# ON SOME SOLUTIONS OF SECOND ORDER HYPERBOLIC DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS 

by J. S. LOWNDES

(Received 22 January, 1986)

1. If we seek solutions of the hyperbolic differential equation

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+k^{2} u-\frac{\partial^{2} u}{\partial t^{2}}=0 \quad(k \geqslant 0) \tag{1}
\end{equation*}
$$

which depend only on the variables $t$ and $r=\left[\sum_{i=1}^{n} x_{i}^{2}\right]^{1 / 2}$, we see that these solutions must be even in $r$ and satisfy the differential equation

$$
\begin{equation*}
T_{n}[u(r, t)]=\frac{\partial^{2} u}{\partial r^{2}}+\frac{(n-1)}{r} \frac{\partial u}{\partial r}+k^{2} u-\frac{\partial^{2} u}{\partial t^{2}}=0 . \tag{2}
\end{equation*}
$$

The object of this paper is to show that some recent results in the fractional calculus can be used to prove the following theorem.

Theorem. For odd values of $n \geqslant 3$ and arbitrary functions $\phi$ with continuous derivatives up to the order $n-1$, the functions

$$
\begin{equation*}
u(r, t)=T_{n}^{(n-3) / 2}\left[\int_{-1}^{1} J_{0}\left\{k r \sqrt{ }\left(1-\xi^{2}\right)\right\} \phi(t+\xi r) d \xi\right] \tag{3}
\end{equation*}
$$

are solutions of the differential equation

$$
\begin{equation*}
T_{n}[u(r, t)]=0 . \tag{4}
\end{equation*}
$$

A corresponding result for the $n$-dimensional wave equation with rotational symmetry (i.e. equation (2) with $k=0$ ) is given in [1].
2. In what follows we shall make use of the generalized Erdélyi-Kober operator of fractional integration $\Im_{k}(\eta, \alpha)$ which is defined in [2] by

$$
\begin{equation*}
\Im_{k}(\eta, \alpha) f(r)=2^{\alpha} k^{1-\alpha} r^{-2(\alpha+\eta)} \int_{0}^{r} x^{2 \eta+1}\left(r^{2}-x^{2}\right)^{(\alpha-1) / 2} J_{\alpha-1}\left\{k \sqrt{ }\left(r^{2}-x^{2}\right)\right\} f(x) d x \tag{5}
\end{equation*}
$$

where $r>0, \alpha>0, k \geqslant 0$ and $J_{\alpha-1}$ is the Bessel function of the first kind.
A useful result connecting the above operator with the singular differential operator

$$
\begin{equation*}
L_{\eta}=\frac{\partial^{2}}{\partial r^{2}}+\frac{(2 \eta+1)}{r} \frac{\partial}{\partial r} \tag{6}
\end{equation*}
$$

is contained in the following lemma [2].

Lemma. If $\alpha>0, f(r) \in C^{2}(0, b)$ for some $b>0, r^{2 \eta+1} f(r)$ is integrable at the origin and $r^{2 \eta+1} f^{\prime}(r) \rightarrow 0$ as $r \rightarrow 0+$, then

$$
\begin{equation*}
\mathfrak{J}_{k}(\eta, \alpha) L_{\eta} f(r)=\left(L_{\eta+\alpha}+k^{2}\right) \Im_{k}(\eta, \alpha) f(r) . \tag{7}
\end{equation*}
$$

3. Adopting the notation of (6) we see that the one-dimensional wave equation

$$
\begin{equation*}
L_{-1 / 2} w-\frac{\partial^{2} w}{\partial t^{2}}=0 \tag{8}
\end{equation*}
$$

with the conditions

$$
\begin{equation*}
w(0, t)=2 \phi(t), \quad \frac{\partial}{\partial r} w(0, t)=0 \tag{9}
\end{equation*}
$$

has the solution

$$
\begin{equation*}
w(r, t)=\phi(t+r)+\phi(t-r) \tag{10}
\end{equation*}
$$

for arbitrary differentiable functions $\phi$.
We now introduce the function

$$
\begin{equation*}
w_{\alpha}(r, t)=\frac{\Gamma\left(\alpha+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} \Im_{k}\left(-\frac{1}{2}, \alpha\right) w(r, t) \quad(\alpha>0) \tag{11}
\end{equation*}
$$

and apply the operator $\left[\Gamma\left(\frac{1}{2}\right)\right]^{-1} \Gamma\left(\alpha+\frac{1}{2}\right) \Im_{k}\left(-\frac{1}{2}, \alpha\right)$ to equations (8), (9) and (10). In this way, on using the result (7) of the lemma, we find that the solution of the differential equation

$$
\begin{equation*}
T_{2 \alpha+1}\left[w_{\alpha}(r, t)\right]=0 \quad(\alpha>0) \tag{12}
\end{equation*}
$$

with the conditions

$$
\begin{equation*}
w_{\alpha}(0, t)=2 \phi(t), \quad \frac{\partial}{\partial r} w_{\alpha}(0, t)=0 \tag{13}
\end{equation*}
$$

is given by

$$
\begin{align*}
w_{\alpha}(r, t) & =\frac{\Gamma\left(\alpha+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} \Im_{k}\left(-\frac{1}{2}, \alpha\right)[\phi(t+r)+\phi(t-r)] \\
& =2^{\alpha} \frac{\Gamma\left(\alpha+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}(k r)^{1-\alpha} \int_{-1}^{1}\left(1-\xi^{2}\right)^{(\alpha-1) / 2} J_{\alpha-1}(\rho) \phi(t+\xi r) d \xi \tag{14}
\end{align*}
$$

where $\rho=k r \sqrt{ }\left(1-\xi^{2}\right)$.
With the above results we can write

$$
\begin{align*}
T_{n}\left[w_{\alpha}(r, t)\right] & =T_{2 \alpha+1}\left[w_{\alpha}(r, t)\right]+\frac{(n-2 \alpha-1)}{r} \frac{\partial}{\partial r} w_{\alpha} \\
& =\frac{(n-2 \alpha-1)}{r} \frac{\partial}{\partial r} w_{\alpha} \tag{15}
\end{align*}
$$

and from equations (14) and (15) we find that

$$
\begin{align*}
T_{n}\left[w_{\alpha}(r, t)\right]= & 2^{\alpha} \frac{\Gamma\left(\alpha+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} \frac{(n-2 \alpha-1)}{r}\left\{-k(k r)^{1-\alpha} \int_{-1}^{1}\left(1-\xi^{2}\right)^{\alpha / 2} J_{\alpha}(\rho) \phi(t+\xi r) d \xi\right. \\
& \left.+(k r)^{1-\alpha} \int_{-1}^{1} \xi\left(1-\xi^{2}\right)^{(\alpha-1) / 2} J_{\alpha-1}(\rho) \phi^{\prime}(t+\xi r) d \xi\right\} \tag{16}
\end{align*}
$$

On performing an integration by parts on the last integral in the above equation we get

$$
\begin{equation*}
T_{n}\left[w_{\alpha}(r, t)\right]=2^{\alpha} \frac{\Gamma\left(\alpha+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} \frac{(n-2 \alpha-1)}{(k r)^{\alpha}} \int_{-1}^{1}\left(1-\xi^{2}\right)^{\alpha / 2} J_{\alpha}(\rho)\left[\phi^{\prime \prime}(t+\xi r)-k^{2} \phi(t+\xi r)\right] d \xi \tag{17}
\end{equation*}
$$

and with the aid of this result we can now prove the theorem.
4. Proof of the theorem. When $\alpha=1$ the solution of equations (12) and (13) is given by

$$
\begin{equation*}
w_{1}(r, t)=\int_{-1}^{1} J_{0}(\rho) \phi(t+\xi r) d \xi \tag{18}
\end{equation*}
$$

where $\rho=k r \sqrt{ }\left(1-\xi^{2}\right)$.
Using the result (17) we have

$$
\begin{equation*}
T_{n}\left[w_{1}(r, t)\right]=\frac{(n-3)}{k r} \int_{-1}^{1}\left(1-\xi^{2}\right)^{1 / 2} J_{1}(\rho)\left[\phi^{\prime \prime}(t+\xi r)-k^{2} \phi(t+\xi r)\right] d \xi \tag{19}
\end{equation*}
$$

and repeated applications of the formula (17) yield the expression

$$
\begin{equation*}
T_{n}^{m}\left[w_{1}(r, t)\right]=\frac{(n-3)(n-5) \ldots(n-2 m-1)}{(k r)^{m}} \int_{-1}^{1}\left(1-\xi^{2}\right)^{m / 2} J_{m}(\rho) \Phi_{m}(t+\xi r) d \xi \tag{20}
\end{equation*}
$$

when $n \geqslant 2 m+1$,

$$
\begin{equation*}
\Phi_{m}(t+\xi r)=\sum_{s=0}^{m}(-1)^{m-s}\binom{m}{s} k^{2(m-s)} \phi^{(2 s)}(t+\xi r) \tag{21}
\end{equation*}
$$

and $\phi$ is any function with continuous derivatives up to order $2 m$.
In this way we find that, for odd values of $n \geqslant 3$,

$$
\begin{equation*}
T_{n}^{(n-1) / 2}\left[w_{1}(r, t)\right]=T_{n}\left\{T_{n}^{(n-3) / 2}\left[w_{1}(r, t)\right]\right\}=0 \tag{22}
\end{equation*}
$$

and this proves the theorem.
5. In order to construct a simple example we take $\phi(t)=e^{i \beta t}$ and in this case we see that equation (18) gives

$$
\begin{align*}
w_{1}(r, t) & =\int_{-1}^{1} J_{0}\left\{k r \sqrt{ }\left(1-\xi^{2}\right)\right\} e^{i \beta(t+\xi r)} d \xi \\
& =2 e^{i \beta t} \int_{0}^{1} J_{0}\left\{k r \sqrt{ }\left(1-\xi^{2}\right)\right\} \cos (\xi \beta r) d \xi \\
& =2 e^{i \beta t} \frac{\sin (a r)}{a r} \tag{23}
\end{align*}
$$

where $a=\sqrt{ }\left(\beta^{2}+k^{2}\right)$ and the integral has been evaluated by a result given in [3].
Using the theorem we have that, for odd values of $n \geqslant 3$, the functions

$$
\begin{equation*}
v_{n}(r, t)=T_{n}^{(n-3) / 2}\left[2 e^{i \beta x} \frac{\sin (a r)}{a r}\right] \tag{24}
\end{equation*}
$$

satisfy the differential equation

$$
\begin{equation*}
T_{n}\left[v_{n}(r, t)\right]=0 \tag{25}
\end{equation*}
$$

As two special cases it can easily be shown that when $n=5$,

$$
v_{5}(r, t)=4 e^{i \beta t}\left[\frac{\cos (a r)}{r^{2}}-\frac{\sin (a r)}{a r^{3}}\right]
$$

and when $n=7$,

$$
v_{7}(r, t)=16 e^{i \beta t}\left[\frac{3 \sin (a r)}{a r^{5}}-\frac{3 \cos (a r)}{r^{4}}-\frac{a \sin (a r)}{r^{3}}\right],
$$

which are even functions of the variable $r$.

## REFERENCES

1. R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 2 (Interscience, 1962).
2. J. S. Lowndes, An application of some fractional integrals, Glasgow Math. J. 20 (1979), 35-41.
3. W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, 3rd. ed. (Springer-Verlag, 1966).

## Department of Mathematics

University of Strathclyde
Glasgow G1 1XH

