BOOLEAN NEAR-RINGS AND WEAK COMMUTATIVITY

D. J. HANSEN and JIANG LUH

(Received 12 November 1987)

Communicated by B. J. Gardner

Abstract

It is shown that every boolean right near-ring R is weakly commutative, that is, that $x y z=x z y$ for each $x, y, z \in R$. In addition, an elementary proof is given of a theorem due to S. Ligh which states that a d.g. boolean near-ring is a boolean ring. Finally, a characterization theorem is given for a boolean near-ring to be isomorphic to a particular collection of functions which form a boolean near-ring with respect to the customary operations of addition and composition of mappings.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 16 A 76; secondary 06 E 20, 16 A 30, 16 A 32.

1. Introduction

In a recent paper [5], Murty proved that a boolean (right) near-ring N is weakly commutative, that is, $x y z=x z y$ for each $x, y, z \in N$, if it is zerosymmetric. It will be shown here that the condition of zero-symmetry can be removed. It should be noted that this identity was introduced in 1962 by Subrahmanyam [8], in a paper on abelian boolean near-rings under the title of "Boolean semirings". Later, Ligh [4] gave a structure theorem for boolean near-rings satisfying the above identity, which he called β-near-rings. In view of Theorem 1, this apparent restriction can be deleted from these two papers. Next, in the light of weak commutativity, we will re-examine one of Ligh's theorems by presenting an elementary proof of his observation that every d.g. boolean near-ring is a boolean ring. Finally, a characterization of a particular class of boolean (right) near-rings (N, \oplus, \cdot) is given, where N

[^0]is a subcollection of linear mappings from an ordinary boolean ring R into R, namely, $f(x)=a x+b$ for each $x \in R$, and where " \oplus " and "." denote, respectively, ordinary addition and composition of mappings.

It will be assumed throughout this paper that the near-rings N are right distributive and "boolean" if $x^{2}=x$ for each $x \in N$.

2. Weak commutativity

The following lemma is a specialization to boolean near-rings of a result by Reddy and Murty [7] on strongly regular near-rings.

Lemma 1. If N is a boolean near-ring, then $x y=x y x$ for each $x, y \in N$.
Theorem 1. If N is a boolean near-ring, then $a b c=a c b$ for each $a, b, c \in N$.

Proof. Let $a, b, c \in N$. Then $b(a-a c) c=b(a c-a c)=b 0$. Thus, $[(a-a c) b(a-a c)] c=(a-a c) b 0$ implies $(a-a c) b c=(a-a c) b 0$ by Lemma 1. Since $c b c=c b$, we obtain, from the preceding equation that $a b c-a c b=a b 0$ $-a c b 0$. Next, $c(a-a c) c=c(a c-a c)=c 0$ and thus, by Lemma 1, $c(a-a c)$ $=c 0$ and this gives $b c(a-a c)=b c 0$. Again, by Lemma $1, b c(a-a c)$ $=b c(a-a c) b c$ and thus, by the last two equations, $b c(a-a c) b c=b c 0$. Now pre-multiplying both sides by $a-a c$ we obtain $[(a-a c) b c(a-a c) b c]=$ $(a-a c) b c 0$ and this gives, by idempotency, that $(a-a c) b c=(a-a c) b c 0$. Again, using $c b c=c b$, we obtain from the preceding equation that $a b c-$ $a c b=a b c 0-a c b 0$. But we have seen earlier that $a b c-a c b=a b 0-a c b 0$ and so $a b c 0-a c b 0=a b 0-a c b 0$ and this gives that $a b c 0=a b 0$ for each $a, b, c \in N$. Hence, by using the result just obtained, we have that $a b 0=$ $a a b 0=a a 0=a 0$ for each $a, b \in N$. Returning to the equation $a b c-a c b=$ $a b 0-a c b 0$ we conclude that $a b c-a c b=a b 0-a c b 0=a 0-a 0=0$. Therefore $a b c=a c b$ for each $a, b, c \in N$.
S. Ligh [4] proved that a boolean (right) near-ring N containing a left multiplicative identity is a boolean ring. With Theorem 1 at our disposal, we give a modification of his result as follows.

Theorem 2. Let N denote a boolean near-ring such that, if each of $x, y \in$ N, then there exists an $e \in N$ such that $e x=x$ and $e y=y$. Then N is a boolean ring.

Proof. Let $x \in N$. Consider x and $x+x$. By assumption, there exists an idempotent $e \in N$ such that $e x=x$ and $e(x+x)=x+x$. Thus, $x+x=e x+e x=(e+e) x=(e+e)^{2} x=[e(e+e)+e(e+e)] x=e(e+e) x+$ $e(e+e) x=e(e x+e x)+e(e x+e x)=e(x+x)+e(x+x)=(x+x)+(x+x)$. Hence, it follows that $x+x=0$. Therefore $(N,+)$ is an abelian group. Now, let $x, y \in N$. Then according to our assumption, there exists an idempotent $f \in N$ such that $f x=x$ and $f y=y$. By Theorem $1, x y=(f x) y=f x y=$ $f y x=(f y) x=y x$. With the multiplication being commutative, it follows that N is a boolean ring.

3. A theorem of S. Ligh

Without using transfinite methods, a proof is offered of the following result from [3].

Theorem 3 (Ligh). Every d.g. boolean near-ring N is a boolean ring.
Proof. Let N denote a d.g. boolean near-ring and suppose S is a multiplicative semigroup whose elements s generate $(N,+)$ and satisfy $s(x+y)=$ $s x+s y$ for each $x, y \in N$.

It is easy to see that, for each $s, s_{1}, s_{2} \in S$ and $x \in N, s 0=0, x 0=0$, $s+s=0$, and $s_{1} s_{2}=s_{2} s_{1}$. Hence $s(x+x)=s x+s x=(s+s) x=0 x=0$. Next, for $x, y \in N$, let $y=s_{1}+s_{2}+\cdots+s_{n}$, where each $s_{i} \in S$. Then $y(x+x)=\left(s_{1}+s_{2}+\cdots+s_{n}\right)(x+x)=s_{1}(x+x)+s_{2}(x+x)+\cdots+s_{n}(x+x)=0$. Thus, by Lemma $1, x+x=(x+x) x=(x+x) x(x+x)=(x+x) 0=0$, that is, each non-zero element in $(N,+)$ is of order 2 . Hence $(N,+)$ is an abelian group. Consequently, N is a ring since $(N,+)$ being abelian implies by an elementary result of Frölich [1] that N is left distributive. Therefore N is a boolean ring.

4. A special class of boolean near-rings

To motivate the last theorem, we will begin with an example of a boolean near-ring which belongs to a more general class of near-rings previously investigated under the name of abstract affine near-rings by Gonshor [2] and discussed by Pilz in [6]. Let R denote a boolean ring. Let each of A and B denote a subring of R such that $A \cap B=\{0\}$ and suppose $a b=0$ for each $a \in A$ and $b \in B$. Take N to be the set of all mappings: $f: R \rightarrow R$ such that, for each $x \in R, f(x)=a x+b$, where $a \in A$ and $b \in B$. Then (N, \oplus, \cdot) is a boolean
near-ring where " \oplus " and "." denote, respectively, ordinary addition and composition of mappings. Finally, (N, \oplus, \cdot) is boolean since, for each $x \in R$, $(f \cdot f)(x)=f[f(x)]=a(a x+b)+b=a x+a b+b=a x+0+b=a x+b=f(x)$. It is this class of boolean near-rings which we will characterize in the following manner.

Let A denote a boolean ring and let B denote an additive abelian group. Consider the group direct sum $A \oplus B$ of A and B. Define a multiplication in $A \oplus B$ by $\left(\dot{a}_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1}\right)$. It can be verified directly that $A \oplus B$ forms a boolean right near-ring with commutative addition and satisfies the identity $(x-y) 0=x y-y x$. We will denote this boolean near-ring by $N(A, B)$.

Theorem 4. Let N denote a boolean near-ring in which the addition is commutative and suppose, for each $x, y \in N$, that

$$
\begin{equation*}
(x-y) 0=x y-y x . \tag{*}
\end{equation*}
$$

Then there exist a boolean ring A and an abelian group B such that $N \cong$ $N(A, B)$.

Proof. let $A=\{a \in N \mid a 0=0\}$ and let $B=\{b \in N \mid b 0=b\}$. Clearly, A and B are additive subgroups of N. For each $a_{1}, a_{2} \in A$, we have by (*) that $a_{1} a_{2}-a_{2} a_{1}=\left(a_{1}-a_{2}\right) 0=a_{1} 0-a_{2} 0=0-0=0$ and thus $a_{1} a_{2}=a_{2} a_{1}$. Also, A is closed with respect to multiplication since $\left(a_{1} a_{2}\right) 0=a_{1}\left(a_{2} 0\right)=a_{1} 0=0$ for each $a_{1}, a_{2} \in A$ and thus $a_{1} a_{2} \in A$. Hence A is a boolean ring. Furthermore, $A \cap B=\{0\}$ and, from the definitions of A and B along with Theorem 1, $a b=a b 0=a 0 b=a 0=0$, for each $a \in A$ and $b \in B$.

Let $\phi: N \rightarrow N(A, b)$ denote a mapping defined by $\phi(x)=(x-x 0, x 0)$ for each $x \in N$. It is easy to see that ϕ is additive. To see that ϕ is also multiplicative, let $x_{1}, x_{2} \in N$. Using the identity (*), we obtain $x_{1}\left(x_{2}-x_{2} 0\right)-$ $\left(x_{2}-x_{2} 0\right) x_{1}=\left[x_{1}-\left(x_{2}-x_{2} 0\right)\right] 0=x_{1} 0-\left(x_{2}-x_{2} 0\right) 0=x_{1} 0-x_{2} 0+x_{2} 0=x_{1} 0$. Thus $x_{1}\left(x_{2}-x_{2} 0\right)-x_{2} x_{1}+x_{2} 0=x_{1} 0$ and rearranging we obtain $x_{1}\left(x_{2}-\right.$ $\left.x_{2} 0\right)=x_{2} x_{1}+\left(x_{1}-x_{2}\right) 0=x_{2} x_{1}+x_{1} x_{2}-x_{2} x_{1}=x_{1} x_{2}$. Also, by Theorem 1, $x_{1} x_{2} 0=x_{1} 0 x_{2}=x_{1} 0$. Thus, $\phi\left(x_{1}\right) \phi\left(x_{2}\right)=\left(x_{1}-x_{1} 0, x_{1} 0\right)\left(x_{2}-x_{2} 0, x_{2} 0\right)=$ $\left(\left(x_{1}-x_{1} 0\right)\left(x_{2}-x_{2} 0\right), x_{1} 0\right)=\left(x_{1}\left(x_{2}-x_{2} 0\right)-x_{1} 0\left(x_{2}-x_{2} 0\right), x_{1} 0\right)=\left(x_{1} x_{2}-\right.$ $\left.x_{1} 0, x_{1} 0\right)=\left(x_{1} x_{2}-x_{1} x_{2} 0, x_{1} x_{2} 0\right)=\phi\left(x_{1} x_{2}\right)$. Hence, ϕ is a homomorphism. That ϕ is injective is trivial.

Now, for each $(a, b) \in N(A, B)$, let $c=a+b$. Then $c 0=(a+b) 0=$ $a 0+b 0=0+b=b$ and $c-c 0=a+b-b=a$. Thus $\phi(c)=(c-c 0, c 0)=$ (a, b). This shows that ϕ is surjective. Therefore ϕ is an isomorphism and consequently $N \cong N(A, B)$.

References

[1] A. Frölich, 'Distributively generated near rings (I. ideal theory)', Proc. London Math. Soc. (3) 8 (1958), 76-94.
[2] H. Gonshor, 'On abstract affine near-rings', Pacific J. Math. 14 (1964), 1237-1240.
[3] S. Ligh, 'On boolean near-rings', Bull Austral. Math. Soc. 1 (1969), 375-379.
[4] __, 'The structure of a special class of near-rings', J. Austral. Math. Soc. 13 (1972), 141-146.
[5] C. V. L. N. Murty, 'On strongly regular near-rings', Algebra and its Applications, (Lecture Notes in Pure and Appl. Math. 91, Dekker, 1984, pp. 293-300).
[6] G. Pilz, Near-rings, (North-Holland, 1977).
[7] Y. N. Reddy and C. V. L. N. Murty, 'On strongly regular near-rings', Proc. Edinburgh Math. Soc. 27 (1984), 61-64.
[8] N. V. Subrahmanyam, 'Boolean semirings', Math. Ann. 148 (1962), 395-401.

Department of Mathematics
North Carolina State University
Raleigh, North Carolina 27695-8205
U.S.A.

[^0]: © 1989 Australian Mathematical Society $0263-6115 / 89 \$$ A2.00 +0.00

