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MORE FIBONACCI VARIETIES

ANN CHI KIM, B.H. NEUMANN, AND A.H. RHEMTULLA

The Fibonacci varieties introduced by Ann Chi Kim, Bull. Austral.

Math. Soc. 19 (1978), 191-196 (1979), are here generalised in an

obvious way suggested by the work of D.L. Johnson, J.W. Wamsley,

and D. Wright, Proa. London Math. Soc. (3) 29 (197*0, 577-592.

The underlying groups of algebras in these varieties are studied,

and are shown to be abelian when the algebras are generated by a

single element, and in general are found to be extensions of

central subgroups by groups of finite exponent.

1. Introduction

We consider algebraic systems, or briefly algebras, that are groups

with an additional unary operation. We use conventional group notation:

x'y, x~ , e for the product, inverse, and unit element, respectively; the

additional unary operation is denoted by <$> and written as a right-hand

operator. In addition to the group laws, which we assume but do not here

specify, we assume the laws

(l.l) (x#i/)<j> = x<j)-z/(f> , x~ <p = (x$)~ , e<\> = e

(of which the first is well known to imply the other two);
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/ «\ A"! jn—1 jn-2 ,
( 1 . 2 ) xq> = x<p • a:<p • . . . • x<p • x ;

a n d

( 1 . 3 ) x<J)n = x .

Here m and n are integers, with m > 2 and n S 0 ; the case n - 0

means that the law (1.3) is trivially satisfied and can be omitted.

The inspiration for this set-up is in the Fibonacci groups studied,

inter' alia, by Johnson, Wamsley, and Wright [3] (see also Chalk and Johnson

[?] for further references). These authors define the Fibonacci groups

F{m, n) = gp[o; , a , ..., a ; a. = a. • a. • ... ' a.,

i = 1, 2, . . . , n, suffixes taken modulo n) ,

together with the abelianised groups

A(m, n) = F(m, n)/F{m, n) ' = g p ^ , a^ . . . , a^;

a. = a. , • a. - • . . . • a . , a . * a . = a . * a . ,

i, 3 = 1, 2, ..., n, suffixes taken modulo n) .

In order to allow also for the case n = 0 , which makes not much sense in

the Johnson et al. set-up, but is of interest in ours, we also define

F(m, 0) = gP(..., a_±, aQ, a±, V ...; a^m = a^^ • a^m_z • ... • a^

for all i) ,

A(m, 0) = F(m, 0)/F{m, 0) ' = gp(..., a_v aQ, a±, a2, ... ;

a. = a. n - a . _ • . . . • a., a.'a . = a .'a., for a l l i , j) .
z+m %+m-\ v+m-2 v v 3 3 1

I t is not difficult to see that F(m, 0) is a free group of rank m , and

A(m, 0) a free abelian group of rank m , both freely generated by

aQ, a , . . . , a , or by any other set of m consecutive a. .

These groups F(m, n) and A(m, n) have an obvious automorphism a ,

say, of order n , defined by

a.a = a. (suffixes modulo n ).

Our operator <}> imitates the action of a , but not only on a preferred

set of generators of the group involved, but on al l i t s elements. This

imposes severe restrictions on the groups underlying our algebras; on the
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other hand, our approach leads to some new phenomena: the Fibonacci groups

are clearly generated by a, and its images under powers of a , and thus

correspond to monogenic (that is one-generator) algebras in our context.

We shall, however, also look at algebras with more than one generator.

We denote the variety of algebras defined by the laws (l.l)-(l.3) by

V_(m, n) . In [4], one of us studied the varieties ^(2, n) [there denoted

simply by V ] , and determined the free monogenic algebras of these

varieties, for all n 2 1 . In the present paper we deal with the cases

m 2 3 , and we specifically do not exclude the case n = 0 , because this

involves the weakest assumptions and thus greatest generality. We also pay

special attention to the free algebras of V.(w, n) and to their underlying

groups. Denote the free algebra on d generators in vSmi n) ^y

AJm, n) and its underlying group by GAm, n) . Our results then are as

follows:

THEOREM 1. The group G {m, n) underlying the monogenic free

algebra of _v(m, n) is abelian, and isomorphic to A(m, n) (in the

notation of Johnson, Wamsley, and Wright [3] - see above).

A proof that A(m, n) is finite when m > 2 , n > 1 , and formulae

for the orders of these groups, are given by Johnson [2]. It has already

been remarked that A(m, 0) is free abelian of rank m , hence infinite.

THEOREM 2. The groups G,(3, n) underlying the d-generator free

algebras of v(3, n) are abelian, for all d > 1 and all n > 0 ; in

fact the groups underlying arbitrary algebras in y=i3, n) are abelian.

This carries commutativity of the underlying groups from m = 2 (see

the Lemma in [4]) over to m = 3 ; but there the commutativity stops:

THEOREM 3. The groups G underlying algebras A in Vj.m, n)

satisfy "centre-by exponent m - 1 " law

where we use the customary commutator notation [x, y] = x -y'^'X'y

Thus such a group G has a subgroup 2 in its centre such that G/l lies

in the Burnside variety B of groups of exponent m - l . Conversely
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every group in B underlies an algebra in V_(m, n) , for arbitrary

n 2: 0 . Thus when m > h , there are non-abelian groups that underly

algebras in vj.m, n) .

Note, however, that the law (l.U) is not sufficient to characterise

the groups underlying algebras in V(m, n) , especially when n > 1 .

2. Preliminary results

It is clear that if the integer p divides the integer q , then the

law x<y = x implies the law x$" = x . Hence we have the following fact:

LEMMA 1. For all integers p, q such that p divides q , and all

Vjim, 1) c v(ra, p) c v;(m, q) <=_ V(m, 0) .

Next we show that (j> is not only an endomorphism, but an automorphism

of the underlying group of every algebra in our varieties.

LEMMA 2. Let A be an arbitrary algebra in V(m, n) and G its

underlying group; then <J> acts as an automorphism of G .

Proof. The morphism property of <j> is guaranteed by the laws (l.l),

so we need only show that (f> is one-to-one and onto. If n > 0 , this is

obvious, as then (f> is the identity mapping of G , the carrier (or set

of elements) of 6 , which is also, of course, the carrier of A . For

arbitrary n > 0 we use the law (1.2), to write

i j . \ - l ( J 2 I - 1 r ,w-l i - 1 jn

X = (X(p) ' [Xty j • . . . • [X<t> J • X$

= [x • x (p ' . . . ' x <p • x<l> J c f > .

This shows that every element x is an image under <}> ; thus (J) : G -*• G
2 ?.

is onto G . Also, if x$ = y§ , then also x§ = y<$> ~ , and so on; thus

x = (x<$>) • [xty ) ' . .. • [x4> ) • x<f)

/ , i - l i , 2 - v - l i ,m-X\ - 1 ,m

w ) • (y$ J • •• • • u/<f> J • y$ = y •
This shows that <f> is also one-to-one. //
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3. Proof of Theorem 1

From now on we use t h e morphism p r o p e r t y ( l . l ) of <{> , and of powers

of <)> , wi thout f u r t h e r ment ion . Apply cf) t o both s i d e s of ( 1 . 2 ) t o g e t

/ \ .m+l jn ,m—l .

(3.1) x(j> = x<j) • x<\> • . . . • x$ .

Then

/ ~\ ,m+l jn .m-1 ,
(3 .2 ) X(J> 'X = xcf> • x<$> ' . . . • x$ • x

= x $ 'x<t>

Now we evaluate (x§'y)<fr by using (1.2) again, with xfy'y and then yx

in place of a; :

= (x<p'y)<f • (a:c(>#y)<j> • ... • x$ • y

,m m-1 ,m-l m-2 .
= x<p • yq> • xq> • y<P ' • • • • x<j> • y

,m—2 i \ —

<t> • . . . • (yx) • x
jn . -..m - 1
if ' (t/*x)(j) ' x

jn jn jn —1
<(> 'ip 'Xty '

,_ _ » .m+l jn ,m ,m jn - 1
( 3 - 3 ) xc(> •z/(f = x$ 'y§ 'x<$» ' X

P u t y = x$ t o g e t

and a p p l y ( 3 - 2 ) :

m+l .m+l ,m .m+l ,m
<|> -xcj) -x = x<() 'x<J> " x t p

,m+l ,m ,m jn jn+1 jn
xq> 'xy 'X<p = x<p 'X(p •xcp

This then gives

is i 1 j.m+1 jn jn ,m+l

We now proceed by induction. Assume tha t we have, for some j > 1 , the

laws

-1* .J x 0 ^-xcj) = x<J) -xij) " ,

co c i jn+j ,m+l .m+l
V
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We n o t e t h a t (3 .U ) h a s j u s t been p r o v e d , a n d t h a t ( 3 . 5 , ) i s t r i v i a l l y -

s a t i s f i e d . A p p l y i n g <(> t o [3-h.) i m m e d i a t e l y g i v e s ( 3 . 5 - . - , ) • To p r o v e

a 3+*
a l so (3.1*- , ) , we apply (3.U.) to xfy'x in place of x :

J+L 3

(J)*a;)(J) •'• (x<t>'x)fy = (a;<t>*x)<f) *(x(()*x)(j) ^ .

T h u s

xty 'x<t> °'x<ii 'x<i> = xi> 'xcfi 'x$ -ajij) " .

Applying (3.5-) and (3 .5- ) , we sh i f t x$m+ on the left-hand side to the
3 3 1

l e f t , then cancel i t :

Here we use (3.1*-) to shift x$ to the right on the left-hand side,
3

then cancel it, giving finally

m+j+1 m _ m ,m+j'+l

By induction (3.** •) is then established for all positive j . Now given
3

in tegers k, I with k > I , we apply <|> to ( 3 . ^ -,) to get

k .1 ,1 k
( 3 « o ) x® *x(p = xtp *xo .

As this is symmetric in k, I and the case k = I is trivial, we have

proved the first statement in the following lemma:

LEMMA 3. In every variety Vj.m, n) the law (3.6) is valid for

arbitrary integers k, I . If A is a monogenic algebra in V^m, n) ,

then its underlying group G is abelian.

The second statement follows from the fact that if A is generated,

qua algebra, by the single element a , then its underlying group G is

generated, qua group, by the set {a<$r \ j an integer} , and even, because

of the law (1.2), by the set {atf \ 0 < j 5 m-l} . //

Now the proof of Theorem 1 is the same, mutatis mutandis, as that of

the Theorem in [4], and we omit it. //
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4. Proof of Theorem 2

We now turn to the special case m = 3 , and prove commutativity of

the underlying groups in this case. The law (1.2) becomes

( U . l ) x(}>3 = xi?2'xi>-x ;

and we shall proceed without the law (1.3), that is to say, we work in the

variety V.(3, 0) , of which all V{3, n) are, as we know, subvarieties.

We begin by applying (U.l) to a product X'z :

3 2
(X'Z)$ = (x'z)$ '{x'z)$'X'Z ,

or

3 3 2 2
(U.21) x<i> -z^ = x<|> 'Z§ -x(j>»3(j>'X'3 .

Applying (U.l) to x and 2 separately, and multiplying, we also get

3 3 2 2
(U.22) x(J> 'Z§ = x<{> •xfy'X'zfy -s^'z .

Comparison of (U.2l) and (U.22) then gives, after cancelling x<\> and z ,

2 2
3(J> 'X$'Z$'X = X<j>*X#3(j) 'Z§ .

Here we put z<$> = y , and note that, as a consequence of Lemma 2, y

ranges with z over the whole carrier of our algebra; thus we get the law

or

(U.3) {yx)4>'yx = x$%x'y$'y .

Now we define a new operation <f by

anjj = x<J>*£ .

Then (U.3) says that

(yx)ty = xiiri/t|> ;

that is to say, 'tji is an awtimorphism: it reverses the order of the

2
factors in a product. Then 4> must restore that order, and be a

2
morphism. Now xty is, in terms of (j> ,
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2

2

2

where we have used the law (3.6). Applying (̂ .l) we get

(U.i*) xty = x§ mx§ .

o Pi
Now a s ill i s a m o r p h i s m , s o i s i|> <J> , w h i c h , u s i n g ( U . M , i s g i v e n by

, 2 . - 1 ,2
xip tp = x<p *x .

Hence, applying this to the product X'z , we have

2 2 2

(X'Z)4> 'X'Z = X§ 'X'Z<I> 'Z ,

or

2 2 2 2

2 2

Cancelling x<$> on the left, s on the right, and putting z<$> = y

(which again ranges with z over the whole carrier of our algebra), we

finally have the commutative law

and Theorem 2 follows. //

5. Proof of Theorem 3

We return to the case of general m , and again dispense with the law

(1.3), that is to say, we work in V.(w, 0) . We deduce from (3.2) the law

(5 .1 ) [x 'x<f>)<S> = [xty J 'x($> = x<$> 'x

We digress by noting that this implies that for any element, say g , of

the carrier of an algebra in ^(w, n) ,

gb = g

is equivalent with

gty - g '•

LEMMA 4. An element g of the carrier of an algebra in V(m, n) is*
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fixed by <f> if, and only if, g is fixed by <j> .

COROLLARY. The varieties ;v(m, m) and V(m, l ) coincide; and they

coincide with all varieties Y_(m, m') , where m' divides m .

The l a s t s t a tement fol lows from Lemma 1 . Now we r e - w r i t e ( 3 . 3 ) i n t h e

form

t jn\ - 1 ,m+l jn ,m jn - 1
[x<$> J 'xfy -yip = z/(j> *x(j> ' x

Using (5-1), this gives

r - 1 , •> jn jn ,m r - 1 •) Jn
[x -as<(>J4> -y$ = y§ • \x •x$)$ ,

and applying (j>~ , we finally get

(5.2) x~ 'X<$>'y = yx~ «x(j) .

This law says that x~ -xty commutes with all elements, in other words: is

central in the underlying group G of the algebra A under consideration.

The set {g~ 'g<$> | g € G] , where G is the carrier of G (and of

A ), generates a subgroup Z of G , and we have proved, by (5-2):

LEMMA 5. The subgroup I of G lies in the centre of G .

It is not difficult to verify that the carrier Z of Z is, in fact,

the set {g~ 'gfy \ g € G] we have used to generate Z ; and that Z is

the underlying group of a subalgebra T of A . In fact T is the kernel

of the natural epimorphism of A onto an algebra A , with underlying

group G = G/Z , where (J) acts on G as the identity automorphism. The

algebra A is obtained from A by introducing the law

(5.3) x<t> = x ,

or strengthening the law (1.3) to (5-3). With this law, (1.2) becomes

m
x = x ,

or

(5.»0 = e ,

the "Burnside" law with exponent m - 1 . Thus G lies in the Burnside
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variety IL. of groups of exponent m - 1 . Conversely, if G is an

arbitrary group of exponent m - 1 , and if we define the operator <f as

the identity automorphism of G , then all the laws (l.l), (1.2), (1.3)

are trivially satisfied, so that we get an algebra A with G as its

underlying group, and A belongs to V.(w, l) (and thus to all V[m, n) ,

with n > 0 ). Theorem 3 follows. //

If we take 6 in particular as the free d-generator group B,

of B , we thus clearly obtain the group GJmt l) underlying the free

d-generator algebra A,(m, 1) of V(m, l) . As the variety Y.(m, l) is

obtained from Vj.m, n) by strengthening the law (1.3) to (5.3), the free

cf-generator algebra A,(m, n) of V.(m, w) maps epimorphically on

A,(m, 1) , and thus its underlying group GJm, n) maps epimorphically on

this Burnside group B, = GJm, l) . The kernel is, as we know, a

central subgroup ZAm, n) of GAm, n) , generated by the set

\9 '9§ I 9 ^ GJ(W, n) t . This depends on the values of the parameters

m, n, d . For example, we know that for n = 1 , or-indeed for any n

dividing m , this subgroup is trivial (see the Corollary to Lemma k). We

state without proof that at the other extreme, namely n = 0 , this kernel

Zj(m, 0) is free abelian of rank d'm , and that for n > 0 and finite d

it is a finite abelian group.

References

[7] C.P. Chalk and D.L. Johnson, "The Fibonacci groups. II", Proa. Roy.

Soc. Edinburgh Seat. A 77 (1977), 79-86.

[2] D.L. Johnson, "A note on the Fibonacci groups", Israel J. Math. 17

(197*0, 277-282.

[3] D.L. Johnson, J.W. Wamsley, and D. Wright, "The Fibonacci groups",

Proa. London Math. Soo. (3) 19 (197*0, 577-591*.

https://doi.org/10.1017/S0004972700006705 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006705


Fibonacci varieties 395

Ann Chi Kim, "Fibonacci varieties", Bull. Austral. Math. Soo. 19

(1978), 191-196 (1979).

Department of Mathematics,

Busan National University,

Busan,

Korea, 607;

Department of Mathematics,

Institute of Advanced Studies,

Australian National University,

P0 Box 4,

Canberra, ACT, Australia 2600,

and

Division of Mathematics and Statistics,

Commonwealth Scientific and Industrial Research Organization,

P0 Box 1965,

Canberra City, ACT, Australia 2601;

Department of Mathematics,

University of Alberta,

Edmonton,

Alberta,

Canada T6G 2GI.

https://doi.org/10.1017/S0004972700006705 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006705

