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ABSTRACT. Sorted patterned ground refers to polygons. nets, or stripes defined by rocky borders which are
the result of sorting in soil subjected to frost action. This paper presents a model in which convection cells, driven
by unstable density stratification in the aqueous phase, result in uneven melting of the underlying ice front during
thawing. The resulting undulatory ice front with regularly spaced peaks and troughs provides the pattern which
results in the regularity observed for certain types of patterned ground. In addition, the model predicts the width to
depth-of-sorting ratio for both polygons and stripes, and explains the characteristic hexagonal shape of sorted
polygons, the transition from sorted polygons to sorted stripes on sloped terrain, and the formation of sorted
polygons under water. The predicted ratio of width to depth-of-sorting of 3.81 for sorted polygons is compared
with the ratio of width to depth-of-sorting of 3.57 found from a linear regression analysis of 18 field study data.

RESUME. Un modele pour la regularité des sols a réseaux d'élements triés. Les sols a réseaux d’éléments triés
forment des polygones, des réseaux ou des rubans délimités par des limites de pierres qui sont le résultat du trie
dans les sols sujets a I'action du gel. Cet article présente un modele dans lequel des cellules de convection produites
par une stratification instable par densité en phase aqueuse, provoque une fusion inégale du front de glace sous-
jacent pendant la période de fusion. Le front de glace ondulant qui en résulte avec des pics et des creux
regulierement espacés produit le motif régulier observé dans certains types de sols a réseaux. De plus. le modéle
prévoit le rapport entre la largeur et la profondeur de tri a la fois pour les polygones et les bandes. et explique la
forme hexagonale caractéristique des polygones triés, la transition entre les polygones triés et les bandes triées sur
les terrains en pente, ainsi que la formation sous I'eau de polygones triés. Le rapport prévu de 3.81 entre la largeur
et la profondeur de tri pour les polygones triés est comparée avec le rapport de 3.57 entre la largeur et la
profondeur de tri trouvées d’une analyse par régression linéaire de 18 données d’études sur le terrain.

ZUSAMMENFASSUNG. Ein Modell fiir die Regelmissigkeit sortierter Musterboden. Unter sortierten
Musterbdden sind Polygone, Netzwerke oder Streifen, markiert durch Sdume groben Gerolls. die durch
Frostsortierung im Boden gebildet werden, zu verstehen. Diese Arbeit entwickelt ein Modell. in dem
Konvektionszellen, hervorgerufen durch eine instabile Dichteschichtung in der Auftauphase, zu ungleichmissigem
Schmelzen der Permafroststirn wihrend der jahreszeitlichen Tauperiode fiihren. Die daraus resultierende gewellte
Eisstirn mit regelmissig angeordneten Wiillen und Trégen liefert das Muster, woraus die Regelmassigkeit entsteht,
die bei bestimmten Typen von Musterboden zu beobachten ist. Ausserdem sagt das Modell das Verhiltnis
zwischen Weite und Tiefe der Sortierung sowohl fiir Polygone wie fiir Streifen voraus und erklirt die
charakteristische hexagonale Form der Sortierten Polygone, den Ubergang von sortierten Polvgonen zu sortierten
Streifen auf geneigtem Geldnde und die Bildung von sortierten Polygonen unter Wasser. Das vorhergesagte
Verhdltnis von 3,81 zwischen Weite und Tiefe der Sortierung bei Polygonen wird mit dem entsprechenden
Verhiltnis von 3,57 verglichen, das sich aus einer linearen Regressionsanalyse der Daten von 18 Feldstudien
ergab.

THE striking regularity of patterned ground has excited scientific interest for more than a
hundred years. Scientists have proposed many hypotheses over the years to explain the origin of
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Fig. I. Relict sorted polygon, Arapaho Pass, Front Range of C olorado. Polygon is approximately 3 m across.

these beautifully symmetrical structures, yet none has been fully satisfactory. Despite a century
of investigation, sorted polygons are not well understood; in particular, the reasons for the
symmetry and regularity are unknown. The best examples of patterned ground, such as those
shown in Figures | and 2. lie in remote locations above timber line in the highest mountains of
the temperate zone or beyond the tree line in the high Arctic. Here, the impressive regularity of
polygonal sorting may extend over several square kilometers at a single site (Richmond, 1949).
Sorted polygons, the type of patterned ground considered in this work, are defined by
Matthews and Boyer (1976, p.399) as “...patterned ground whose mesh is dominantly
polygonal and has a sorted appearance commonly due to a border of stones surrounding finer

Fig. 2. Photograph of hexagonal, diurnal sorted polygons.
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material (at the center)”. The soil inside the polygonal stone borders may be overgrown with
grass or other plants; such polygons are believed to be inactive or relict patterns formed during
colder epochs in the past. If the soil centers of the polygons are not covered with vegetation, they
may still be in an active process of sorting. The diameter of sorted polygons may vary from 0.1
to 10 m (Washburn, [*1979], p. 142). The types of sorted polygons studied here are associated
with a periglacial environment. Accordingly, the lower elevation limit for the occurrence of these
ranges from sea-level in the Arctic to as high as 5 000 m in middle latitudes (Washburn, [*1979].
p. 121). Adequate freeze—thaw cycles are also important in patterned-ground formation. Thus,
its formation is often inhibited by perennial snow cover or overlying vegetation.

A full explanation of the formation of sorted polygons may soon be complete as several
separate lines of investigation fall into place. It is generally agreed that the origin of patterned
ground is polygenetic (Caine, 1972). Washburn (1956) has reviewed several
mechanisms—cryostatic pressure, differential frost heave, and primary frost sorting—which can
cause a homogeneous mixture of small and large stones to become sorted or segregated through
frost action. Some of these mechanisms have recently been demonstrated under controlled
laboratory conditions. The missing information has always been a fully convincing hypothesis
to explain the regularity, size, and shape of patterned ground. The purpose of this work is to
develop a model which does explain the regularity and which can be quantitatively verified with
field measurements of sorted polygons.

LITERATURE REVIEW

Two excellent monographs (Price, 1972; Washburn [€1979] review the extensive literature
on patterned ground: therefore. only a brief review of past work is given here. Popular models for
patterned-ground formation can be divided into those in which cracking is essential and those in
which it is not required. Desiccation cracking, seasonal frost cracking, and permafrost cracking
are likely causes of the regularity in some patterned ground forms (Washburn [€1979], p. 161).
The sorting would then be a secondary mechanism, following the development of the crack
networks (Washburn [€1979], p. 159).

Cracking processes do occur in Nature, although they are inadequate to explain the
regularity and geometry of all sorted patterned ground forms. For example, there are significant
differences between the size of the networks formed by cracking processes and that observed for
most sorted polygons. Permafrost crack networks are typically an order of magnitude larger
than most sorted polygons. Desiccation crack systems, on the other hand, are smaller than most
forms (Washburn, [*1979], p. 161). Also, cracking mechanisms cannot adequately explain the
increase in sorted polygon diameter with depth as observed by Meinardus (1912 cited by
Washburn, [1979], p. 143). nor can they explain the transition from sorted polygons to sorted
stripes as the slope steepens, the increase in depth-of-sorting with depth of the active layer. or the
regularity of polygon networks.

The hypotheses not involving cracking for patterned ground involve processes such as
cryostatic pressure, differential frost heave, and primary frost sorting (Washburn, 1956). These
processes also occur in periglacial environments and may well constitute a stage in patterned
ground formation. However, each of these hypotheses requires an initial regularity of some kind
to be present or developed in the soil prior to sorting. A source of such regularity is described by
the model presented here.
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This model is derived from linear stability theory which is used in the analysis of potentially
unstable systems to determine if a small disturbance (a perturbation) will die out or, in the case of
an unstable system, will grow to become a periodic form. Recurring, geometrically regular
phenomena found in Nature can often be explained by such an instability mechanism. The
approach used was to investigate if the regularity and geometry of sorted patterned ground could
be explained by an instability in the active layer above permafrost (or in the layer of diurnal
freeze—thaw action above seasonally frozen ground). Specifically, the onset of Rayleigh
convection cells in the porous medium of the active layer was determined. Rayleigh convection
refers to fluid convection due to unstable density stratification as a result of thermal gradients.
Dense fluid overlying less dense fluid will, under the proper conditions, form convection cells,
thus lowering the system free energy. This problem was first investigated by John William Strutt,
Lord Rayleigh (Strutt, 1916).

Rayleigh convection has been advanced as an explanation for sorted patterned ground
before. Nordenskjold (1909) suggested that sorted polygons are a result of convection currents in
the ground due to the temperature difference between the surface of the frost table and the
surface of the thawed ground. Low (1925) and Gripp (1927, 1929) proposed that currents
capable of lifting stones occurred due to the density inversion of water between 273 K and
277 K. However, Elton (1927) showed that the flow caused by this density difference is too small
to carry stones against gravity. Gripp and Simon (1934 cited by Washburn, 1956. p. 853)
demonstrated the formation of convection cells in a suspension of fines in water with a variation
in temperature from 273 K at the bottom to 277 K at the top. However, since this suspension of
fines did not constitute a porous medium, Gripp and Simon did not reproduce field conditions. It
should be noted that the model developed in this paper, while involving Rayleigh convection, is
completely different from the convection models discussed above.

The scope of this paper is as follows. First, a hypothesis for the regularity of sorted patterned
ground based on the Rayleigh convection model is advanced. It should be emphasized that this
model does not attempt to explain the entire formation of sorted patterned ground; rather, it
provides a mechanism for the occurrence of regularity in the active layer. Second, a theoretical
study of the onset of Rayleigh convection cells in the active layer is presented. The criteria for the
formation of these convection cells are determined using a linear stability analysis. This section
can be omitted with no loss of continuity for the reader interested only in the physics of this
hypothesis. Next, a field program involving width and depth measurements of sorted polygons is
presented. These data are compared with the prediction of the Rayleigh convection-cell model. In
addition, data from laboratory experiments on Rayleigh convection in porous media are also
compared with the predictions of the model. Finally, additional qualitative ficld observations are
presented in support of the Rayleigh convection model for the regularity of sorted patterned
ground. Many anomalies associated with sorted patterned ground are explained by the
hypothesis developed here.

RAYLEIGH CONVECTION MODEL FOR PATTERNED GROUND REGULARITY

The process to be described here is hypothesized to apply to a permafrost environment with
an active layer which thaws and refreezes seasonally. The diurnal-type sorted polygons
developed without a permanently frozen substrate will be discussed in a later section.

Consider the water-saturated active layer depicted schematically in Figure 3. The ice-liquid
interface between the frozen and unfrozen ground is at 273 K. For modeling purposes, it is
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Fig. 3. Schematic of saturated porous media used to model the active laver. The 277 K isotherm is shown at the
surface for convenience.

assumed that the ground surface is at or near 277 K [this situation often occurs naturally (e.g.
Ives, 1973; Washburn, [©1979]., p. 59); situations where the surface temperature is different from
277 K are easily incorporated into the model and are discussed in the theory section|. It is well
known that in this temperature range, the density of water increases with temperature. The
density profile of the water between 273 K and 277 K is also shown in Figure 3.

Since the density of the water near the surface of the active layer is greater than that near the
ice—liquid interface (see Fig. 3), the system is potentially unstable. If the proper conditions exist,
the dense upper water will tend to sink while the less dense lower water will tend to rise. Both
effects obviously cannot happen at once: at any point the fluid can be ascending or descending,
but it cannot move in both directions at the same place and time. This impasse is avoided by the
spontaneous division of the system into a pattern of convection cells in each of which the fluid
circulates in a closed orbit. The amazing thing about this convection system is that the flow
pattern is not one large convection cell; rather, as was discovered by Benard (1900), the system
forms many small convection cells whose size and shape can be predicted theoretically.

Lord Rayleigh (Strutt, 1916) showed that convection cells do not form in every fluid layer
with an inverse density stratification. The onset of convection cells is controlled by opposing
forces. The density gradient and corresponding buoyancy forces must be large enough to force
the fluid to circulate. The viscous drag, which in an active layer is a function of the viscosity of
the water and the permeability of the soil, must be small enough not to damp out the circulation
pattern. This criterion is commonly expressed in terms of a critical value of a dimensionless
parameter called the Rayleigh number (Ra). The Rayleigh number is a measure of the ratio of
the buoyancy force divided by the product of the viscous drag and the rate of heat conduction.
Any parameter which makes the Rayleigh number large contributes to the formation of Rayleigh
convection cells. The Rayleigh number is defined by

peC,B AT kgl

o= Asut

(1)

where p. is the density of the fluid at its reference temperature (water at 273 K), C, is the heat
capacity at constant pressure, £ is the thermal expansion coefficient, AT is the temperature
difference imposed across the depth L, k is the permeability, g is the gravitational acceleration. As
is the thermal conductivity, and u is the shear viscosity. The critical Rayleigh number above
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which the onset of convection cells will occur will be determined for the active layer in the theory
section to follow.

With the aid of these Rayleigh instability arguments, a sequence of events is now proposed
for the formation of sorted polygons. First, it is assumed that for the active layer depicted in
Figure 3, the permeability & of the soil is initially too low for the density inversion to result in
Rayleigh convection cells; that is, the k which appears in the numerator of Equation (1) is so
small that the Rayleigh number is below its critical value. The thickness of the active layer is
often nearly the same each year because the permafrost often melts nearly to the same depth
each summer (Ives, 1973: Washburn, [€1979], p. 59). Frost heave causes vertical (the primary
degree of freedom for movement) expansion of the active layer. On thawing, it does not settle to
its original density; that is, it stays slightly lofted. Corte (1962) has shown experimentally that up
to a 10% increase in volume of the active layer can result from as few as ten freeze—thaw cycles.
Application of the Blake-Kozeny equation (Bird and others, 1960, p. 199) indicates that a single
10% volume increase can result in an increase in permeability of nearly 70%. After many such
freeze-thaw cycles, the active layer will have lofted enough to reach a permeability which allows
the critical Rayleigh number to be reached. If the 273 K to 277 K temperature difference is
present across the active layer, all properties appearing in Equation (1) will be nearly constant
except the permeability k and the depth L.

Attaining the critical Rayleigh number then is first possible when the variable parameters in
the Rayleigh number reach their extreme values; that is k is large enough to achieve the onset of
convection when L is at its maximum (deepest annual thaw). Note here that the Rayleigh
number is largest when the surface temperature is at or near 277 K. This implies that convection
cells will be initiated at that time of the year when the surface temperature is about 277 K.

Earlier models which attempted to explain the regularity of patterned ground by Rayleigh
convection were based on the contention that these weak circulatory currents could cause direct
movement of the larger stones which form the borders of sorted polygons. The model developed
in this paper is not based on any argument that Rayleigh convection cells can move stones
directly to effect a sorting process. Instead, this model contends that Rayleigh convection
determines the regularity indirectly through its influence on the shape of the ice front which
underlies the water-saturated porous medium.

The influence of Rayleigh convection on the shape of the underlying ice front was ignored in
earlier models for patterned-ground regularity which were based on Rayleigh convection. The
Rayleigh convection cells determine the shape of the underlying ice front because they induce
uneven heat transfer to this front. In regions of downflow, the transport of warmer water from
the upper layer to the ice front will cause increased melting; conversely, in regions of upflow, the
transport of colder water upward will retard melting. Figure 4 shows a schematic diagram of the
two-dimensional cross-section of the resulting undulatory ice front. Note the ice peaks under the
upflow regions and the ice troughs under the downflow regions. It can be proven that the three-
dimensional configuration of the Rayleigh convection cells will be hexagonal as shown in Figure
5a and b. It is not known, however, whether there will be upflow along the cell axis as in Figure
5a or upflow along the cell border as in Figure 5b. In order to predict the flow configuration of
the water-saturated active layer studied here, it is necessary to perform a non-linear stability
analysis. The results from such an analysis would then have to be corroborated with laboratory
experiments.

As explained above, the critical conditions for Rayleigh convection will first be attained when
the maximum temperature driving force AT=4 K occurs over the maximum possible depth. that
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Fig. 4. Two-dimensional cross-section of hexagonal — Fig. 5. Schematic of the two possible hexagonal
Rayleigh convection cells in the active laver. Note convection cell configurations: flow up in the center
the resulting uneven melting of the permafrost front. (a) and up in the border (b).

is, the depth of the maximum seasonal thawing. For the conditions appropriate to most patterned-
ground sites studied here, the theoretical analysis in the next section shows that the critical
wavelength W =3.81L at the inception of Rayleigh convection. This theoretical result implies
that the undulatory ice front will have ice peaks which are 3.81 active layer depths apart as
shown in Figure 4. The presence of this undulatory ice front then influences any sorting
processes which are slowly occurring in time such that the sorting mirrors the pattern of the
underlying ice front. This can occur by any one or a combination of well-established sorting
mechanisms such as cryostatic pressure, differential frost heave, and primary frost sorting. It is
not the subject of this paper to determine which mechanism or combination of mechanisms
causes the sorting process to mirror the patterned ice front. Indeed it is not possible to infer from
the type of field data taken in this study which mechanism caused the sorting. However, it is
possible to determine if the alleged cause for the regularity of the patterned ground is in fact the
undulatory ice front caused by Rayleigh convection. If this new model for explaining the
regularity of patterned ground is correct, then the ratio of the polygon width to depth-of-sorting
should be equal to 3.81 since the depth-of-sorting should be nearly equal to the depth of the
active layer.

This prediction for the width to depth-of-sorting ratio for sorted polygons is a principal result
of the theoretical analysis to be discussed next. A large part of the field program was designed to
corroborate this prediction with measurements of sorted polygons. The results of this field
program will be presented in the field-studies section. The theoretical development in the next
section will present the linear stability analysis on the active layer system which results in the
prediction for the critical wave-number which was used to establish the ratio of width to depth-
of-sorting for patterned ground. The reader who is not interested in the mathematical details
underlying the model presented here can proceed directly to the field-studies section.
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THEORETICAL DEVELOPMENT

This section presents the theoretical analysis of Rayleigh convection in an active layer
incorporating the presence of an underlying compliant ice front. An explanation of convective
instability is provided in the first part of this section, and the system of interest in these modeling
efforts is described. The linear stability analysis of this system is subsequently presented and the
predictions of the model for Rayleigh convection in the active layer are summarized. Although
this analysis is straightforward, it is quite lengthy and hence can only be outlined here. The
interested reader desiring more details of this development is referred to Ray (unpublished).

Consider a horizontal layer of a porous medium saturated with a fluid which is unstably
stratified. The temperature profile in this layer is such that the density of the fluid at the lower
boundary is less than that of the fluid next to the upper boundary. Small-scale inhomogeneities in
the porous medium or some other source of small disturbances are assumed to provide a
perturbation. This perturbation moves a packet of fluid vertically from its rest state. If the system
is unstable, the packet will keep moving and convection cells will form. These convection cells
have a lower energy state than the stationary, unstably stratified layer of fluid. A linear stability
analysis (discussed below) will establish a criterion involving the characteristic parameters of the
system for determining if such a perturbation will grow. This analysis will also give the initially
preferred size of the disturbance developed from the perturbation. This is often a good indication
of the fully developed convection cell size (Miller, 1978, p. 234).

The active layer during melting is represented schematically in Figure 3. The unfrozen
portion is water-saturated earth and can thus be modeled as a saturated porous medium. The
temperature profile and the density profile of the water between 273 K and 277 K are also shown
in Figure 3. The density of water at 277 K is only 0.013 2% greater than at 273 K. It is well
known, however, that this very small density driving force will result in Rayleigh convection cells
under the right conditions. The system depicted in Figure 3 is therefore potentially unstable. The
surface temperature could be greater than 277 K, in which case the density inversion would
occur across only part of the thawed layer. The effects of this and the opposite case of a surface
temperature less than 277 K are to change the depth L over which the unstable stratification
occurs. The purpose of the following linear stability analysis is to establish the conditions under
which Rayleigh convection will occur in the saturated layer and to predict the size and shape of
the convection cells.

Before the linear stability analysis of the system can be carried out, the basic-state
temperature profile (i.e. without convection) present in the saturated porous layer must be
derived. This profile for the dimensional temperature 7™ for the case of negligible heat
conduction in the underlying ice is given by Carslaw and Jaeger (1959, p. 282-96):

erf(z*A/L
™= Tsurf 4 (:r'ml - Tsurf) % (2)
where z* is the dimensional spatial coordinate measured from the ground surface. Equation (2)
satisfies the boundary conditions corresponding to a specified temperature at the upper boundary
T.er and the phase-transition temperature Tj, at the lower boundary. The dimensionless
quantity A is related to the velocity of the phase-transition front. An energy balance at this
ice—liquid interface yields an implicit equation for 4,
Tyt — Tourp Hen'?

L 2 s e,
e R c (3)
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in which ¢ is the porosity and H is the heat of fusion. Since A is small for the physical parameters
describing the active layer. Equation (2) can be represented by the first term of its Taylor-series
expansion about A=0. This yields an approximation for the basic-state temperature profile
involving only the parameter A%. Non-dimensionalizing this expansion yields a linear basic-state
temperature profile

(T —Ta)

= —]—2z 4
(Tsurf = Tim) ( )

where z=z%*/L.

The analysis presented here is the mathematical equivalent of perturbing the fluid packet and
determining whether the disturbance will grow into convection cells or decay to its former state.
This is done by describing the system with governing equations, then non-dimensionalizing.
perturbing, and combining these equations into a fourth-order partial-differential equation. This
equation is then solved and the appropriate boundary conditions applied to yield an algebraic
equation which indicates the conditions under which the system is unstable and., if so, the initial
size of the disturbances or convection cells.

The equation governing flow through porous media is Darcy’s Law (Darcy, 1856, in Cheng,
1978):

k
W = —;(VP*fp*g) (5)

where w* is the dimensional fluid velocity vector, and P* is the dimensional pressure.

Throughout this development, the symbol V will denote the vector differential operator.
The equation of motion for this system is (Bird and others. 1960: p. 79):

e D*w
B

where the viscous stress tensor t* is given by

P —— V*P**V*'f* "’p*g (6)

w
Vet =2 2 (7)
k
The thermal energy equation can be written as (Bird and others. 1960. p. 316):
*
* _ 1 g2
P Cp ?ﬂhv T, (8)

The equation of continuity is (Bird and others, 1960. p. 75):
D*p*
Dr*

Finally. the equation of state used in this analysis describes the density behavior of water
between 273 K and 277 K and is given by:

7* =p.(1 +8T*), (10)

Note that the density increases with temperature for positive .

=—p*(V* . w*). (9)
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The dependent variables (temperature, velocity, and pressure) are now perturbed about their
quiescent values. These perturbation variables denoted by the superscript primes (') are then
substituted in Equations (5) through (10) which are then linearized in the perturbed quantities.
Subtracting the basic-state equations from these linearized perturbed equations, non-
dimensionalizing, and combining yields a fourth-order partial differential equation in the
perturbed temperature 7" given by

weds AT & - LW
LeHp.g ot kgp,

As 7 A
eLHwsp B &t wep. C,LE AT

VIV r=viT" (11}

in which the temperature and spatial coordinates are non-dimensionalized as described
carlier, w, is an unspecified velocity scale factor, and the dimensionless time is given by
t=t*A, AT/(L*cHp,). The symbol Vi denotes the two-dimensional Laplacian operator given by

# &
\'A === +W' (12)
The solution to Equation (11) is found to be
T'=e" sin (Ix) sin (my) A4, e* + Ay e ™ + Ay e + 4, e7F) (13)

where n=n*L2cHp./A, AT is the dimensionless growth coefficient. The symbols / and m are
dimensionless horizontal wave-numbers in the x- and y-directions (see Figure 3), respectively,

defined by
2l
I= 1 14
W, (14)
2nL
O s (15)
W.

y

in which W, and W, denote the dimensional wavelengths in the x- and y-directions, respectively.
It is convenient to define a combined dimensionless, horizontal wave-number a as

a=1*+mk (16)

The dimensionless quantities r, and r,, appearing in Equation (13) are defined as

o+ 28a® —(a? + 4&aa® + 4&(1 — a)a?)'* | V2
a % (17)
and
o+ 28a + (a + 4éaa® +4E(1 — a)a®) |7
o 2% (18)
where
asc” ATn! T
¢H(Ra)
|
*=kay (20)
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The symbol (Ra) denotes the Rayleigh number defined by Equation (1). Its appropriate
minimum value is the criterion for the onset of convection in the active layer, which will be
discussed further in a later section. The four quantities, 4. A,. 45, and 4, in Equation (13) are
the four undetermined integration constants. Therefore, four boundary conditions are required to
specify the problem completely.

The upper boundary of the unstably stratified layer is a free surface in that it is free to deform
in response to the dynamics of the flow process. This free surface is defined by the condition of
zero flow velocity normal to this surface. The appropriate boundary condition for the linear
stability problem can be shown to be

w'=0 atz=, (21)
The same boundary condition can be shown to apply at the “interface” between a stably
stratified layer and an unstably stratified lower layer. This is a direct consequence of the

linearizations employed in this linear stability theory solution. Equation (21) can be expressed in
terms of the perturbed temperature as follows:

T\ éT’
VZT’—(C"A ) =0 atz=0. (22)

eH at
The boundary condition corresponding to a specified upper temperature is given in terms of
perturbed temperature by
=0 atz=0. (23)

The lower boundary condition corresponding to an impermeable, compliant, phase-transition
front is given in dimensionless form by

w'=0 at z=1. (24)
Equation (24) can be put in terms of 7" in a manner similar to that used for Equation (21) to
yield
Cy AT\ ¢ T
VzT‘—( £ ),—_=0 atz=1. (25)
eH ot

The lower boundary condition describing the moving ice-liquid interface is given, in
dimensionless form, by
dn arr &7

s atz—=1 (26)

dt 8z oz
The ice—liquid interace is allowed to melt unevenly in this analysis, which requires a new
variable #(x, y) to describe the undulation. The introduction of this extra degree of freedom
requires an additional lower boundary condition. This third lower boundary condition comes
from the fact that the ice—water interface is at a constant temperature. This condition can be
written as
oT

-

oz

T+

n=0 gt =1 (27)

Substituting the basic-state temperature profile given by Equation (4) into Equations (27) and
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(28) to eliminate # and then combining these equations yields a lower boundary condition
independent of # given by
art @r
o T
oz at

0 atz=1. (28)

The solution given by Equation (13) is then substituted into the four boundary conditions.
Equations (22), (23), (25) and (28). Since the boundary conditions are homogeneous, the
determinant of the coefficients of the integration constants 4,., A,, Az, and A, must be equal to
zero in order to obtain a nontrivial solution. Evaluating this determinant yields, after
considerable algebraic manipulation,
[(@® + r? + Wrn) + (@ + 1t + Wrn)—a* +r3 — Wrn)|r; sinr{ cosh ry +

+[(—a? + 13 + Wen) —(—a* + 2 — Wen)X(—a? + rft — Wrn)]r{ cos rj sinh r; +

+[(a® + F? + Wen)l +(—a® + 13 — Wenl lnsin rf sinh ry + 2(a® +r® + Wrn) x

X (—a® +r} — Wenn sin r{ sinh r, =0 (29)
where
Cy AT
Wp=-—2 30
T T (30)
and
£l =T, (31)

Equation (29) constitutes a relationship between the parameters of the problem which include
the physical properties, prescribed temperatures at the boundaries, active-layer depth, wave-
number a, and growth coefficient n. For a specified set of physical properties and prescribed
boundary conditions, there is a unique growth coefficient n determined by Equation (29) for each
wave-number. Only wave-numbers with positive growth coefficients are unstable modes which
can be observed. At Rayleigh numbers less than the critical Rayleigh number, 7 is negative for
all wave-numbers. At the critical wave-number, n is equal to zero for the critical wave-number
and is negative for all other wave-numbers. At slightly higher Rayleigh numbers, n is positive for
a small band of wave-numbers around the critical wave-number. For this reason, the convection
cells which are observed when the system first exceeds the critical Rayleigh number have a size
characterized by the critical wave-number.

The predictions of Equation (29) are shown in Figure 6 which plots the dimensionless wave-
number @ versus the Rayleigh number (Ra). The shaded area corresponds to those wave
numbers which have a positive growth coefficient 7 and hence could grow to become convection
cells of finite size. This region of unstable wave-numbers is bounded by the locus of those wave-
numbers for which n=0, which is referred to as the neutral stability curve. The critical Rayleigh
number here is seen to be 27.1 and corresponds to a critical wave-number of 2.33. At any
Rayleigh number above the critical Rayleigh number, there is a unique wave-number having the
largest positive growth coefficient which is referred to as the most highly amplified wave. The
locus of these most highly amplified wave-numbers is also shown in Figure 6.

It must be stressed here that the most highly amplified wave for each Rayleigh number only
describes the perturbation which grows most rapidly initially. Strictly speaking, linear stability
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Fig. 6. Wave-number versus Rayleigh number for the boundary conditions corresponding to a free upper surface
maintained at constant temperature. Critical Rayleigh number is 27.1, critical wave-number is 2.33.

theory cannot describe cell development and size beyond the initial perturbation. However, it is
often found that the initially most highly amplified wave describes the wave-number of fully
developed convection cells at a given Rayleigh number. Furthermore, at Rayleigh numbers only
slightly above critical, the critical wave-number persists (Velarde and Normand, 1980;
Combarnous and Bories, 1975), presumably because the critical wave-number has had time to
become well developed enough to dominate disturbances of other wave-numbers.

The hypothesis advanced here for the regularity of sorted patterned ground argues that a
prospective patterned-ground site is brought up to the critical condition at which Rayleigh
convection is possible, by a gradual increase in the Rayleigh number due to successive
freeze-thaw cycles. Once the critical Rayleigh number is reached, the initial convection cells
which develop will have a size characterized by the critical wave-number. The underlying ice
front will deform in response to the uneven heat transfer due to the free convection cells. At the
same time, the convection cells effect minute changes in the porous medium due to silt flow.
compaction, and rarefaction of the soil, and other effects which favor re-establishing the
convection cells in the same place during subsequent thaw cycles. Hence, the convection cells
which are initially generated in the porous medium at critical conditions impart a geometric
character to the medium which persists through subsequent freeze-thaw cycles. Furthermore,
this impressed geometric character should be manifest in the patterned ground arising from
sorting processes. That is, sorted polygons should have a ratio of width to depth-of-sorting
determined by the critical wave-number predicted by Equation (29), a=2.33. For a laterally
isotropic porous medium, we expect that W, = W, in Equations (14) and (15); hence, Equation
(16) implies that the width to depth-of-sorting ratio corresponding to the critical wave-number is
given by

a=2.33=2n\/2L/W. (32)
Hence,
W/L=3.81. (33)

This establishes one of the principal results of this analysis which can be tested against field
measurements of sorted polygons. An important point to note here is that this prediction of
critical wave-number (Equation (32)) or ratio of width to depth of sorting (Equation (33)) is
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independent of the physical properties of the porous medium. In order to test its validity, one
need only measure the polygon width to depth-of-sorting ratio for patterned-ground sites.
Further predictions about the nature of patterned ground can be made with the use of Rayleigh
convection theory. Palm (1960) showed that Rayleigh convection cells in a free-fluid layer
approach a hexagonal form. Furthermore, Combarnous and Bories (1975) demonstrated
experimentally that Rayleigh cells in porous media are indeed hexagonal. These theoretical and
experimental results suggest that the preferred shape of patterned ground formed as a result of
Rayleigh convection will be hexagonal in a flat active layer which is laterally isotropic.

Finally, this analysis suggests that these hexagonal patterns observed on flat terrain will
transform to parallel stripes on sloped terrain. Parallel stripes imply that either W, or W, =0 in
Equations (14) or (15); hence, Equation (16) implies that

238 =0l /W (34)
or that
B =200 (35)

In the next section these predictions will be compared with field observations of both relict and
active patterned ground.

FIELD STUDIES

Field observations were intended to test the hypothesis that the regularity of sorted patterned
ground corresponds to that predicted for Rayleigh convection cells. This would suggest that
Rayleigh convection in the active layer is responsible for the observed regularity of sorted
patterned ground. If Rayleigh convection is involved in sorted-polygon inception, it would have
occurred long ago in relict sites that are now polygonally patterned; however, sites about to form
sorted polygons are very difficult to identify. For this reason, the field studies presented below
focused on measurements of existing sorted polygons as a test of the Rayleigh convection
hypothesis.

Since the Rayleigh convection hypothesis predicts a convection cell width-to-depth ratio of
3.81, and sorting to the depth of cell development is assumed, width and depth measurements of
sorted polygons were needed. Although many investigators have noticed the relationship
between the width of sorted polygons and the depth-of-sorting of the rocky borders, few depth
and width data exist in the literature. The field program, then, focused on obtaining accurate
depth and width data over a range of sorted polygon sizes.

Once a site was chosen for study, a well-formed sorted polygon was chosen for trenching.
Well-defined borders, the apparent absence of large boulders, and adjacent, well-formed
polygons were the criteria employed in deciding where to excavate. Trenching affords one
important advantage over just digging to the bottom of the rock border in that it permits
observation of the cross-sectional shape of the polygon border.

The depth of sorting was measured from a reference level, provided by a tape stretched from
center to center of a polygon, down to the point determined as the bottom of the border (see Fig.
7). In other words, the reference level was the undisturbed ground level regardless of how high
the rocky border was above the ground. Often, as in Figure 7, the location of the bottom of the
rocky border was visually obvious. In other cases, the depth-of-sorting or the orientation of the

https://doi.org/10.3189/50022143000008376 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000008376

A MODEL FOR SORTED PATTERNED-GROUND REGULARITY 331

Fig. 7. Typical trench across border of sorted polygons. Stretched tape shows undisturbed ground level.

stones was used to determine the bottom of a rocky border. Vertically oriented stones were
considered part of the border. A preponderance of horizontally oriented stones, on the other
hand, was assumed to lie below the level of freeze—thaw action at the time of polygon formation.
Therefore, the depth at which stones became horizontally oriented was considered the depth of
the sorted rocky border. The widths from polygon centers to the center of the rocky borders of
several adjacent sorted polygons were measured to obtain an average width.

Table I summarizes the data used to test the model advanced here for the regularity of
patterned ground. The location and elevation of each site as well as the polygon width and depth,
and the investigator are included in Table I. The polygons were for the most part relict, although
a few small, active, sorted polygons were studied. Relatively few sites exhibited well-developed
sorted stripes, hence the predictions of Equations (34) or (35) could not be tested.

The preceding section established that the critical wave-number at the inception of Rayleigh
convection is 2.33, which corresponds to a cell width to depth ratio of 3.81. The hypothesis for
patterned ground regularity to be tested here argues that the undulatory ice front created by the
Rayleigh convection cells transmits its pattern through the sorting process to the developing
patterned ground. The hypothesis implies that sorted patterned ground whose regularity is due to
this mechanism should have a ratio of width to depth-of-sorting of 3.81, or equivalently, a
dimensionless wave-number a:2n\/iL/W=2.33. This prediction is tested in Figure 8 which
plots the polygon width W versus the depth-of-sorting L for the 18 field study data given in Table
. A linear regression on these data gives a slope of 3.57 and an intercept of 0.04 m with a
correlation coefficient of 0.982. Perfect agreement with the theory, of course, would imply a
slope of 3.81, an intercept of 0 and a correlation coefficient of unity. It should be mentioned here
that while there are a number of approximations in the theory developed here, it is believed the
cause of most of the deviations from the theoretical line in Figure 8 arise from the irregularity
inherent in geological phenomena.

Note that Figure 8 includes field data for both seasonal polygons (shown by the open data
points) and active diurnal sorted polygons (shown by the dark data points). Hence, this model

https://doi.org/10.3189/50022143000008376 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000008376

332

JOURNAL OF GLACIOLOGY

TABLE I. FIELD STUDY DATA FOR SORTED POLYGONS

Approx.
Site location USGS quadrangle Width Depth elevation Investigator(s)
(m) (m) (m)

Niwot Ridge Ward, Colorado 23 0.53 3500 Ray

Niwot Ridge Ward, Colorado 3.8 1.00 3500 Ray

Caribou Mt. Ward, Colorado 1.7 0.48 3650 Ray

Caribou Mt. Ward, Colorado 1.7 0.48 3650 Ray

Arikaree Glacier Monarch Lake, 0.86* 0.18 3800 Ray
Colorado

Arikaree Glacier Monarch Lake, 0.83* 0.16 3800 Ray
Colorado

Albion Saddle Ward, Colorado 0.40* 0.10 3650 Ray

Albion Saddle Ward, Colorado 0.50* 0.13 3650 Ray

Albion Saddle Ward, Colorado 3.9 1.10 3650 Ray

Medicine Bow Medicine Bow, 2.3 0.70 3650 Ray

Peak Wyoming
Medicine Bow Medicine Bow, 2.9 0.70 36350 Ray
Peak Wyoming

Trail Ridge Road Trail Ridge 4.0 1.10 3660 Ray

Green Lake No. 4 Ward, Colorado 23 0.71 3550 Ray

Chief Mountain Franks Peak, 23 0.83 3400 Krantz and Gunn
Wyoming

Beartooth Plateau Beartooth Butte and 0.20* 0.07 3400 Krantz and Gunn
Alpine, Montana

Dana Plateau Mono Craters, 0.64 0.16 3500 Krantz and Gunn
California

Parker Pass Creek Mono Craters, 0.70 0.14 3400 Krantz and Gunn
California

Macquarie Island, — 0:25% 0.08 300 Caine

Australia

* Diurnal, active polygonal form

for patterned ground regularity permits explaining the width to depth-of-sorting for both large-
scale relict as well as small-scale diurnal sorted polygons.

An essential aspect of the hypothesis advanced here for patterned ground regularity is that it
arises from free convection occurring near the critical Rayleigh number. Whereas sorted
patterned ground of the type considered here has yet to be developed in laboratory experiments,
there have been exacting laboratory studies of the inception of Rayleigh convection in porous
media. Combarnous and Bories (1975) studied the inception of Rayleigh convection in a porous
medium saturated with a “normal” liquid (one whose density increases with temperature) which
was heated from below and was overlaid by a thin layer of the liquid. Superficially, this system
does not resemble the free convection problem treated in this paper. However, the mathematical
description of the Rayleigh stability problem for this system is identical to that of interest here:
hence, this laboratory study of Combarnous and Bories should also yield a critical wave-number
of 2.33 or equivalently a ratio of cell width to depth 3.81. Figure 9 shows a plot of the
dimensionless wave number a versus depth L for both the laboratory data of Combarnous and
Bories and the sorted-polygon data of Table . It is more convenient to compare these laboratory
and field measurements on the basis of dimensionless wave-number rather than a width-to-depth
plot as in Figure 8 because of the much smaller scale of the laboratory convection cells. Both the
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laboratory and field-test wave-number data show no dependence on the depth, which, of course,
agrees with the theoretical prediction. The laboratory data yield an average dimensionless wave-
number of 2.64 whereas the field data give an average of 2.3. This comparison demonstrates then
that the field data agree as well or better with the theory as do the data from carefully controlled
laboratory studies of free convection.

SORTED PATTERNED GROUND CHARACTERISTICS EXPLAINED BY RAYLEIGH CONVECTION
MODEL

This section discusses sorted patterned ground characteristics in the light of the Rayleigh
convection hypothesis.

Constant width-to-depth ratio

It was noted earlier that the width of sorted patterned ground increases with the depth of the
sorted boulders. Figures 8 and 9 demonstrate the constancy of the width-to-depth ratio, which is
easily explained by the Rayleigh convection model. The Rayleigh convection cells in the soil
should correspond to the critical wave-number of 2.33 since the Rayleigh number will be near its
critical value. This sets the width-to-depth ratio of these cells at 3.81, which is remarkably close
to the width-to-depth ratio of 3.57 found from the linear regression analysis of the field data.

Sorted stripes

Sorted stripes are parallel lines of stone and intervening stripes of finer material usually
oriented down-slope parallel to the fall-line. While sorted polygons usually occur on slopes of 0°
to 3° a smooth transition to sorted stripes often occurs between 3° and 7°. Combarnous and
Bories (1975) and others have observed in laboratory experiments that three-dimensional
hexagonal convection cells transform to two-dimensional roll cells oriented down-slope as the
porous medium is tilted past some critical angle. Sorted stripes then are formed by essentially the
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Fig. 8. Characteristic width versus depth of sorting for
sorted polygons. The dark points are diurnal sorted
polygons.

Fig. 9. Wave-number versus depth for sorted polygons
and Rayleigh convection cells. Rayleigh convection
theory predictions are included. The dark points are
diurnal sorted polygons.
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same mechanism as sorted polygons. The two-dimensional roll cells melt the permafrost
unevenly, resulting in parallel ice ridges and troughs oriented down-slope. The same sorting
mechanism can now occur to form sorted stripes from this undulatory ice front. The anomaly of
“stripe hysteresis”, i.e. where stone stripes often continue onto flats below the slope (Richmond,
1949), can also be explained by this model. Combarnous (1978) observed in laboratory studies
of convection cells that two-dimensional roll cells often persist after the tilted porous medium is
suddenly made horizontal. This suggests that in a tilted active layer, the two-dimensional roll
cells will persist for some distance after the slope flattens. The observation of Nicholson (1976),
that sorted stripes follow subsurface drainage patterns and not necessarily the steepest slope, can
also be explained by the convection theory. The two-dimensional roll cells discussed above are
flowing down-slope so they would tend to melt the permafrost unevenly following the drainage
patterns. Thus, the unfrozen ridges would follow the drainage, not necessarily the surface slope.

Diurnal sorted patterned ground

Diurnal sorted polygons are those small forms usually less than 0.1 m in depth which appear
to be associated with diurnal freeze—thaw cycles. They fit the same dimensionless wave-number
as do the large relict polygons (see Figure 9). Therefore, the same convection-cell model should
explain them as describes the large polygons formed in a seasonal active layer over permafrost.
In this case only deep seasonal freezing and not necessarily permafrost is present. At the
beginning of spring, the ground may be frozen to a depth greater than that which thaws and
freezes diurnally. This “diurnal active layer™ will refreeze during the night. These diurnal
freeze—thaw cycles are often accompanied by diurnal frost-heave cycles (Fahey, 1973). The
diurnal sorted polygon in Figure 2 is 15.2 cm wide. According to the Rayleigh convection model,
the top 4 ¢cm of frozen ground must thaw and refreeze each day. Diurnal freeze—thaw depths of
up to 10 cm have been observed by Fahey (1973) and others. Thus, the same mechanism for
regularity can be applied here as was discussed for large-scale sorted polygons. Figure 10 shows
a schematic of this process. The permeability of the diurnal active layer rises with the diurnal
freeze—thaw cycles until the onset of convection occurs. The convection cells melt the upper
surface of the seasonally frozen ground in the same undulatory manner as in the permafrost in
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" SEASONALLY FROZEN GROUND =
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SORTED POLYGON

Fig. 10. Schematic of two-dimensional cross-section of Rayleigh convection cells in a diurnal active layer in the
center of a large sorted polygon.
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the large-scale situation (seasonally active layer). Sorting mechanisms then use the established
undulatory diurnal ice front to form the diurnal patterns (Fig. 2).

Shape of sorted polygons

Figure 2 is a close-up photograph of a diurnal sorted polygon. This polygon is one group of
almost perfect hexagons. Hence, the hexagonal shape of the ice front predicted earlier is in fact
observed in Nature. This suggests that the mechanisms which formed the sorted polygon mirror
this ice front very closely. It also supports the argument that such diurnal forms are also
Rayleigh convection phenomena.

Underwater sorted polygons

The upper boundary conditions discussed thus far in this paper correspond to an active layer
saturated with water up to a level below or at the ground surface. Another possible boundary
condition has been observed in field studies only rarely (e.g. Jennings. 1960). This corresponds to
polygon formation in sediment beneath standing water. This condition yields a lower critical
Rayleigh number than does the usual boundary condition of saturation to the ground surface.
The standing-water boundary condition is given by

ow’
—=0 atz=0 (36)

2

7p4

which replaces Equation (21) as the upper flow boundary condition. Application of Equation
(36) yiclds a critical Rayleigh number of 17.7 instead of the critical Rayleigh number of 27.1 for
the free surface case considered earlier in this paper. This would indicate that convection will
occur for less extreme conditions (a lower permeability, for example) for the standing water case.
Thus. Rayleigh convection in the active layer could occur under a shallow lake or pond which
freezes completely in the winter and thaws in the summer. A search for underwater polygons
revealed them in the beds of several small ponds in the Snowy Range in Wyoming (Fig. 11)
where they have formed under standing water up to about 0.3 m deep. The critical wave number
for the standing-water case is 1.75. which suggests a width-to-depth ratio of about 5.08 instead
of 3.81. The average width of the Snowy Range polygons is 0.8 m, from which we predict a
sorting depth of 0.16 m. This prediction has not yet been tested by excavation.

CONCLUSIONS

The model developed in this paper hypothesizes that Rayleigh convection cells in the active
layer cause uneven melting of the ice front, thus forming ice peaks and troughs. The pattern in
this ice front is transmitted through established sorting mechanisms to the developing patterned
ground. The model predicts a critical cell width-to-depth ratio of 3.81 (for horizontal, initially
isotropic active layers) which is independent of the physical properties of the porous medium.
Field study data obtained by trenching both large-scale relict polygons and small-scale diurnal
polygons agree very well with the theoretical prediction for the ratio of polygon width to depth-
of-sorting ratio. Furthermore, the model explains several other characteristics of sorted patterned
ground including the characteristic hexagonal shape, the transition from sorted polygons to
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Fig. 11. Underwater sorted polygons, Snowy Range of Wyoming. Polygons are approximately 0.8 m wide.

sorted stripes with increasing slope, and stripe hysteresis. Finally, the model predicts the
occurrence of patterned ground under water with a polygon width to depth-of-sorting ratio of
5.08; however, this prediction has not been tested against field measurements as yet.
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