xt be the unique x such that <Ti°(x) and a^ix) are 
defined and distinct. Then / is the characteristic function of a set on T if 
and only if/ extends T(fi) and for every i, f extends either \xo-z°(x — U) or 
\x<Tt

l{x — It), where x — U is regarded as undefined if x < lt. Let e Ç (2^)* 
be defined by 

(T(0)(x) if* </o, 
e(x) = \ ( r / (^ — Zf) if (Ti°(x — /*) = <r?(x — /*) and lt ^ x < li+i, 

(undefined otherwise. 

Then e is a p.r. function and the complement of its domain is {x0, Xi, . . .}. 
Hence the domain of e is recursive and coinfinite. Clearly,/ is the characteristic 
function of a set on T if and only if / 6 2N and e C / . The conclusion of the 
corollary is now immediate from the conclusion of the theorem and 
[5, Lemma 3]. The referee has pointed out to me that the hyperarithmetic 
analogue of Corollary 1 is also true. 

COROLLARY 2. There exists a set A such that the degree of A is minimal and 
such that the m-degree of A is minimal. 

Proof. Define a sequence (ez)z<w of members of (2A)* as follows. Let eo be 
the completely undefined function. For induction purposes, suppose that ee 

has been defined, is p.r., and has domain which is recursive and coinfinite. 
Let (#*)*<« be a recursive enumeration without repetitions of N — dom ee. 
Let A C N have characteristic function / 3 ee, define H (A) = {x\f(bx) = 1}. 
Choose e' such that for all A, {e'}H{A) = {e}A. Now applying Corollary 1 we 
obtain e G (2*)* such that either for a l l / ' G 2N, f => c ', {e')A' is recursive, 
or for a l l / ' 6 2N,f 3 e', {e'}A' has the same degree as A', the set of which/ ' 
is the characteristic function. Now define 

!

ee(x) if x G dom ee, 

e'(y) if x = ay for some y, 
undefined otherwise. 

If the characteristic function of A extends ee+i, then the characteristic function 
of H (A) extends e. Hence either for all such A, {e)A is recursive, or for all 
such A, {e)A has the same degree as A. L e t / Ç 2N be a function extending 
ee for every e\ then it may easily be seen that the set A of which / is the 
characteristic function has minimal degree. 

To see that the m-degree of A is minimal, suppose that h is a unary recursive 
function and that for all B, \e) B is g o h, where g is the characteristic function 
of B. Then we have rng h — dom ee+i finite, or rng h U dom €e+i cofinite. 
Otherwise we can construct a set B with characteristic function 3ee+i such 
that {e}B is not recursive yet has degree strictly less than that of B. Since A 
has characteristic function 3e«+i, if {e)A is not recursive, then A is w-reducible 
to {e)A. 
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3. A g e n e r a l i z a t i o n . W e shall now s ta te a generalization of Corollary 1 
which pertains to trees which branch n t imes a t each node ra ther than jus t 
twice, where n is an arb i t rary integer ^ 2 . 

Let E be an equivalence relation on N, then E is called strongly recursive 
if there is a strongly recursively enumerable sequence {Ft) of finite sets such 
t h a t Ft is the equivalence class of i with respect to E. T h e set of equivalence 
classes is denoted by N/E. Let n ^ 2; then by nN/E we mean the class of 
functions / mapping N into {0, 1, . . . , n — 1} such t h a t E(x,y) implies 
f(x) = f(y). Let (nN,E)* denote the corresponding set of part ial functions. 
Let F be an equivalence relation on {0, 1, . . . , n — 1} and / £ nN/E; then 
f/F is the function defined by 

(f/F)(x) = w\y G {0, 1, . . . , » - 1} & F(y,f(x))]. 

Let {e}f denote the eth partial function p.r. i n / . Wi th this notat ion we have 
the following result. 

T H E O R E M 2. For every e there exists a strongly recursive equivalence relation E 
and a p.r. function e £ (nN,E)*, with domain which is recursive and coinfinite 
such that either 

(i) [e)f is not total for any f 3 e, / G nN,E, or 
(ii) there exists an equivalence relation F on n such that for each / Z) e, 

/ Ç nN/E, {e}f is total and has the same degree as / / F . 

T h e case n = 2 is Corollary 1 except t ha t we have (in Corollary 1) the 
addit ional information t h a t E can be taken to be the equal i ty relation. In 
general, one cannot take E to be equali ty. T o see this, let n = 3, let " s t r ing" 
now mean a finite sequence all of whose members are in {0, 1, 2} and let the 
definition of " t r e e " be modified accordingly. Define a m a p ^ from the set of 
strings into {0,1} by: ^ ( 0 ) = 0, and for all a, V(a * (0)) = V(a * (1)) = 
1 — ^(o-) and ¥ ( > * (2)) = ¥(<r). N o w choose e such t h a t for all / G 3 ^ , 

(f(x) i f ¥ ( < f ( 0 ) f . . . f / ( * - l ) > ) = 0, 
{*}'(*) = <0 if * « / ( 0 ) , . . . , / ( x - 1))) = 1, and f(x) = 0 or 1, 

12 otherwise. 

Suppose for proof by contradict ion t h a t the conclusion of Theorem 2 holds 
for e with E being equali ty. Under these assumptions we have the following 
result. 

L E M M A 3. Let a be a string consistent with e, i.e. for all 

x Ç dom e C\ {y\ y < lh(o-)}, e(x) = <r(x). 

For j < 2 //zere exists an extension TJ of a, consistent with e, such that ^(jj) = / 
and lh (TJ) (L dom e. 

Proof. Let m and m' in t h a t order be the first two members of N — dom e 
which are ^ lh(o-) . For k ^ 2, choose an extension o^ of cr consistent with e 
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such t h a t lh(ak) = m\ ak(m) = k, and otherwise ak(x) is independent of k. 
Let <if be the unique string of length m extended by ak. From the definition 
of ^ we have *(a' * (0)) = ^ ( V * (1)) j* ¥(</ * (2)). Fur ther , since 
o"o — <r' * (0) = <7i — o-' * (1) = (72 — a' * (2), it is easy to see t h a t ^ (co) = 
^(o"i) ^ ^(o"2). Thus we can take r0, r i to be o-0, ^2 in some order. 

From the lemma with j = 0 we can construct a tree T such t ha t for every 
string o-, ¥ ( 7 » ) = 0; T(a * (0)), T(<r * (1)), and 7 > * (2)) all have the 
same length and differ only a t the rath place where m is the length of T(a). 
Then every function on T extends e, and for all / on T, {e}f = f. I t follows 
easily t h a t F in the conclusion of Theorem 2 must be equali ty. But arguing 
similarly from the lemma with 7 = 1 wre can show tha t F mus t be the equi­
valence relation whose equivalence classes are {0,1} and {2}. This contradiction 
proves the claim tha t E cannot always be taken as equality. 

T h e proof of Theorem 2 is straightforward. The strings now have entries 
from {0, 1, . . . , n — 1} and the corresponding trees branch n t imes a t each 
node. We first show, as in Lemma 1, t ha t we may suppose t h a t {e} f is defined 
for e v e r y / . Next we construct the p.r. function e and the equivalence relation 
E. I t should be sufficient for us to indicate a suitable choice of F. For each 
string cr define 

C(cr) = {(j,k)\j,k <n&(3f£ nN)Qg G nN)3 *3 >'[/ 2 * & g 2 a & {e}'(x) 

* {*}'(*) & V * [ / ( s ) *g(z)->y = z]&f(y) =j&g(y) = * ]} . 

Choose co so t h a t C(or0) is minimal with respect to inclusion; then C(<r) = C(o-o) 
for every a 2 °"o- Let F be the relation on {0, 1, . . . , n — 1} defined by: 
F(x,y) if and only if (x,y) d C(a0). Fur ther , e is defined so as to extend <r0. 

4. Simultaneous initial segments of the degrees and the m-degrees. 
Using Theorem 2 we can sharpen the main theorem of [2] to obtain the 
following result. 

T H E O R E M 3. Let L be a countable upper semilattice with 0 which has the 
closure property. There exists an order-preserving map K: L —> Lmj where Lm 

denotes the upper semilattice of m-degrees, such that K is one-to-one onto an 
initial segment of the m-degrees, and such that KT, the map of L into the degrees 
induced by K, is one-to-one onto an initial segment of the degrees. 

Proof. W e shall assume tha t the reader is familiar with the construction of 
[2] and indicate the changes which are necessary. T h e principal change wre 
make is in now defining a recursive partition to be an infinite class & of pairwise 
disjoint non-empty sets such t ha t \J& = N, and such t h a t there exist jus t 
two infinite recursive sets U, V Ç S%, and such t h a t ^ ? — { [7, V} is canonically 
enumerable. A quintuple (U, V, D, ir, 3$) satisfies the same conditions as 
before and in addition [7, V mus t be the two infinite members of &, and 
TT(0) mus t be C / U V. 
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The theorem is proved by means of the following four propositions. 

PROPOSITION 1. Let (U, V, D, -IT, 3$) be a quintuple, D* a finite distributive 
lattice with 0 ^ 1 , and %• T> ~> D* & niap preserving unions, 0, and 1. Then 
there exists a quintuple (U, V*, D*, <**, 3?*) such that U C\ V* = 0, V Q V*, 
3% is a refinement of 3?*, and ir*x(d) = 3?*Tr(d) for all d in D. 

PROPOSITION 2. Let (U, V, D,ir, 3%) be a quintuple, di, d2 members of D 
such that d\ ^ d2, let e be in N, and W\, W2 sets equivalent to ir(di), ir(d2), 
respectively with respect to 3$. Then there is a quintuple ([/*, V*, D, ir*,3$*) 
such that 3% is a refinement of 3?*, w*(d) = 3^*ir(d) for all d in D, U Q £/*, 
V C V* and such that for some n in W\ there is no X, U* C X C N — F*, 

for which it is the case that {e\ f2(n) = f\(n), where fi and f2 are the characteristic 
functions of X C\ W\ and X C\ W2, respectively. 

PROPOSITION 3. Let (U, V, D, ir, 3$) be a quintuple and W an infinite 
recursively enumerable set. There is a quintuple (U*, V*,D, ir*, 3$*) such that 
3% is a refinement of 3%*, ir*(d) = 3$*7r(d) for all d in D, and for some d in D, 
ir*(d) and 3?*(W) differ at most finitely. 

PROPOSITION 4. Let (U, V, D, T, 3$) be a quintuple and e G N. There is a 
quintuple (U*, F*, D, IT*, 31*) and a recursive set W such that 3% is a refinement 
of 3%*, T*(d) = 3%*ir(d) for all d in D, U C [/*, F C V*, and {e}x has the 
same degree as X C\ W for any X satisfying 

{e}x total &U* QX QN - F* & X = 31*(X). 

To prove Theorem 3 by means of the propositions, we construct, as in [2], 
a sequence (Qt) of quintuples with the following properties: 

(ql) Ut Q Ui+i and Vt Q Vi+l for all i, 
(q2), (q3), and (q4) as in [2], 
(q5) For i < k define 0ik = dk-idk-2 . . . dt, for all i and e\, e2 in Et and 

for each e in N there exists k > i such that either 6ik(ei) ^ 6ik(e2) or 
there exists n in 7TJ(^I) such that for no U, Uk £ U Q N — Vk is it 
the case that \e}f2(n) = fi(n), where fi and f2 are the characteristic 
functions of Ur\-ïïi(ei) and c7P\7Ti(e2), respectively. 

(q6) as in [2], 
(q7) for every e there exists i and a recursive set W such that if U is any 

set closed under 3% i and satisfying [ / i C JJ C N — Vi, then {e\N is 
either not total or has the same degree as U C\ W. 

The sequence (Qi) is constructed much as before: the strengthening of 
Proposition 3 corresponds to the strengthening of (q5) and Proposition 4 
yields (q7). The map K is constructed as in [2] and shown to be an order-
preserving map of L* onto an initial segment of Lm. The strengthening of (q5) 
tells us that the induced map KT of L* into the degrees is one-to-one, and (q7) 
ensures that any degree ^KT(1) is the degree of some m-degree ^ K ( I ) . This 
completes the proof of Theorem 3 except for the following. 
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Proof of Proposition 4. This is where we use Theorem 2 above. Let the 
number of a toms of D be m. Let n = 2m and let cr0, . . . , o-n-i be an enumerat ion 
of all the {0, 1} strings of length m. Let a map the a toms of D one-to-one onto 
{0, 1, . . . , m — 1}. Le t s/ denote the set of a toms of D. As in [2], for each 
a G se let ai [a] be the subclass of S& consisting of those members of 8% 
which are subsets of ir(a), and let (8?t\a\). be a canonical enumerat ion of 
8?[a] wi thout repetition. Choose ef such t ha t for e v e r y / G nN if 

(1) X = UU \J{@i[a]\ VfuMa) = l & a G j / } , 

then {e , } / = {e}x . Now apply Theorem 2 to e' and let E , €, and F be the 
equivalence relation on N, the p.r. function, and the equivalence relation on 
{0, 1, . . . , n — 1}, respectively. For each a G se choose j(a), k(a) both <n 
such t h a t aj(a)a(a) = 1, ak(a)a(a) = 0, o-Ka) and o-fc(a) differ only a t a (a), and 
such t h a t if possible F (J {a), k(a)) is false. Part i t ion (N — dom e ) / £ into 
infinite canonically enumerable classes jVa one for each a G J2^. Define 

£/* = U\J \J{@i[a]\i G d o m e & a 6 s/&atU)a(a) = 1} 

W U { ^ i [ 6 ] | o , 6 £ j / & & ^ a & i ( E U ^ a & ^ ( a ) a ( 6 ) = 1}, 

7* = v\J U{@i[a]\i e dom e&a G sf &<rtii)a(a) = 0} 

U U { ^ i [ 6 ] | o , 6 Ç j / & M a & ^ U ^ a & ^ c a ) » ^ ) = 0 } , 

and let 

^ * = j ^ F*} \ j { U { i ? * W | i € F } | a Ç ^ & YeJfa}. 

Finally, define 7r*(a) = x (a ) - ( [ /* U F*) for each a G j / , and TT*(0) = 
£/* U F*. I t is easy to check t h a t U C [/*, F Ç F*, ^? is a refinement of 
^ * , and t h a t <ir*(d) = 8$*w(d) for all d in P . Le t W be the recursive set 

U{7r*(a)| a G se & F(j(a), k(a)) is false}. 

Consider a set X closed under {%* such t h a t {e} x is total and 

U* C X C JV - F*. 

L e t / 6 w2^^ be the unique function satisfying (1). Since U* C X C iV — F*, 
unless i G \JJVa for some a G *$#, we can compute / ( i ) independently of X . 
If i G {jy^aj there are two cases. First, if F(j(a)f k(a)) is false, then 

lfe(a) otherwise. 

Secondly, if F(j(a), k(a)) is t rue, then f/F(i) = f/F(j(a)) = f/F(k{a)). T h u s 
/ / F is computable if an oracle for X P\ IF is given. Conversely, if an oracle 
for //Jf7 is given, then for i G U ^ o » where F(j(a),k(a)) is false, we can 
effectively tell whether / ( i ) = j ( a ) o r / 6 0 = &(#)» i-e- whether i ^ [a ] £ X or 
not. T h u s the membership of X P\ IF is computable from an oracle ior f/F. 
Since {e)x = \e'\f has the same degree zisf/F, the proposition is proved. 
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T h e other propositions have proofs which are either easy in the case of 
Proposition 2, or straightforward adapta t ions of the proofs in [2] in the case 
of Propositions 1 and 3. 

5. I n i t i a l s e g m e n t s of t h e degrees . I t is evident t ha t Theorem 2 also 
has some application to the problem of constructing finite initial segments of 
the degrees. For example it is a lmost obvious from Theorem 2 t h a t there is an 
initial segment of the degrees dually isomorphic to the latt ice of equivalence 
relations on {0, 1, . . . , n — l j . T h e best result on initial segments obtainable 
from Theorem 2 is as follows. Le t J ^ be a sublatt ice of the latt ice of all equi­
valence relations on {0, 1, . . . , n — 1} having the equal i ty relation as 0 and 
the universal relation as 1. A m a p g of {0, 1, . . . , n — 1} into itself is said to 
preserve &~ if 

M F G ^Vx < nVy < n[F(x, y) - • F(g(x), g(y))]. 

For each J C {0, 1, . . . , n — 1} let Fj be the greatest member of # ~ which 
is S the equivalence relation whose equivalence classes are / and 
{0, 1 , . . . ,n — 1} — J . W e say t h a t # ~ is good if for every J Ç {0, 1, . . . , n — 1} 
and all x, y <n such t h a t Fj(x, y) is false, there exists g preserving &~ such 
t h a t one of {g(x), g(y)} is in J and the other is in {0, 1, . . . , n — 1} — / . 

T H E O R E M 4. If a finite lattice L is dually isomorphic to a good lattice of 
equivalence relations on {0, 1, . . . , n — 1}, then there is an initial segment of 
the degrees isomorphic to L. 

I t can be shown t h a t this result subsumes those in [3; 7] on initial segments. 
However, quite recently Lerman [4] has shown t h a t every finite latt ice is 
isomorphic to an initial segment of the degrees by a method which is dist inctly 
more powerful than the method used to obtain the earlier part ial results. For 
t h a t reason we shall not prove Theorem 4 here since the method is essentially 
the same as t h a t used in [3; 7]. 
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