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1. Introduction. The study of modular forms has been deeply influenced by famous
conjectures and hypotheses concerning

A(z)= £ r(n)e2™z, Imz>0,
n = l

where T(H) denotes Ramanujan's function. The fundamental discriminant A is a cusp form
of weight 12 with respect to the modular group. Its associated Dirichlet series

defines an entire function of s and satisfies the functional equation

The most penetrating "statements that have been made on T(M) and LA(s) are:

A l . RAMANUJANS CONJECTURE: B l . LINDEL6F HYPOTHESIS FOR LA:

For every e > 0, For every e > 0,
T(n)«n11/2+e, n-»°°. LA(6+it)«te, t-»oo.

A2. LEHMER'S CONJECTURE: B2. RIEMANN HYPOTHESIS FOR L A :

T(H) ^ 0 for all n. LJis) ± 0 for all s incr>6.

Of these four problems only Al has been established so far. This was done by
Deligne [1] using methods from algebraic geometry and number theory. While Bl trivially
holds with e > 1/2, it was established in [2] for every e > 1/3. Serre [12] proved A2 for a
positive proportion of the integers and Hafner [5] showed that LA has a positive
proportion of its non-trivial zeros on the line cr = 6. The proofs of the last three results are
largely analytic in nature.

At present, analytic methods do not seem to be powerful enough to settle any one of
those problems completely. However, they often give partial answers also in cases where
other techniques are no longer applicable. For instance, an estimate with the same loss in
the exponent as for Bl [3] holds for the generalization of Al to arbitrary finitely
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40 A. GOOD

generated Fuchsian groups of the first kind. The proof starts out from the Rankin-Selberg
convolution method. An alternative approach to Al (cf. [11]) consists in analyzing the
Fourier coefficients of the Poincare series introduced by Petersson [10]. Moreover, A2 can
equivalently be expressed by the non-identical vanishing of such Poincare series. The
purpose of this paper is to introduce and study Poincare series which are related to the pro-
blems B in the same way as Petersson's series are related to the problems A. In particular,
there will be an equivalent formulation of B2 by the non-identical vanishing of our
Poincare series (cf. Corollary and Remarks after Theorem 1). Thus we add further
evidence for a close analogy between Al and Bl as well as between A2 and B2.

In Section 2 we associate Poincare series to any pair | of points which are cusps with
respect to a finitely generated Fuchsian group of the first kind. These series define
holomorphic cusp forms and they depend holomorphically on a parameter s. Their inner
product with a cusp form F is essentially given by the value at s of the Dirichlet series
attached to F and £ (Theorem 1).

In Section 3 we investigate Mellin transforms of our Poincare series in analogy with
the Fourier series expansions of Petersson's Poincare series. Their Fourier coefficients are
expressible as a sum of Kloosterman sums plus a term involving the Kronecker symbol by
the use of a Bruhat decomposition for SL2(1R). On the other hand, we need an explicit
A-A double coset decomposition (Lemmas 1, 2), where A denotes the subgroup of
diagonal matrices. It enables us to express the Mellin transforms as a sum of three
different types of terms. The bulk (ePx in Theorem 2) is a sum of the finite exponential
sums (15) resembling the Kloosterman sums. As counterpart to the Kronecker symbol in
Petersson's case there is an infinite sum (edx in Theorem 2) of terms frequently given by
the Riemann zeta-function. Beyond that there is a finite number (Lemma 3) of terms (spx

in Theorem 2) arising from the transversal intersections of geodesies going from one cusp
to another. In comparison to Petersson's case it is more delicate here to handle the
interchange of summation and integration. For we have absolute convergence only after
deleting some terms from our Poincare series (Lemma 4). Finally, the basic identities of
Theorem 2 result from expanding the Poincare series with respect to an orthonormal base
for the cusp forms.

Since A is positive on the positive imaginary axis, LA(s) is positive for positive s. In
Section 4 we go beyond this simple observation in twofold respects. For, on average over
the space of cusp forms, positive lower bounds are obtained for the Dirichlet series on
parts of the real line provided only that the third type of terms does not occur (Theorem
3). These lower bounds are not only easy to calculate but they can also be quite close to
the actual value (Corollary and Remark to Theorem 3). The positive lower bounds imply
that the corresponding Poincare series do not vanish identically. There is no counterpart
for this in Petersson's case since it really amounts to looking at the constant term. In some
important cases, we also show that the exponential sums (15) factor and are given by
divisor functions (Theorem 4). In particular, we obtain a new representation of |LA(s)|2 by
a series which converges absolutely in the critical strip of LA and whose arithmetical part
is much simpler than that of Ramanujan's function. Finally, we determine the value of
certain series explicitly by restricting variables to integer values (Corollary to Theorem 4).
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DIRICHLET AND POINCARE SERIES 41

2. Convergence and inner products. Let G = SL2(IR) act on the upper half-plane
H = {z = x + iy | x real, y > 0} by

az + b \a b~\
• , where M =
cz + d Ic d\

We often write zM = xM+ iyM for M{z) and z'M for —• . The hyperbolic measure
dz

dxdy
dco(z) = — —

is invariant under this action of G on H. If F is a discrete subgroup of G, this measure
projects to the orbit space T\H in a natural way. Right now we assume on F only that the
volume

«(T\H)= f
•T\H

do>(z)

is finite.
Let Sk(T) denote the space of cusp forms of weight k with respect to F. Here k will

always be an even integer greater than 2. Thus F belongs to Sk(T) if F is a holomorphic
function on H such that

F(zM)(z'M)k/2=F(z) f o r M i n F (1)

and
z >-»• yk |F(z)|2 is bounded on H. (2)

We write (F, G) for the Petersson inner product

[ ykF(z)G(z) do(z)
T\H

on Sfc(F), where the bar denotes complex conjugation.
Let | = (61, 62) be a pair of different cusps for F. We denote the stabilizer of 6L in F

by FL, i = 1, 2. Then there are a matrix M€ in G and a positive number A4 such that, for
i = 1, 2, M€(0t) = Sl(°o) and ± M^F.MJ1 is generated by

J J]
These requirements determine A€ uniquely and Me up to a factor ± 1. If we set
| * = (02, #i), we easily verify that

A| = A€ and Me* = ±SMe. (4)

If F is in Sfc(r) then

^ ^ ) (5)
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42 A. GOOD

belongs to SJMfFMJ1) by (1) and (2). Thus by (3) it has a Fourier series expansion of the
form

Fe(z)= t a«(«)«(r)' (6)

where e(z) = e2mz. The associated Dirichlet series
oo

L£(s) = £ a«(n)n"s, s = a + if, (7)
H = l

fc + 1

converges absolutely in the half-plane o->—— by a well-known bound for the Fourier

coefficients a((n) (cf. [11]). It follows from (3)-(5) that

l \ \ k / 2

1) <y-
Thus a familiar argument (cf. [9, p. 1-5]) extends L^is) to an entire function satisfying the
functional equation

ffl S (^ ) k S k - s ) , (9)
where F(s) denotes the gamma function. Moreover F£ can be recovered from L^s) by the
formula

T M (^yr(S)L,(S)()ds. (10)
Z7TI J(p) \ A j / \J /

Here and later on J(p) denotes integration along Re(s) = p in the direction of increasing

imaginary parts and I T ) , z in H, is defined by exp( s log-H with the principal branch of

the logarithm.
We now introduce a family of Poincare series depending on a complex parameter s

by

P((z,s)= I (zM(Mli)-s(z'M(M)kl2, (11)
Mer/Z

where Z denotes the center of F.

THEOREM 1. The defining series of P( converges absolutely and locally uniformly for z
in H and s in the strip l<tr<k — l. Then P£(-,s) belongs to Sk(T) and, if F and L£ are
related by (5)-(7), the inner product formula

s-k
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holds. Moreover, P4 and P4. are connected by the functional equation

P£(z,s) = (-l)fc/2P£-(z,fc-s).

Proof. It follows from (1), (5), (6), the G-invariance of d(a and the chain rule that

f yk I \zMeM\-<TU'MelJ
kn\F(z)\dco(z)=\ yk \zMi\-° \z'M}k/2\F(z)\da>(z)

Jr\H Mer/Z • JH

f f°° f*t'2 °°
= yk|zr|Ff(2)|da,(z)= yk~2 £ |z + nAe|-» |Fe(z)| dxdy.

J H J0 J-Xe/2 n=-oo

If o->l the last sum is I z f + OU) for |x|< V 2 while

'exp(-27ry/A£) for y > l ,

y~k/2 • for y < l ,

I l—fc I — " - ' 1 £ •? -

\z\ expl-j—J2—1 for r~n —

by (6), (2) and (8) respectively. Thus the above integrals areJ'°° f1 I f y(1~y) f V2

I \ I I /
1 ' 0 "0 *vy(l —

f 1
 ( l t_C T-3)/2 .

Jo
provided that K c r < f c - 1 . Therefore our assertions on convergence follow from familiar
theorems in function theory. They also imply that P({z, s) is holomorphic for z in H and s
in the strip K < r < f c - 1 . Consequently, it is a cusp form if (2) holds with F=Pi(-,s).

Now let n be an integer, x = W . #2) a° arbitrary pair of different cusps for T and let

To,, denote the stabilizer of °° in MJ'M'1. Then the preceding considerations justify the

interchange of summation and integration so that we obtain, from (3), (5) and (11),

-Af
For n < 0 and 1< a < k — 1, all the latter integrals tend to zero if their line of integration is
pushed arbitrarily high up in the upper half-plane. This means that P^z, s) decays
exponentially near 02 of> equivalently, that it satisfies (2). Thus indeed P^(-,s) is a cusp
form for all s in K < r < f c - 1 .

Similarly, as at the beginning of the proof, (5), (6) and (11) yield

J
() M

H \ 1 I
^ ) (z'M)k/2F(z)
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44 A. GOOD

The preceding inner integral equals

by (6), Parseval's identity and the Lipschitz formula (cf. [6, p. 65])

valid for z in H, A >0 and for s in o-> 1. Thus we conclude from (7) that

fc — 1
for s in 1 < cr < —-—. By analytic continuation this identity also holds in the strip

K c r < f c - 1 . Finally, absolute convergence, (3), (4) and (11) show that

MeF/Z

and the theorem is proved.

From (9) and Theorem 1 we obtain the following corollary.

COROLLARY. Let s0 be a fixed complex number with l<Re(so)<fe —1. Then the
functions F orthogonal to Pt(-, s0) in Sk(T) are precisely those for which the corresponding
L^*(s) vanishes at s = s0.

REMARKS, (i) Note that the functional equation (9) can alternatively be deduced from
the last part of Theorem 1.
(ii) If Sk(T) is one-dimensional, the corollary characterizes the zeros of L^(s) in l < c r <
k - 1 by the identical vanishing of the cusp form P€«(-,s). In particular, a 'Riemann

k
hypothesis' holds for L((s) if and only if P€*(-, s)F(fc — s) i= 0 for all s in <J>— . For higher

dimensional Sk(T), the latter condition is necessary if a Riemann hypothesis should hold
for at least one L€(s) attached to the forms in Sk(T).

3. Expansions of P6(z, s). Let Fj,j = l,2,...,J = dim Sk{T) constitute an orthonor-
mal basis for Sk(T). Let Lje(s) denote the Dirichlet series attached to F= F} and £ as in (6)
and (7). Hence Theorem 1 yields the expansion

, s)=t {Pe(; s),FjFfr) = ̂ p " 1 * (^V I Lxik-sWiiz). (13)
Z l ( S ) \ A /

In this section we compute Mellin transforms of both sides in (13). In order to handle the
terms on the right of (11) individually, we use the following double coset decomposition of
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DIRICHLET AND POINCARE SERIES 45

G:
Let A(T), K(T) and N(T) denote the matrices

/2 0
0 T/2

T T
cos - sin -

2 2
. T T

—sin — c o s —

and
ri ,1
Lo I J

respectively. We write if (respectively <j) for the set of matrices M in G with \ad\ + \bc\ = 1
(respectively abed — 0), where a,... ,d denote the entries of M as at the beginning of
Section 2.

LEMMA 1. If A'(M) = |log
ab
cd

and ac
bd

, we have:

(i) Every M in G-if is of the form

M = ±A(A'(M)K(T7-[S(M)-i])A(2logv(M))K(ir[S'(M)-i])A(Ar(M)),

where 8(M), 8'(M) equal 0 or 1 so that (-l)s(M)ac > 0, (-l)s'<M)dc <0 and, where v(M) =
|ad|1/2+|bc|1/2;

(ii) Every M in Sf — 6 is of the form

M = ±A(A'(M))K(v)A(Ar(M))

with v uniquely determined by

ad

1/2 bd
•\bd\'

TT.

Proof. Except for the explicit form of 8,8' and v, this is Lemma 1 of [4] in the case
£ = TJ and x = V- For then A'(M) was defined by | log|M(0)MH| a nd Ar(M) by
-A'tiVr1). Now let

L = A(-A'(M))MA(-Ar(M)).

Thus the above representations with unspecified 8, 8' and v yield
(-1)8+8' A

-
c v 2 + l

be M(0) L(0)
M ( o o ) L ( o

in case (i) and

bc__M(0)_L(0)
= -(tgv/2)2

in case (ii). Since by [4, Lemma 1] we have v> 1 in (i) and 0<|J>-IT|<TT in (ii) the proof
is easily completed.
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46 A. GOOD

Next we choose a matrix Me for every cusp 0 such that Me(0) = oo and ±Mg1N(l)Mg

generate the stabilizer of 0 in F. If 0 and 0' are F-equivalent we may further assume that
MelMe. belongs to F (cf. [4, p. 40]).

LEMMA 2. Let £ = (0i, 02) and * = (0i, 00 &C two Pa i r s °/ different cusps for T. Set
bM) = -Mei(03_t) /or i = 1, 2. Then

M£ = SlA (log A£)Mfct(l))M8i

for i = l ,2 and every M in MjFM"1 D d is of the form

M = ± S TV (log KjmbM) - bAx) + n)A (-log KX)S'\

where L, I' equal 1 or 2 and n is an integer. Moreover, M is represented by more than one
triple (i, t', n) if and only if M= S' with j = 0,1. This happens with / = 0 (respectiue/y j = 1)
precisely if bL($) ~ bL(x) = 0(mod 1) (respectively b^g) - b3^(x) = 0(mod 1)) or precisely if an
element in T maps 0t to 6[ (respectively to 03_J simultaneously for i = 1 and 2.

Proof. If we denote SlA (log As)N(bt(£))Me by Lc for i = l ,2 we observe that
LM = S••(«>), A(03_t) = Sl(0) and that ± S'N(A€)S

l generates i L ^ L r 1 . Since these three
conditions characterize Lt up to a factor ±1 they imply that LL =±M€.

Now M belongs to M^M'1 n «J precisely if there is a pair (i, t') such that Q[. is
mapped to 0t by M^MMX in T. In the latter case L = MJ'MMX. Mg:

1MgL belongs to the
stabilizer of 0t in F by our choice of the Me. Therefore

±MeMt1MMxMe? = ±MeLM^ = ±N(n)

with a suitable integer n. Thus the desired representation of M follows from the already
proven part of Lemma 2. By comparing such ways of representing M we readily obtain
the following: If two different triples (i, t', n) yield the same M they must necessarily be of
the form (i, i', n) and (3- i , 3 - i \ m), where fcv(f)-Mx) + n = 0, &3-l(f)-&3-c'(x) + »n = 0
and A£ = Ax:. Thus indeed M = S J with / = 0 or 1. Moreover M^XMMX then belongs to F
and maps 6[. to du where i'= 1,2 and i = t' + ;'(mod 2). Since the conclusions in the last
three sentences can easily be inverted Lemma 2 is established.

Next we introduce the sets

(14)

(15)

and define the exponential sums

x(s,w,v) = l - —

ab

cd

ab

cd

sli

s/2

ac

~bd

ac

b~d

w/2

w/2

where the summation in (14) is over those M in $yx with

v bc_

ad

1/2
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and in (15) over those M in £TX with

(- l ) sac>0, (- l) s 'dc<0, v = \ad\ia+\bc\m.

Here Z denotes the center of F and a,..., d the entries of M as in Section 2. If the
summation is over the empty set the above sums are understood to be zero. From an
analytical point of view there is a striking resemblance between \SX' and the classical
Kloosterman sums. We shall not elaborate on this here, since the crude upper bounds in
the following lemmata suffice for this paper. In (14) and (15) only finite sums occur as'we
may conclude from the next lemma.

LEMMA 3. There is a positive number C such that
g|A'(M)| < Q g|A'(M)| £ Q

for every M in $yx and

e iAKM)i< C v 2 ( M ) ; e
| A r ( M ) l s C v 2 ( M )

for every M in £FX. Moreover, f/x is a finite set and for every positive v0 there are only finitely
many M in 4FX with v(M)£v0.

Proof. A well-known property of the groups F under consideration says the following
(cf. [13, Lemma 1.26 and Lemma 1.27]): If C is large enough then a point on the geodesic
from 6{ to 6'2 is mapped by L in F to a point in the sets

i = l or 2,

if and only if L{Q[) = dL for i = 1 or 2 and i'= 1 or 2. By the definition of a this may
equivalently be expressed as follows: For sufficiently large C the image of the positive
imaginary axis under a transformation M is M^FM"1 hits Sl{z \y> C}, i = 1 or 2, if and
only if M neither belongs to $yx nor $TX. On the other hand Lemma 1 yields

for M in iyx and

(ir[8 - U2])(iv\M)) = eA'(M)

i((—i.) v

for M in €FX. We conclude that
r

if M is in eyx,

7(MH1' i f M i s i n ^ '
for i = 1 and 2. These are the desired inequalities for A'(M). We obtain those for Ar(M)
by interchanging the role of 0t and $[• and by considering M"1 instead of M

The set of M in 5̂  - o with

https://doi.org/10.1017/S0017089500006066 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006066


48 A. GOOD

and that of M in G - if with

e|A'(M)1<O2(M), e|A'(M)1<O2(M),

obviously have compact closure in G. Therefore their intersections with JVf£rM~' are
finite sets since T is discrete. Thus Lemma 3 is proved.

LEMMA 4. If 1 < a, u < k - 1 then

f X \dy)M\-<T \dy)

Proof. First we note that

Ukn y"'1 dy <co.

J -<T | r / Ik/2 - k / 2 (k-<x)/2 <r/2
I I^MI - y yM ys

It follows from (4) that SM belongs to i*Tx and MS to frx* whenever M is in
Therefore

, Ik/2 _ -k/2( V (k-o-)/2 cr/2 , V CT/2,,(k-cr)/2\
M\ -y z, I 'M ysM+ L yM ysM )•

vMs£r, Mej.rv '
l | | I

By (3) the first sum on the right of (16) equals

yM
(k-cr)/2 f ( yM Y12 y fc/2

n = -«> N 2 M + n A « l '

provided that cr> 1. If we express M in (TX as M^LM'1 we infer from Lemma 2 and the
definition of eTx that L belongs to F — F2 and that

Thus by (3) and [7, p. 11] the last sum is

where £t(z, s) denotes the Eisenstein series attached to the cusps 8L. If y tends to °° then
M~aSl(iy) tends to 8[ for t = 1,2. Therefore the Fourier expansions of E2(z, s) in those
cusps (cf. [7, pp. 14-16]) reveal that the first sum on the right of (16) is

/ y V~kn y
«y1 kn for y-»oo and <<(r~o) for pr^-*00

if <r>l. Under the condition a < k - 1 we obtain the same bounds for the second sum on
the right of (16) if, in the estimates above, we replace a, T2 and E2(z, s) by k -a, I \ and
Ei{z,s) respectively. Hence the lemma follows. For, if \<a<k-\, the integral under
investigation converges absolutely on the interval [1, °°) provided that u<k -1 and on the
interval (0,1] provided that u > l .
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In order to state our next theorem we set

( l , if0' = M(0) with M in T,
s{e,e')= ' .

10, otherwise,

£(s; b) = £ n'^einb), if b is real and cr > 1,

dz,
l - z s i n - + c o s -

and

2k(z/i)w"1

The last two integrals converge absolutely for 0 < u = Re w < k.

THEOREM 2. In the notations introduced so far, let

^ V (k k \ - /
s, w) = 2, isx\2~s' 2~ W' v)h^v' s'

and

Then epx is given by a finite sum and (PX by an infinite series converging absolutely in
Ka,u<k — 1. In this domain 6dx, tpx and £PX are analytic functions of s and w. They are
related to our Poincare series by

z\~w

T) dw\z), s) f U J —
\ dZ I iTTl J(u)

or, equivalently, to the Dirichlet series attached to cusp forms by

4irF(fc - l)r(vv)

2kT(s)
T I T ) I Lii(k-s)Li (w) =
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Proof. If L = A ( P ) M A ( T ) then

by the definition of A{p). Thus we obtain from Lemma 1, (14) and the definition of jk

" f Z (—X\z'M)k/2l-Y" dz=l ^x(~s,~w, v)jk(v, s, w) = iPx(s, w). (18)

In (18) the interchange of summation and integration is no problem since 4yx is a finite set
by Lemma 3. Now

and (19)
k — w + 1

)( _ \ w —1

y) = ( -

Therefore we deduce from Lemma 1, (15), (17) and the definition of Jk

i f i (W^
1 Jo M£,r, x ' '

= ePx(s,w). (20)

In (20) the interchange of summation and integration is justified by Lemma 4 provided
that Kcr , u < k - l . Furthermore it follows that the series defining ^Px converges abso-
lutely and locally uniformly in that domain.

Now let

A, u N V ' (

n = —oo \

where X' means that we omit the term (z/i)'s in the case b = 0(mod 1) and \z\ < 1. If Sb = 1
when fe is an integer and 8b = 0 otherwise, we obtain, from the Lipschitz formula (12),

r(s) *v ' ' w-s

for u > c r > l . We also note that

\d(iy, b,s)|y""1dy« X In + iyl^y""1 dy + Z n<r"1e(iny)y""1 dy <<»
Jo Jo n = l Jl n = l
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for a; u > l . If icrx = MirM~1n<i, we thus conclude from Lemma 2, (17) and (19) that

t,t'=l

X yl+(-lK(w-D-l d y = £ d x ( S ) W ) (21)

for K a , u < f c - l . Since the left hand sides of (18), (20) and (21) add up to

()
1 f'" /dM~1(z)\ l c / 2 /z\

" 2TO-.) IATJ
by (11), (13), (10) and Mellin inversion, the theorem now follows.

REMARK. The functions jk and Jk can be expressed in terms of the hypergeometric
function F(a, b;c\z), e.g.,

r(w)r(/c-w)/ 2 V7(r-l/iQeW2V+»J 4
/k(v, s, w) = —— I —1 I — 1 F[s,w;k-

r(k) \v-llvl \ v + l/v I \ (v + l/v)

This incidentally shows that also the hypergeometric function in its most general form
naturally comes up in the analysis of SL2.

4. Lower bounds and special cases.

THEOREM 3. Let £ = (01; 62) be a pair of different cusps such that the orbit of the
geodesic from d1 to 62 in T\H has no transversal intersections. If k or A£ are sufficiently large
and k = 0(mod4) then the Dirichlet series Lj€(s),/ = 1 , . . . , J, have no common zero on
k k +1 V(t\
- < s s — . More specifically, t/h(s) = (27r/Ag)k-2* , . then
2 2 r(fc — s)

r fe fe + 1 , , „ ,
for - < s ^—-—, where y denotes Euler s constant and

[ 1 , if there is M in T wi

{0, otherwise.

with M(0t) = 03_t for 1 = 1 and 2,
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Proof. We just have to prove the above inequality since its right hand side clearly
becomes positive if k or As gets large.

If iyi is not empty then by Lemma l(ii) there is an M in F such that M^MM^H00) and
M^MMz 1(0) are real numbers of different sign. Hence the geodesic from M(0j) to M(02)
intersects that from 0a to 02 transversally. Since these two geodesies have the same
projection in T\H it follows that 4Y€ is empty under the assumptions of Theorem 3.

By moving the contour of integration for Jk to the negative real line and by
substituting p = 1/T, we obtain

x [ (p(v - IIv) +v + llv)-s(p(v + IIv) + v - l / v y - V 1 dp

= eiir(s+w)Jk(v, k-s,k-w). (22)

Since A'(M) =-A^M"1), v(M) = v(M~1) and S(JVf) = 5'(M-1) by Lemma l(i), we also
note that

°iSl{s,w,v) = lS°i(-w,-s,v).

Hence the definition of (PX yields

for 1< s < k -1. Under the assumptions of Theorem 3, it therefore follows from Theorem
2 that

-i)(^)\(s) t Ms)
\47i7

k k + 1
for -<s<—-—. Since £(s;0) is the Riemann zeta-function £(s) and

if b#0(modl),

we obtain from Lemma 2

4d4(k -s,s) = h(s)£(l + 2s-k) + £(l + k- 2s)/h(s)

^ ! , 62)- 8(£

Thus Theorem 3 follows since

: + - for 0 < s < 2
s - 1 2
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by the well-known formula

where [p] denotes the integral part of p.

COROLLARY. Let F be T0(q), the congruence subgroup of SL^Z) with c = 0(mod q) and
| = (flj, 02)

 Wl t r l 0i = O, 02
 = 00- Then Theorem 3 applies and the inequality there yields

positive lower bounds for q > 6 if k = 4, for q> 1 if k = 8 and /or aii q if k^ 12. At the
center of the critical strip the more precise bound

holds for q > 1 and LA(6) is greater than

Proof. In case of T0(q) the stabilizer at °° is generated by ±JV(1) and that at 0 by
±SN{q)S, whence M( = ± A{\ log q), k( = q1/2 and

It follows that £7£ is empty if £ = (0, °°). For otherwise |ad| + |bc| = 1 would be solvable in
non-zero integers a,...,d. Now 8(£, £*)=1 for q = l while 0 and °o are not F0(q)-
equivalent for q > 1. Therefore the inequality in Theorem 3 has a positive right hand side
if the sum of its first two terms is positive, i.e.,

and if 2Y + — ( S ) > 0 for q = 1. By Burnside's formula (cf. [8, p. 12]) we have
h

2 ire
logh(s)a(k-2s)log-^+(s-l/2)log(s-l/2)-(k-s-l/2)log(k-s-l/2)

k fc + 1
for - < s ^ . Since the derivative of the right hand side above is

-k\2

) (2s-k\2

1 \k-l)
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and

- 1
• — 1 A 2

fc k + l
the first condition is satisfied for - < s s — provided that q(fc-l)2^(4ir)2/e. The

fc fc + 1
second condition holds for - < s s — — if

/TV
since I —I (s) is monotonically decreasing in s>0 . At the center of the critical strip, on

the other side, the proof of Theorem 3 directly yields to lower bound

Since / = 1 and LA(s) = <A, A)1/2L1£(s) for fc = 12 and q = 1 the corollary now follows from
a few simple numerical verifications.

REMARK. Since dim Sfc(ro(q)) = 0 for q < 5 if fc = 4 and for q = 1 if fc = 8 our method
fails to provide non-trivial lower bounds only in the case fc = 4 and q = 5 or 6. At the
center of the critical strip our lower bound is positive for fc = 4, q = 6 and negative for
fc = 4, q = 5. The inequality for LA(6) shows that our lower bounds can be remarkably
close to the actual value: One knows (cf. [14, p. 117]) that LA(6)<0-792123 while the
corollary yields LA(6)> 0-792047.

In Theorem 2 certain combinations of the Dirichlet series attached to cusp forms are
expressed by series which, in contrast to the Dirichlet series, converge absolutely inside
the critical strip. Under the assumptions of the preceding Corollary, the arithmetical part
of these series is given by divisor functions as shown in the following theorem.

THEOREM 4. Let T be T0(q) and £ = (0, °°). If 8mn denotes the Kronecker symbol and

with summation over all pairs of positive integers a, d whose product equals I then
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T(s) C{1+ ~ S " W )
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+ t (-
8=0

where rhe fast series conuerges absolutely /or 1< a, u < k -1.

Proo/. By what we observed in the proof of the preceding corollary, the terms of the
above identity involving the Riemann zeta-function add up to £d£(s, w) and tfeis, w) = 0
under the present assumptions. It follows from (15) and (23) that

(s+w)/2 (s-w)/2

where the summation runs over all M in €F€ such that v = |ad|1/2 + |bc|1/2, ( - l)8ac>0 and
(-l)8 'dc<0. By picking the representative M in €r£ with c > 0 we note that 8 and 8'
determine the sign of the remaining entries a, b, d uniquely, whence \ad\ = |fec|-(-l)s+8 .
Thus we obtain

a n d = 0 (mod q),

a n d ' S

0, otherwise,

where v = lm+(l + lYn. Therefore the definition of ̂  and (22) yield

I —l(modq)

l"0(modq)

where v and I are related as before. Hence Theorem 4 follows from Theorem 2.

Similarly as for zeta-functions at integer points, we can now sum certain infinite series
involving divisor functions explicitly by restricting s and w to integer values. We state only
a few examples in the next corollary.
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COROLLARY. If d(n) denotes the number of divisors of n then

'log 2v - 1 , if fc = 4,

Proo/. Since dim Sk(r0(l)) = 0 for k<12 and S12(ro(l)) is generated by A we just
have to note that

for q = 1 and k = 0 (mod 4).

REMARK. Note that Jk(v, s, w) is an elementary function of v if s and w are integers,
e ' 8 ' ' +1

Unm + (n +1)1'2, 2, 2) = (2n + l)log- 2.
n
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