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ABSTRACT. Sorted patterned ground refers to polygons. nets. or stripes defined by rocky borders wh ich are 
the result of sorting in soil subjected to frost action. Thi s paper presents a model in which convection cells. driven 
by unstable density stratification in the aqueous phase, result in uneven melting of the underlyi ng ice front during 
thawing. The resulting undulatory ice front with regularly spaced peaks and trough s provides the pattern which 
results in the regularity observed fo r certain types of patterned ground . In add iti on. the model predicts the width to 
depth-of-sorting ratio for both polygons and stripes. and expla ins the cha rac te ri stic hexagonal hape of so rtcd 
polygons. the transition from sorted polygons to sorted stripes on sloped terrain. and the fo rm atio n of sorted 
polygons under water. The predicted ratio or width to depth -or sorting or 3.8 1 for sorted polygo ns is compared 
with the ratio of width to depth-or-sorting of 3.57 found from a linear regression analysis of 18 field study data. 

RESUME. Un modele pailI' la reglllarite des sols a reseallx d'elemellls tries. Les sols a rcsca ux d'elemcnts tri es 
rorment des polygones, des reseaux ou des rubans delimites par des limites de pierres qui sont le resu ltat du trie 
dans les sols sujets a r action du gel. Cet article presente un modele dans lequel des cellules de convect ion produites 
par une stratifica tion instable par densite en phase aque ll se. provoquc une rusion inegalc dll front de glace SOllS­
jacent pendant la periode de fusion. Le front de glace ondulant qui en resu lte avee des pics et des ereux 
regulierement espaces produit le motir regulier observe dan s certains types de sols it reseaux. De plu s. le modCie 
prevoi t le rapport entre la largeur et la profondeur de tri a la fois pour les polygones et les ba ndes. et explique la 
forme hexagonale caraeteristique des polygones tri es, la transition entre les po lygones tries et les bandes triecs sur 
les terrain s en pente, ainsi que la formation sous r ea ll de po lygones tries. Le rapport prcvu dc 3,8 J entre la Jargcur 
et la profondeur de tri pour les polygones tri es est comparee avec le rapport de 3.57 entre la largeur et la 
profondeur de tri trouvees d'une analyse par regression lineaire de 18 don nce d'etudes su r le terrain. 

Z USA MM ENFASSUNG. Eill Modell flir die Regellll i:issigkeit sOl'lierter Mllsterbociell. Untcr sortierten 
Musterboden sind Polygone, Netzwerke oder Streifen, markiert durch Saume groben Gerolls. die clu rch 
Frostsorlierung im Boden gebildet werden, ZlI verstehen. Diese Arbeit ent wickclt ci n Mode l!. in dCIll 
Konvektionsze'llen, hervorgerufen durch eine in stabile Dichteschichtung in dcr Auftauph a e. zu unglcichmassigclll 
Schmelzen der Permafroststirn wahrend der jahreszeitlichen Tauperiodc fUhren. Die daraus resultiercnde gewcll tc 
Eisstirn mit regelmassig angeordneten Wallen und Trogen li efert das Muster. woraus die Regelm ass igkei t cnlstchl. 
die bei bestimmten Typen von Musterboden zu beobachten isl. Ausserdem sagt das Modell das Verhiiltnis 
zwischen Weite und Tiefe der Sortierung sowohl fUr Polygone wie fUr Streifcn vo raus und erkliin die 
charakteristi sche hexagonale Form der Sortierten Polygone, den Obergang von sorlierlen Polygo ncn zu sorti erten 
Streifen auf geneigtem Gel ii nde unci die Bildung von sortierten Polygonen lInter Wasscr. Das vo rhergesagtc 
Verhiiltnis von 3,8 J zwisehen Weite und Tiefe der Sortieru ng bei Polygonen wird mit del1l entsprechendcn 
Verh iiltnis von 3,57 ve rglichen. das sieh aus einer linearen Regressionsana lyse der Daten von J 8 Feldstud icn 
ergab. 

THE striking regularity of patterned ground has excited scientific interest for more than a 
hundred years. Scientists have proposed many hypotheses over the years to explain the origin of 
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Fig. I . Relict sorted polygol/. Arapaho Pass. FrOl1f Ral/ge o.fColorado. Po(rgol/ is approximately J 1/1 ClCrosS . 

these beautifully symmetrical structures, yet none has been fully satisfactory. Despite a century 
of investigation, sorted polygons are not well understood ; in particular, the reasons for the 
symmetry and regularity are unknown. The best examples of patterned ground, such as those 
shown in Figures 1 and 2, lie in remote locations above timber line in the highest mountains of 
the temperate zone or beyond the tree line in the high Arctic. Here, the impressive regularity of 
polygonal sorting may extend over several square kilometers at a single site (Richmond, 1949). 

Sorted polygons, the type of patterned ground considered in this work, are defined by 
Matthews and Boyer (1976, p.399) as " ... patterned ground whose mesh is dominantly 
polygonal and has a sorted appearance commonly due to a border of stones surrounding finer 
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Fig. 2. Photograph of hexagonal. diurnal sorted pO(I'gOI1S. 
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material (at the center)". The soi l inside the polygonal stone borders may be overgrown with 
grass or other plants; such polygons are believed to be inactive or relict patterns formed during 
colder epochs in the past. I f the soil centers of the polygons are not covered with vegetation, they 
may still be in an active process of sorting. The diameter of sorted polygons may vary from 0.1 
to 10 m (Wash burn, le 19791, p. 142). The types of sorted polygons studied here are associated 
with a periglacial environment. Accordingly, the lower elevation limit for the occurrence of these 
ranges from sea-level in the Arctic to as high as 5 000 m in middle latitudes (Wash burn. re 19791, 
p. 121). Adequate freeze- thaw cycles are also important in patterned-ground formation. Thus, 
its formation is often inhibited by perennial snow cover or overlying vegetation. 

A full explanation of the formation of sorted polygons may soon be complete as several 
separate lines of investigation fall into place. It is generally agreed that the origin of patterned 
ground is polygenetic (Caine. 1972). Washburn (1956) has reviewed several 
mechanisms--cryostatic pressure, differential frost heave, and primary frost sorti ng-which can 
cause a homogeneous mixture of small and large stones to become sorted or segregated through 
frost action. Some of these mechanisms have recently been demonstrated under controlled 
laboratory conditions. The missing information has always been a fully convi ncing hypothesis 
to explain the regularity, size, and shape of patterned ground. The purpose of this work is to 
develop a model which does explain the regularity and which can be quantitatively verified with 
field measurements of sorted polygons. 

LITERATURE REVIEW 

Two excellent monographs (Price, 1972; Washburn le 1979 1 review the extensive literature 
on patterned ground; therefore, only a brief review of past work is given here. Popular models for 
patterned-ground formation can be divided into those in which cracking is essential and those in 
which it is not required. Desiccation cracking, seasonal frost cracking, and permafrost cracking 
are likely causes of the regularity in some patterned ground forms (Wash burn le 19791. p. 161). 
The sorting would then be a secondary mechanism, following the development of the crack 
networks (Wash burn re 19791, p. 159). 

Cracking processes do occur in Nature, although they are inadequate to explain the 
regularity and geometry of a// sorted patterned ground forms. For example, there are significant 
differences between the size of the networks formed by cracking processes and that observed for 
most sorted polygons. Permafrost crack networks are typically an order of magnitude larger 
than most sorted polygons. De iccation crack systems, on the other hand, are smaller than most 
forms (Washburn, le 19791, p. 16 1). Also, cracking mechanisms cannot adequately explain the 
increase in sorted polygon diameter with depth as observed by Meinardus (1912 cited by 
Wash burn, le 1979 J, p. 143), nor can they explain the transition from sorted polygons to sorted 
stripes as the slope steepens, the increase in depth-of-sorting with depth of the active layer. or the 
regularity of polygon networks. 

The hypotheses not involving cracking for patterned ground in volve processes such as 
cryostatic pressure, differential frost heave, and primary frost sorti ng (Washburn, 1956). These 
processes also occur in periglacial environments and may well constitute a stage in patterned­
ground formation. However, each of these hypotheses requires an initial regularity of some kind 
to be present or developed in the soil prior to sorti ng. A source of such regularity is described by 
the model presented here. 
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This model is derived from linear stability theory which is used in the analysis of potentially 
unstable systems to determine if a small disturbance (a perturbation) will die out or, in the case of 
an unstable system, will grow to become a periodic form. Recurring, geometrically regular 
phenomena found in Nature can often be explained by such an instability mechanism. The 
approach used was to investigate if the regularity and geometry of sorted patterned ground could 
be explained by an instability in the active layer above permafrost (or in the layer of diurnal 
freeze- thaw action above seasonally frozen ground). Specifically, the onset of Rayleigh 
convection cells in the porous medium of the active layer was determined. Rayleigh convection 
refers to fluid convection due to unstable density stratification as a result of thermal gradients. 
Dense fluid overlying less dense fluid will, under the proper conditions, form convection cell s. 
thus lowering the system free energy. This problem was first investigated by John William Strutt, 
Lord Rayleigh (Strutt, 1916). 

Rayleigh convection has been advanced as an explanation for sorted patterned ground 
before. Nordenskjold (1909) suggested that sorted polygons are a result of convection currents in 
the ground due to the temperature difference between the surface of the frost table and the 
surface of the thawed ground. Low (1925) and Gripp (1927, 1929) proposed that currents 
capable of lifting stones occurred due to the density inversion of water between 273 K and 
277 K. However, Elton (1927) showed that the flow caused by this density difference is too small 
to carry stones against gravity. Gripp and Simon (1934 cited by Wash burn , 1956, p.853) 
demonstrated the formation of convection cells in a suspension of fines in water with a variation 
in temperature from 273 K at the bottom to 277 K at the top. However, since this suspension of 
fines did not constitute a porous medium, Gripp and Simon did not reproduce field condition s. It 
should be noted that the model developed in this paper, while involving Rayleigh convection , is 
completely different from the convection models discussed above. 

The scope of this paper is as follows. First, a hypothesis for the regularity of sorted patterned 
ground based on the Rayleigh convection model is advanced. It should be emphasized that this 
model does not attempt to explain the entire formation of sorted patterned ground ; rather, it 
provides a mechanism for the occurrence of regularity in the active layer. Second, a theoretical 
study of the onset of Rayleigh convection cells in the active layer is presented. The criteria for the 
formation of these convection cells are determined using a linear stability analysis. This section 
can be omitted with no loss of continuity for the reader interested only in the physics of thi s 
hypothesis. Next, a field program involving width and depth measurements of sorted polygons is 
presented. These data are compared with the prediction of the Rayleigh convection-cell model. In 
addition, data from laboratory experiments on Rayleigh convection in porous media are also 
compared with the predictions of the model. Finally, additional qualitative field observations are 
presented in support of the Rayleigh convection model for the regularity of sorted patterned 
ground. Many anomalies associated with sorted patterned ground are explained by the 
hypothesis developed here. 

RAYLEIGH CONVECTION MODEL FOR PATTERNED GROUND REGULARITY 

The process to be described here is hypothesized to apply to a permafrost environment with 
an active layer which thaws and refreezes seasonally. The diurnal -type sorted polygons 
developed without a permanently frozen substrate will be discussed in a later section. 

Consider the water-saturated active layer depicted schematically in Figure 3. The ice- liquid 
interface between the frozen and unfrozen ground is at 273 K. For modeling purposes, it is 
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Fig. 3. Schematic of satllrated porolls media II sed to model the actiL'e layer. The 277 K isotherm is sholl 'n at the 
sw/acefor convenience. 

ass umed th at the ground surface is at or near 277 K [thi s situati on often occurs naturall y (e.g. 
Ives, 1973; Washburn , [C 19791. p. 59); situations where the surface tempera tu re is differen t from 
277 K a re easily incorporated into the model and are discussed in the theory section I. It is well 
known that in thi s temperature range, the density of wa ter increases with temperature. The 
density profi le of the water between 273 K and 277 K is a lso shown in Figure 3. 

Since the density of the water near the surface of the acti ve layer is grea ter than that near the 
ice·- liquid interface (see F ig. 3), the sys tem is potentiall y un table. If the proper condit ions ex ist, 
the dense upper water wi ll tend to sink while the less dense lower wa ter wi ll tend to ri se. Both 
effec ts obviously cannot happen at once : a t any point the flui d can be ascending or descending, 
but it cannot move in both directions at the same place and ti me. Th is im passe is avoided by the 
spontaneous di vision of the system into a pattern of convection cell s in each of which the flui d 
circul ates in a closed orbit. The amazing thing about this convecti on sys tem is that the fl ow 
pattern is not one large convection cell ; ra ther, as was discovered by Benard ( 1900). the sys tem 
forms many small convection cells whose size and shape can be pred icted theoreti ca ll y. 

Lord Rayleigh (Strutt, 19 16) showed that convection cell s do not form in every fluid layer 
with an inverse density stratificat ion. The onset of convection cell s is controlled by opposin g 
forces. The density gradient and correspo nding buoyancy fo rces must be la rge enough to fo rce 
the fluid to circul ate. The viscous drag, which in an active layer is a functi on of the viscos ity of 
the wa ter and the permeability of the soil , must be small eno ugh not to damp out the circul a tio n 
pattern . Thi s criterion is commonl y expressed in term of a cri tical va lue of a dimension less 
para meter ca lled the Rayleigh number (Ra) . The Rayleigh number is a meas ure of the rati o of 
the buoyancy force di vided by the product of the viscous drag and the rate of heat conductio n. 
Any pa rameter which makes the Ray leigh number large contributes to the form ation of Ray leigh 
convec tion cell s. The Rayleigh number is defined by 

( 
P;CpfJ tJ.T kgL 

Ra) == --'----
AsJ1 

( I ) 

where Pc is the density of the fluid at its reference temperature (wa ter at 273 K), Cp is the hea t 
ca pacity at constant pressure, fJ is the therm al expansio n coeffi cient, !'J.T is the tempera tu re 
differe nce imposed across the depth L , k is the permeability, g is the gravitational accelerati o n, As 
is the therm al conductivity, and J1 is the shear viscosity. The cri tical Ray leigh number above 
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which the onset of convection cells will occur will be determined for the active layer in the theory 
section to follow. 

With the aid of these Rayleigh instability arguments, a sequence of events is now proposed 
for the formation of sorted polygons. First, it is assumed that for the active layer depicted in 
Figure 3, the permeability k of the soil is initially too low for the density inversion to result in 
Rayleigh convection cells; that is, the k which appears in the numerator of Equation (I) is so 
small that the Rayleigh number is below its critical value. The thickness of the active layer is 
often nearly the same each year because the permafrost often melts nearly to the same depth 
each summer (Ives, 1973; Washburn, [e 1979], p. 59). Frost heave causes vertical (the primary 
degree of freedom for movement) expansion of the active layer. On thawing, it does not settle to 
its original density; that is, it stays slightly lofted. Corte (1962) has shown experimentally that up 
to a 10% increase in volume of the active layer can result from as few as ten freeze- thaw cycles. 
Application of the Blake-Kozeny equation (Bird and others, 1960, p. 199) indicates that a single 
10% volume increase can result in an increase in permeability of nearly 70%. After many such 
freeze- thaw cycles, the active layer will have lofted enough to reach a permeability which allows 
the critical Rayleigh number to be reached. If the 273 K to 277 K temperature difference is 
present across the active layer, all properties appearing in Equation (I) will be nearly constant 
except the permeability k and the depth L. 

Attaining the critical Rayleigh number then is first possible when the variable parameters in 
the Rayleigh number reach their extreme values; that is k is large enough to achieve the onset of 
convection when L is at its maximum (deepest annual thaw). Note here that the Rayleigh 
number is largest when the surface temperature is at or near 277 K. This implies that convection 
cells will be initiated at that time of the year when the surface temperature is about 277 K. 

Earlier models which attempted to explain the regularity of patterned ground by Rayleigh 
convection were based on the contention that these weak circulatory currents could cause direct 
movement of the larger stones which form the borders of sorted polygons. The model developed 
in this paper is not based on any argument that Rayleigh convection cells can move stones 
directly to effect a sorting process. Instead, this model contends that Rayleigh convection 
determines the regularity indirectly through its influence on the shape of the ice front which 
underlies the water-saturated porous medium. 

The influence of Rayleigh convection on the shape of the underlying ice front was ignored in 
earlier models for patterned-ground regularity which were based on Rayleigh convection. The 
Rayleigh convection cells determine the shape of the underlying ice front because they induce 
uneven heat transfer to this front. In regions of downftow, the transport of warmer water from 
the upper layer to the ice front will cause increased melting; conversely, in regions of upftow, the 
transport of colder water upward will retard melting. Figure 4 shows a schematic diagram of the 
two-dimensional cross-section of the resulting undulatory ice front. Note the ice peaks under the 
upftow regions and the ice troughs under the downftow regions. It can be proven that the three­
dimensional configuration of the Rayleigh convection cells will be hexagonal as shown in Figure 
Sa and b. It is not known, however, whether there will be upflow along the cell axis as in Figure 
Sa or upftow along the cell border as in Figure 5b. In order to predict the flow configuration of 
the water-saturated active layer studied here, it is necessary to perform a non-linear stability 
analysis. The results from such an analysis would then have to be corroborated with laboratory 
experiments. 

As explained above, the critical conditions for Rayleigh convection will first be attained when 
the maximum temperature driving force ~T= 4 K occurs over the maximum possible depth . that 
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Fig. 5. Schematic oJ the tlVO possible hexagonal 
cOll vection cell configuratiolls: flail' lip in the cellter 
(a) a/Id lip in the border (b). 

is, the depth of the maximum seasonal thawing. For the conditions appropriate to most patterned ­
ground sites studied here, the theoretical analysis in the next section shows that the critical 
wavelength W = 3.81 L at the inception of Rayleigh convection. This theoretical result implies 
that the undulatory ice front will have ice peak which are 3.81 active layer depth s apart as 
shown in Figure 4. The presence of thi s undulatory ice front then influences any so rting 
processes which are slowly occurring in time such that the sorting mirrors the pattern of the 
underlying ice front. This can occur by anyone or a combination of well -established so rting 
mechanism s such as cryoslatic pressure, differential frost heave, and primary frost sorting. It is 
not the subject of this paper to determine which mechanism or combination of mechanisms 
ca uses the sorting process to mirror the patterned ice front. Indeed it is not possible to infer from 
the type of field data taken in this study which mechanism caused the sorting. However, it is 
poss ible to determine if the alleged cause for the regularity of the patterned ground is in fact the 
undulatory ice front caused by Rayleigh convection. If thi s new model for explaining the 
regularity of patterned ground is correct, then the ratio of the polygon width to depth-of-sorting 
should be equal to 3.81 since the depth-of-sorting should be nearly equal to the depth of the 
activc layer. 

This prediction for the width to depth-of-sorting ratio for sorted polygons is a principal result 
of the theoretical analysis to be discussed next. A large part of the field program was designed to 
corroborate thi s prediction with measurements of sorted polygons. The results of this field 
program will be presented in the field -studies section. The theoretical development in thc next 
section will present the linear stability analysi s on the active layer system which results in the 
prediction for the critical wave-number which was used to establish the ratio of width to depth­
of-sorting for patterned ground. The reader who is not interested in the mathematical detail s 
underlying the model presented here can proceed directly to the field -studies section. 
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TH EORETICAL DEVELOPMENT 

This section presents the theoretical analysis of Rayleigh convecti on in an ac ti ve la ye r 
incorporating the presence of an underlying compliant ice front. An explanation of convec ti ve 
instability is provided in the first part of thi s section, and the sys tem of interest in these modelin g 
efforts is described. The linear stability analysis of thi s system is subsequentl y presented and the 
predictions of the model for Rayleigh convection in the active layer are summarized. Although 
thi s analysis is straightforward, it is quite lengthy and hence can only be o utlined here. The 
interes ted reader desiring more detail s of this development is referred to Ray (unpublished). 

Consider a horizontal layer of a porous medium sa turated with a fluid which is unstably 
stratified. The temperature profile in this layer is such that the density of the fI uid at the lower 
boundary is less than that of the fluid next to the upper boundary. Small-sca le inhomogeneities in 
the porous medium or some other source of small disturbances are assumed to provide a 
perturbation. This perturbation moves a packet of fluid vertically from its rest state. If the system 
is un stable, the packet will keep moving and convection cells will form . These convection cell s 
ha ve a lower energy state than the stationary, unstably stratified la yer of fluid. A linear stability 
analysis (discussed below) will establish a criterion involving the characteristic parameters of the 
system for determining if such a perturbation will grow. This analysis will also give the initiall y 
preferred size of the disturbance developed from the perturbation . This is often a good indication 
of the fully developed convection cell size (Miller, 1978, p. 234). 

The active layer during melting is represented schematically in Figure 3. The unfrozen 
portion is water-saturated earth and can th us be modeled as a saturated porous medium. The 
temperature profile and the density profile of the water between 273 K and 277 K are also shown 
in Figure 3. The density of water at 277 K is only 0.013 2% greater than at 273 K. It is well 
known, however, that this very small density driving force will result in Rayleigh convection cells 
under the right conditions. The system depicted in Figure 3 is therefore potentially unstable. The 
surface temperature could be greater than 277 K, in which case the density inversion would 
occur across only part of the thawed layer. The effects of this and the opposite case of a surface 
temperature less than 277 K are to change the depth L over which the unstable stratifica tion 
occurs. The purpose of the following linear stability analysis is to establish the conditions under 
which Rayleigh convection will occur in the saturated layer and to predict the size and shape of 
the convection cells. 

Before the linear stability analysis of the system can be carried out, the basic-state 
temperature profile (i.e. without convection) present in the sa turated porous layer must be 
derived. This profile for the dimensional temperature 1'* for the case of negligible heat 
conduction in the underlying ice is given by Carslaw and Jaeger (1959, p. 282-96); 

* erf(z* J... jL) 
T = T surf + (lint - T surf ) - - --­

erf(J...) 
(2) 

where z * is the dimensional spatial coordinate measured from the ground surface. Equation (2) 
satisfies the boundary conditions corresponding to a specified temperature at the upper boundary 
T surf and the phase-transition temperature Tint at the lower boundary. The dimensionless 
quantity J... is related to the velocity of the phase-transition front. An energy balance at this 
ice- liquid interface yields an implicit equation for A., 

T;nt - Tsurf 2 H eJ...n1
/
2 

erf(A.) exp ( - A. ) = C
p 

(3) 
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in whic h c is the poros ity a nd H is the heat o f fusion. Since A, is small for the physical parameters 
describing the acti ve layer. Equati on (2) can be represented by the fir st term of its Taylor-seri es 
expa nsio n abo ut ,1. = 0. Thi s yields an approximation for the basic-state temperature profile 
in vo lvi ng o nl y the parameter A,2. Non-dimensionali zing thi s expa nsion yield s a linear basic-sta te 
temperature profi le 

(4) 

where:: = z* IL. 
The a nalysis presented here is the mathema tical equivalent o f perturbing the fluid packet and 

determinin g whether the d isturbance will grow into convectio n cell s or deca y to it s former sta te. 
This is done by descri bing the system with governing equ a tions, then no n-dimensionalizin g. 
perturbin g. and combining these equation s into a fourth -order partial-differential equation. Thi s 
eq uatio n is then solved a nd the appropria te boundary conditions applied to yield an algebra ic 
equa ti on which indicates th e condit ions under which the system is un stable a nd , if so. the initi a l 
size of th e di sturbances or co nvection cell s. 

The equ ati on govern ing fl ow through po rous media is Oa rcy's Law (Oarcy . 1856. ill Cheng. 
1978): 

k 
w* = -- (Vp* - p*g) (5) 

f.1 

where w* is the dim ensional flui d veloc ity vector. and p* is the dimension al pressure. 
Throughou t thi s development. the sy mbol V will denote the vecto r differenti al o perator. 

The eq uati on of mo tion fo r thi s system is (Bird and oth ers. 1960; p. 79): 

0*11' 
p* --= - V* p* - V* . r* + p* g 

Of* 

where the viscous stress tensor r* is give n by 

* * 11'* J1 V . r =--
k 

The ther lll a l energy eq uation ca n be written as (Bird and others. 1960. p. ~ 16): 

* 0* T* *2T* p Cp --*-=,1., V . 
Of 

The eq uation of continui ty is (Bird and others. 1960. p. 75): 

0* * 
p * ( * * ) --= - p V ·w . 

Of* 

(6) 

(8) 

(9) 

Fin all y. th e equation of sta te used in thi s a nalysis desc ribes the density behavior of water 
be tween 273 K and 277 K a nd is given by : 

(10) 

Note th at the density increases with temperature for positi ve (3. 
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The dependent variables (temperature, velocity, and pressure) are now perturbed about their 
quiescent values. These perturbation variables denoted by the superscript primes (') are then 
substituted in Equations (5) through (10) which are then linearized in the perturbed quantities. 
Subtracting the basic-state equations from these linearized perturbed equations, non­
dimensionalizing, and combining yields a fourth -order partial differential equation in the 
perturbed temperature T' given by 

---;:----+-- - - V V T = V,T 
[ 

IVsAs t1T 0 f.1 Ws] [ As 0 As 2] 2, 2, 
L 2eHpcg at kgpc eLHWsPcfJ at wsPcCpLfJ t1T 

(I I) 

in which the temperature and spatial coordinates are non-dimensionalized as desqibed 
earlier, Ws is an unspecified velocity scale factor, and the dimension less time is given by 
t = t* As t1T/ (L 2eHpc). The symbol V~ denotes the two-dimensional Laplacian operator given by 

02 02 

V~ = 0;(2 + al· (12) 

The solution to Equation (11) is found to be 

T' = ent sin (Ix) sin (my)(A, erlz +A2 e- rlz +A3 er2Z +A4 e- r2Z
) (13) 

where 11 = 11 * L 2 eHpc / Ax t1 T is the dimension less growth coefficient. The symbols f and m are 
dimension less horizontal wave-numbers in the x- and y-directions (see Figure 3), respectively, 
defined by 

2nL 
111=--, 

Wy 

(14) 

(15) 

in which Wx and Wy denote the dimensional wavelengths in the x - and y-directions, respectively. 
It is convenient to define a combined dimensionless, horizontal wave-number a as 

The dimension less quantities r, and r2, appearing in Equation (13) are defined as 

r, = [ a + 2~a2 - (a
2 

+ 4~;t + 4~(J - a)a
2
)' /2] '/2 

and 

where 

Cp t1Tn 
a = , 

eH(Ra) 

1 
~=(Ra)· 

(16) 

(J 7) 

(J 8) 

(19) 

(20) 
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The symbol (Ra) denotes the Rayleigh number defined by Equation (I). Its appropriate 
minimum value is the criterion for the onset of convection in the active layer, which will be 
discussed further in a later section. The four quantities, A I, A 2, A3 , and A4 in Equation (13) are 
the four undetermined integration constants. Therefore, four boundary conditions are required to 
specify the problem completely. 

The upper boundary of the unstably stratified layer is a free surface in that it is free to deform 
in response to the dynamics of the flow process. This free surface is defined by the condition of 
zero flow velocity normal to this surface. The appropriate boundary condition for the linear 
stability problem can be shown to be 

w' = O at z = O. (21 ) 

The same boundary condition can be shown to apply at the "interface" between a stably 
stratified layer and an unstably stratified lower layer. This is a direct consequence of the 
linearizations employed in this linear stability theory solution. Equation (21) can be expressed in 
terms of the perturbed temperature as follows: 

\1 T - -- -=0 2 , (Cp D.T) aT' 
cH af at z = 0. (22) 

The boundary condition corresponding to a specified upper temperature is given in terms of 
perturbed temperature by 

T' = O at z = O. (23) 

The lower boundary condition corresponding to an impermeable, compliant, phase-transition 
front is given in dimensionless form by 

11" = 0 at z = I. (24) 

Equation (24) can be put in terms of T' in a manner similar to that used for Equation (21) to 
yield 

\1 T - -- -=0 2 , (Cp D. T) aT' 
cH of at z = I. (25) 

The lower boundary condition describing the moving ice- liquid interface is given, in 
dimension less form, by 

dl] aT' a2t 
-=---+-- 1] 
df az oz2 at z = I. (26) 

The ice- liquid interace is allowed to melt unevenly in this analysis, which requires a new 
variable I] (x, y ) to describe the undulation. The introduction of this extra degree of freedom 
req uires an additional lower boundary condition. This third lower boundary condition comes 
from the fact that the ice- water interface is at a constant temperature. This condition can be 
written as 

at 
T' + -1] = 0 az at z = I. (27) 

Substituting the basic-state temperature profile given by Equation (4) into Equations (27) and 
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(28) to eliminate '7 and then combining these equations yields a lower boundary condition 
independent of '7 given by 

oT' oT' 
-+- = 0 
OZ 01 

at z = I. (28) 

The solution given by Equation (13) is then substituted into the four boundary conditions, 
Eq uations (22), (23), (25) and (28). Since the boundary conditions are homogeneous, the 
determinant of the coefficients of the integration constants AI, A 2, A 3 , and A4 must be equal to 
zero in order to obtain a nontrivial solution. Evaluating this determinant yields, after 
considerable algebraic manipulation, 

l(a2 + r;2 + WTI1)2 + (a2 + r;2 + WTI1)(- a2 + rt - WTI1)]r2 sin r; cosh r2 + 

+ 1(- a2 + d + WTI1)2 _ (_a2 + d - WTI1)(- a2 + r;2 - WTI1)]r; cos r; sinh r2 + 

+ 1 (a 2 + r;2 + WTl1f + (_a2 + r~ - WTl1i 111 sin r; sinh r2 + 2(e? + r;2 + WTI1) x 

x (_ a2 + d - WTI1)11 sin r; sinh r2 = 0 (29) 

where 

(30) 

and 

(31 ) 

Equation (29) constitutes a relationship between the parameters of the problem which include 
the physical properties, prescribed temperatures at the boundaries, active-layer depth, wave­
number a, and growth coefficient 11. For a specified set of physical properties and prescribed 
boundary conditions, there is a unique growth coefficient 11 determined by Equation (29) for each 
wave-number. Only wave-numbers with positive growth coefficients are unstable modes which 
can be observed. At Rayleigh numbers less than the critical Rayleigh number, 11 is negative for 
all wave-numbers. At the critical wave-number , 11 is equal to zero for the critical wave-number 
and is negative for all other wave-numbers. At slightly higher Rayleigh numbers, 11 is positive for 
a small band of wave-numbers around the critical wave-number. For this reason, the convection 
cells which are observed when the system first exceeds the critical Rayleigh number have a size 
characterized by the critical wave-number. 

The predictions of Equation (29) are shown in Figure 6 which plots the dimensionless wave­
number a versus the Rayleigh number (Ra). The shaded area corresponds to those wave­
numbers which have a positive growth coefficient 11 and hence could grow to become convection 
cells of finite size. This region of unstable wave-numbers is bounded by the locus of those wave­
num bers for which 11 = 0, which is referred to as the neutral stability curve. The critical Rayleigh 
number here is seen to be 27.1 and corresponds to a critical wave-number of 2.33. At any 
Rayleigh number above the critical Rayleigh number, there is a unique wave-number having the 
largest positive growth coefficient which is referred to as the most highly amplified wave. The 
locus of these most highly amplified wave-numbers is also shown in Figure 6. 

It must be stressed here that the most highly amplified wave for each Rayleigh number only 
describes the perturbation which grows most rapidly initially. Strictly speaking, linear stability 
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Fig. 6. Wa ve-number versus Ray leigh Ilumber Jar the boulldalY cOllditiolls correspolldillg to a free upper sUlface 
maintained at cOllstanttemperature. Critical Rayleigh Ilumber is 27.1, criticallvave-Ilumber is 2.33. 

theory cannot describe cell development and size beyond the initial perturbation. However, it is 
often found that the initially most highly amplified wave describes the wave-number of fully 
developed convection cells at a given Rayleigh number. Furthermore, at Rayleigh numbers only 
slightly above critical, the critical wave-number persists (Velarde and Normand, 1980; 
Combarnous and Bories, 1975), presumably because the critical wave-number has had time to 
become well developed enough to dominate disturbances of other wave-numbers. 

The hypothesis advanced here for the regularity of sorted patterned ground argues that a 
prospective patterned-ground site is brought up to the critical condition at which Rayleigh 
convection is possible, by a gradual increase in the Rayleigh number due to successive 
freeze- thaw cycles. Once the critical Rayleigh number is reached , the initial convection cells 
which develop will have a size characterized by the critical wave-number. The underlying ice 
front will deform in response to the uneven heat transfer due to the free convection cells. At the 
same time, the convection cells effect minute changes in the porous medium due to silt flow, 
compaction, and rarefaction of the soil, and other effects which favor re-establishing the 
convection cells in the same place during subsequent thaw cycles. Hence, the convection cells 
which are initially generated in the porous medium at critical conditions impart a geometric 
character to the medium which persists through subsequent freeze- thaw cycles. Furthermore, 
this impressed geometric character should be manifest in the patterned ground arising from 
sorting processes. That is, sorted polygons should have a ratio of width to depth -of-sorting 
determined by the critical wave-number predicted by Equation (29), G = 2.33. For a laterally 
isotropic porous medium, we expect that Wx = Wy in Equations (14) and (15); hence, Equation 
(16) implies that the width to depth-of-sorting ratio corresponding to the critical wave-number is 
given by 

G= 2.33 = 2nV2L/ W. (32) 

Hence, 

W/ L = 3.81. (33) 

This establishes one of the principal results of this analysis which can be tested against field 
measurements of sorted polygons. An important point to note here is that this prediction of 
critical wave-number (Equation (32)) or ratio of width to depth of sorting (Equation (33)) is 
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independent of the physical properties of the porous medium. In order to test its validity, one 
need only measure the polygon width to depth-of-sorting ratio for patterned-ground sites. 
Further predictions about the nature of patterned ground can be made with the use of Rayleigh 
convection theory. Palm (1960) showed that Rayleigh convection cells in a free-fluid layer 
approach a hexagonal form. Furthermore, Combarnous and Bories (1975) demonstrated 
experimentally that Rayleigh cells in porous media are indeed hexagonal. These theoretical and 
experimental results suggest that the preferred shape of patterned ground formed as a result of 
Rayleigh convection will be hexagonal in a flat active layer which is laterally isotropic. 

Finally, this analysis suggests that these hexagonal patterns observed on flat terrain will 
transform to parallel stripes on sloped terrain. Parallel stripes imply that either Wx or Wy = 0 in 
Equations (14) or (15); hence, Equation (16) implies that 

2.33 =2nL/ W (34) 

or that 

W/L=2.70. (35) 

In the next section these predictions will be compared with field observations of both relict and 
active patterned ground. 

FIELD STUDIES 

Field observations were intended to test the hypothesis that the regularity of sorted patterned 
ground corresponds to that predicted for Rayleigh convection cells. This would suggest that 
Rayleigh convection in the active layer is responsible for the observed regularity of sorted 
patterned ground. If Rayleigh convection is involved in sorted-polygon inception, it would have 
occurred long ago in relict sites that are now polygonally patterned ; however, sites about to form 
sorted polygons are very difficult to identify. For this reason , the field studies presented below 
focused on measurements of existing sorted polygons as a test of the Rayleigh convection 
hypothesis. 

Since the Rayleigh convection hypothesis predicts a convection cell width-to-depth ratio of 
3.81, and sorting to the depth of cell development is assumed, width and depth measurements of 
sorted polygons were needed. Although many investigators have noticed the relationship 
between the width of sorted polygons and the depth-of-sorting of the rocky borders, few depth 
and width data exist in the literature. The field program, then, focused on obtaining accurate 
depth and width data over a range of sorted polygon sizes. 

Once a site was chosen for study, a well-formed sorted polygon was chosen for trenching. 
Well-defined borders, the apparent absence of large boulders, and adjacent, well-formed 
polygons were the criteria employed in deciding where to excavate. Trenching affords one 
important advantage over just digging to the bottom of the rock border in that it permits 
observation of the cross-sectional shape of the polygon border. 

The depth of sorting was measured from a reference level, provided by a tape stretched from 
center to center of a polygon, down to the point determined as the bottom of the border (see Fig. 
7). In other words, the reference level was the undisturbed ground level regardless of how high 
the rocky border was above the ground. Often, as in Figure 7, the location of the bottom of the 
rocky border was visually obvious. In other cases, the depth-of-sorting or the orientation of the 
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Fig. 7. Typical trench across border a/sorted polygons. Stretched tape shall's Ill/disturbed ground level. 

stones was used to determine the bottom of a rocky border. Vertically oriented stones were 
considered part of the border. A preponderance of horizontally oriented stones , on the other 
hand , was assumed to lie below the level of freeze- thaw action at the time of polygon formation . 
Therefore, the depth at which stones became horizontally oriented was con sidered the depth of 
the sorted rocky border. The widths from polygon centers to the center of the rocky borders of 
several adjacent sorted polygons were measured to obtain an average width. 

Table I summarizes the data used to test the model advanced here for the regularity of 
patterned ground. The location and elevation of each site as well as the polygon width and depth, 
and the investigator are included in Table I. The polygons were for the most part relict, although 
a few small, active, sorted polygons were studied. Relatively few sites exhibited well -developed 
sorted stripes, hence the predictions of Equations (34) or (35) could not be tested. 

The preceding section established that the critical wave-number at the inception of Rayleigh 
convection is 2.33, which corresponds to a cell width to depth ratio of 3.81. The hypothesis for 
patterned ground regularity to be tested here argues that the undulatory ice front created by the 
Rayleigh convection cells transmits its pattern through the sorting process to the developing 
patterned ground. The hypothesis implies that sorted patterned ground whose regularity is due to 
this mechanism should have a ratio of width to depth-of-sorting of 3.81 , or equivalently, a 
dimensionless wave-number a = 2nV2L/ W = 2.33. This prediction is tested in Figure 8 which 
plots the polygon width W versus the depth-of-sorting L for the 18 field study data given in Table 
I. A linear regression on these data gives a slope of 3.57 and an intercept of 0.04 m with a 
correlation coefficient of 0.982. Perfect agreement with the theory, of course, would imply a 
slope of 3.81, an intercept of 0 and a correlation coefficient of unity. It should be mentioned here 
that while there are a number of approximations in the theory developed here, it is believed the 
cause of most of the deviations from the theoretical line in Figure 8 arise from the irregularity 
inherent in geological phenomena. 

Note that Figure 8 includes field data for both seasonal polygons (shown by the open data 
points) and active diurnal sorted polygons (shown by the dark data points). Hence, this model 
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TABLE I. FIELD STUDY DATA FOR SORTED POLYGONS 

Approx. 
Site location USGS quadrangle Width Depth elevation In vestigator(s) 

(m) (m) (m) 

Niwot Ridge Ward, Colorado 2.3 0.S3 3 SOO Ray 
Niwot Ridge Ward, Colorado 3.8 1.00 3 SOO Ray 
Caribou Mt. Ward, Colorado 1.7 0.48 36S0 Ray 
Caribou Mt. Ward, Colorado 1.7 0.48 36S0 Ray 
Arikaree Glacier Monarch Lake, 0.86* 0. [8 3800 Ray 

Colorado 
Arikaree Glacier Monarch Lake, 0.83* 0.16 3800 Ray 

Colorado 
Albion Saddle Ward, Colorado 0.40* 0. 10 36S0 Ray 
Albion Saddle Ward, Colorado O.SO* 0. 13 36S0 Ray 
Albion Saddle Ward, Colorado 3.9 1.10 3650 Ray 
Medicine Bow Medicine Bow, 2.3 0.70 36S0 Ray 

Peak Wyoming 
Medicine Bow Medicine Bow, 2.9 0.70 36S0 Ray 

Peak Wyoming 
Trail Ridge Road Trail Ridge 4.0 1.10 3660 Ray 

Green Lake No. 4 Ward, Colorado 2.3 0.71 3 SSO Ray 
Chief Mountain Franks Peak, 2.3 0.83 3400 Krantz a nd Gunn 

Wyoming 
Beartooth Plateau Beartooth Butte and 0.20* 0.07 3400 Krantz and Gunn 

Alpine, Montana 
Dana Plateau Mono Craters, 0.64 0.16 3 SOO Krantz and Gunn 

California 
Parker Pass Creek Mono Craters, 0.70 0.14 3400 Krantz and Gunn 

California 
Macquarie Island, 0.2S* 0.08 300 Caine 

Australia 

* Diurnal, active polygonal form 

for patterned ground regularity permits explaining the width to depth-of-sorting for both large­
scale relict as well as small-scale diurnal sorted polygons. 

An essential aspect of the hypothesis advanced here for patterned ground regularity is that it 
arises from free convection occurring near the critical Rayleigh number. Whereas sorted 
patterned ground of the type considered here has yet to be developed in laboratory experiments, 
there have been exacting laboratory studies of the inception of Rayleigh convection in porous 
media. Combarnous and Bories (1975) studied the inception of Rayleigh convection in a porous 
medium saturated with a "normal" liquid (one whose density increases with temperature) which 
was heated from below and was overlaid by a thin layer of the liquid. Superficially, this system 
does not resemble the free convection problem treated in this paper. However, the mathematical 
description of the Rayleigh stability problem for this system is identical to that of interest here; 
hence, this laboratory study of Combarnous and Bories should also yield a critical wave-number 
of 2.33 or equivalently a ratio of cell width to depth 3.81. Figure 9 shows a plot of the 
dimensionless wave number a versus depth L for both the laboratory data of Combarnous and 
Bories and the sorted-polygon data of Table 1. It is more convenient to compare these laboratory 
and field measurements on the basis of dimension less wave-number rather than a width-to-depth 
plot as in Figure 8 because of the much smaller scale of the laboratory convection cells. Both the 
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laboratory and field -test wave-number data show no dependence on the depth , which, of course, 
agrees with the theoretical prediction. The laboratory data yield a n average dimensionless wave­
num ber of 2.64 whereas the field data give an average of 2.3. This comparison demonstrates then 
that the field data agree as well or better with the theory as do the data from carefull y controlled 
laboratory studies of free convection. 

SORTED PATTERN ED GROUND CHARACTERISTICS EXPLA INED BY R AYLEIGH CONVECTION 

MOD EL 

This section discusses sorted patterned ground characteri stics in the light of the Rayleigh 
convection hypothesis. 

Constant width-ta-depth ratio 

It was noted earlier that the width of sorted patterned ground increases with the depth of the 
sorted boulders. Figures 8 and 9 demonstrate the constancy of the width-to-depth ratio, which is 
easily explained by the R ay leigh convection model. The R ay leigh convection cells in the soil 
should correspond to the critical wave-number of 2.33 si nce the Rayleigh number will be near its 
critical value. This sets the width-to-depth ratio of these cell s at 3.81 , which is remarkably close 
to the width-to-depth ratio of 3.57 found from the linea r regression analysis of the field data . 

Sorted stripes 

Sorted stripes are parallel lines of stone and intervening s tripes of finer material usually 
oriented down-slope parallel to the fall -line. While sorted polygons usuall y occur on slopes of 0° 
to 30, a smooth transition to sorted stripes often occurs between 30 and 7°. Combarnous and 
Bories (1975) and others have observed in laboratory experiments that three-dimensional 
hexagonal convection cells transform to two-dimensional roll cells oriented down-slope as the 
porous medium is tilted past some critical angle. Sorted stripes then are formed by essentially the 
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same mechanism as sorted polygons. The two-dimensional roll cells melt the permafrost 
unevenly, resulting in parallel ice ridges and troughs oriented down-slope. The same sorting 
mechanism can now occur to form sorted stripes from this undulatory ice front. The anomaly of 
"stripe hysteresis", i.e. where stone stripes often continue onto flats below the slope (Richmond, 
1949), can also be explained by this model. Combarnous (1978) observed in laboratory studies 
of convection cells that two-dimensional roll cells often persist after the tilted porous medium is 
suddenly made horizontal. This suggests that in a tilted active layer, the two-dimensional roll 
cells will persist for some distance after the slope flattens. The observation of Nicholson (1976). 
that sorted stripes follow subsurface drainage patterns and not necessarily the steepest slope, can 
also be explained by the convection theory. The two-dimensional roll cells discussed above are 
flowing down-slope so they would tend to melt the permafrost unevenly following the drainage 
patterns. Thus, the unfrozen ridges would follow the drainage, not necessarily the surface slope. 

Diurnal sorted patterned ground 

Diurnal sorted polygons are those small forms usually less than 0.1 m in depth which appear 
to be associated with diurnal freeze- thaw cycles. They fit the same dimensionless wave-number 
as do the large relict polygons (see Figure 9). Therefore, the same convection-cell model should 
explain them as describes the large polygons formed in a seasonal active layer over permafrost. 
In this case only deep seasonal freezing and not necessarily permafrost is present. At the 
beginning of spring, the ground may be frozen to a depth greater than that which thaws and 
freezes diurnally. This "diurnal active layer" will refreeze during the night. These diurnal 
freeze- thaw cycles are often accompanied by diurnal frost-heave cycles (Fahey. 1973). The 
diurnal sorted polygon in Figure 2 is 15.2 cm wide. According to the Rayleigh convection model, 
the top 4 cm of frozen ground must thaw and refreeze each day. Diurnal freeze- thaw depths of 
up to 10 cm have been observed by Fahey (I973) and others. Thus, the same mechanism for 
regularity can be applied here as was discussed for large-scale sorted polygons. Figure 10 shows 
a schematic of this process. The permeability of the diurnal active layer rises with the diurnal 
freeze- thaw cycles until the onset of convection occurs. The convection cells melt the upper 
surface of the seasonally frozen ground in the same undulatory manner as in the permafrost in 
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the large-scale situation (seasonally active layer). Sorting mechanisms then use the established 
undulatory diurnal ice front to form the diurnal patterns (Fig. 2). 

Shape of sorted polygons 

Figure 2 is a close-up photograph of a diurnal sorted polygon. This polygon is one group of 
almost perfect hexagons. Hence, the hexagonal shape of the ice front predicted earlier is in fact 
observed in Nature. This suggests that the mechanisms which formed the sorted polygon mirror 
this ice front very closely. It also supports the argument that such diurnal forms are also 
Rayleigh convection phenomena. 

Undel"ll'ater sorted polygons 

The upper boundary conditions discussed thus far in this paper correspond to an active layer 
saturated with water up to a level below or at the ground surface. Another possible boundary 
condition has been observed in field studies only rarely (e.g. Jennings, 1960). This corresponds to 
polygon formation in sediment beneath standing water. This condition yields a lower critical 
Rayleigh number than does the usual boundary condition of saturation to the ground surface. 
The standing-water boundary condition is given by 

aw' 
-=0 oz at z = O (36) 

which replaces Equation (21) as the upper flow boundary condition. Application of Equation 
(36) yields a critical Rayleigh number of 17.7 instead of the critical Rayleigh number of 27.1 for 
the free surface case considered earlier in this paper. This would indicate that convection will 
occur for less extreme conditions (a lower permeability, for example) for the standing water case. 
Thus, Rayleigh convection in the active layer could occur under a shallow lake or pond which 
freezes completely in the winter and thaws in the summer. A search for underwater polygons 
revealed them in the beds of several small ponds in the Snowy Range in Wyoming (Fig. I I) 
where they have formed under standing water up to about 0.3 m deep. The critical wave number 
for the standing-water case is 1.75. which suggests a width -to-depth ratio of about 5.08 instead 
of 3.8 I. The average width of the Snowy Range polygon is 0.8 m, from which wc predict a 
sorting depth of 0.16 m. This prediction has not yet been tested by excavation. 

CONCLUSIONS 

The model developed in this paper hypothesizes that Rayleigh convection cells in the active 
layer cause uneven melting of the ice front, thus forming ice peaks and troughs. The pattern in 
this ice front is transmitted through established sorting mechanisms to the developing patterned 
ground. The model predicts a critical cell width -to-depth ratio of 3.81 (for horizontal, initially 
isotropic active layers) which is independent of the physical properties of the porous medium. 
Field study data obtained by trenching both large-scale relict polygons and small -scale diurnal 
polygons agree very well with the theoretical prediction for the ratio of polygon width to depth ­
of-sorting ratio. Furthermore, the model explains several other characteristics of sorted patterned 
ground including the characteristic hexagonal shape, the transition from sorted polygons to 
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Fig. 11. Underwater sorted polygons, Sno wy Range of Wyoming. Polygons are approx imately 0.8 m I·vide. 

sorted stripes with increasing slope, and stripe hysteresis. Finally, the model predicts the 
occurrence of patterned ground under water with a polygon width to depth-of-sorting ratio of 
5.08 ; however, this prediction has not been tested against field measurements as yet. 
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