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Approximation by Dilated Averages and
K-Functionals

Z. Ditzian and A. Prymak

Abstract. For a positive finite measure dµ(u) on R
d normalized to satisfy

R

Rd dµ(u) = 1, the dilated

average of f (x) is given by

At f (x) =

Z

Rd
f (x − tu)dµ(u).

It will be shown that under some mild assumptions on dµ(u) one has the equivalence

‖At f − f ‖B ≈ inf{(‖ f − g‖B + t2 ‖P(D)g‖B) : P(D)g ∈ B} for t > 0,

where ϕ(t) ≈ ψ(t) means c−1 ≤ ϕ(t)/ψ(t) ≤ c, B is a Banach space of functions for which trans-

lations are continuous isometries and P(D) is an elliptic differential operator induced by µ. Many

applications are given, notable among which is the averaging operator with dµ(u) =
1

m(S)
χS(u)du,

where S is a bounded convex set in R
d with an interior point, m(S) is the Lebesgue measure of S,

and χS(u) is the characteristic function of S. The rate of approximation by averages on the bound-

ary of a convex set under more restrictive conditions is also shown to be equivalent to an appropriate

K-functional.

1 Introduction, Set-up, and Main Results

The family of operators At for t > 0 (or On for n ∈ N) forms an approximation

process if At f − f tends to zero as t → 0+ (or On f − f tends to zero as n → ∞)

with respect to some metric. Once the fact that At is an approximation process is

established, the next important problem is the estimate of At f − f , or how fast At f

converges to f . Of course, the rate of convergence of At f depends on the properties

of f and most times on its smoothness. Peetre K-functionals are one of the ways to

measure the smoothness of a function in a given space with respect to some norm.

Typically a K-functional representing smoothness is given by

K( f , tα)B ≡ inf
P(D)g∈B

(‖ f − g‖B + tα ‖P(D)g‖B), t > 0,

where, in this paper, “≡” means “by definition”, P(D) is a differential operator and

P(D)g ∈ B signifies that g belongs to a class of (very) smooth functions. The esti-

mates discussed in this paper are of the kind described as strong converse inequality

of type A introduced in [Di-Iv] yielding ‖At f − f ‖B ≈ K( f , tα)B, that is

C−1K( f , tα)B ≤ ‖At f − f ‖B ≤ CK( f , tα)B.
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738 Z. Ditzian and A. Prymak

Among the strong converse inequalities of type A proved in the past, one should

mention the celebrated estimate for Bernstein polynomials Bn f given by

‖Bn f − f ‖C[0,1] ≈ inf(‖ f − g‖C[0,1] +
1

n

∥∥ϕ2g ′ ′
∥∥

C[0,1]
: g ∈ C(2)[0, 1]),

where ϕ2(x) = x(1 − x) (see [To]). Other equivalences of this type were established,

in particular using averages of f on a set dilated by t . Results were given for averages

on [−t, t] or [0, t] (see [Di-Iv, Sections 6 and 7]), on [−t, t]× · · · × [−t, t] (see [Di-

Iv, Section 9]), on {x ∈ R
d : |x| ≡ (x1 + · · · + xd)1/2 ≤ t} (see [Di-Ru]) and on

{x ∈ R
d : |x| = t}. This last mentioned is correct only when d > 1 (see [Be-Da-

Di, p. 100]).

In this paper we will obtain a general theorem that will include the above results

on dilated averages and many more that will be described in Sections 6 and 7. We

note that Sections 6 and 7 can be read first as motivation for the need for the results

and proofs in Sections 2–5. We mention that results of the above type are given for

dilations of averages on any bounded convex set with nonempty interior (see Theo-

rem 6.1). The operator At averaging f on the boundary of a convex set is handled

under some mild conditions on the curvature of the boundary (see Theorem 7.1).

Equivalence between the K-functionals and ‖At f − f ‖B, when available, establish

the latter as a measure of smoothness in its own right.

In this paper we deal with spaces of functions on R
d for which translations are

continuous isometries (see (1.8) and (1.9)).

We now give the set-up and the main results of this paper.

The rate of approximation of the operator At f (x) to f , where At f (x) is given by

(1.1) At f (x) ≡
∫

Rd

f (x − tu)dµ(u),

∫

Rd

dµ(u) = 1, dµ(u) ≥ 0,

will be shown to be equivalent to an appropriate K-functional. That is, At f − f

will satisfy a direct and a matching converse inequality of type A in the terminology

of [Di-Iv] (see Theorem 1.1). Besides dµ(u) ≥ 0 (a condition which is further dis-

cussed at the end of this section) and
∫

Rd dµ(u) = 1, the measure µ on R
d will also

satisfy the following conditions.

(i) The center of gravity of dµ(u) is (0, . . . , 0), that is

(1.2)

∫

Rd

u jdµ(u) = 0, j = 1, . . . , d.

(ii) For |y| ≡ (y1 + · · · + yd)1/2
= 1, dµ satisfies

(1.3) 0 < c ≤
∫

Rd

(u1 y1 + · · · + ud yd)2dµ(u) ≤ C < ∞.

This guarantees that dµ is not supported by a hyperplane (using the left-hand

inequality of (1.3)) and that
∫

Rd u jukdµ(u) is finite (using the right-hand in-

equality of (1.3)).

https://doi.org/10.4153/CJM-2010-040-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-040-1


Approximation by Dilated Averages and K-Functionals 739

(iii) The measure dµ(u) also satisfies

(1.4)

∫

Rd

|u j |rdµ(u) ≤ C1 for j = 1, 2, . . . , d and a given integer r ≥ 3.

For the converse result we will also need the following condition on dµ(u).

(iv) For some α > 0

(1.5) ‖∆hG‖L1(Rd) ≤ C2|h|α, ∆hG(x) ≡ G(x + h) − G(x),

where for some integer m

(1.6) d̂µ(x) ≡ F(dµ)(x) ≡
∫

Rd

e−ixudµ(u),
(

(d̂µ)(x)
)m ≡

∫

Rd

e−ixuG(u)du

with G(u) ∈ L1(R
d). That is, an iteration of our operator will be an operator

with dµm(u) = G(u)du and the kernel G(u) is in the class Lipschitz α of L1(R
d).

In some applications the condition

(1.7) |x|α1 |d̂µ(x)| ≤ C3 for some α1 > 0,

which is shown to be equivalent to (1.5), is very useful.

We will deal with functions on R
d in B, a Banach space of functions for which

translations are continuous isometries, that is

(1.8) ‖ f (· + h)‖B = ‖ f (·)‖B = ‖ f (−·)‖B for all h ∈ R
d and f ∈ B,

(which means that translations are isometries),

(1.9) ‖ f (· + h) − f (·)‖B = o(1) as |h| → 0,

(which means that translations are continuous) and for any affine transformation M

with det M 6= 0

(1.10) ‖LM f ‖B ≡ ‖ f (M·)‖B ≤ C(M, B) ‖ f ‖B .

Many known spaces satisfy (1.8), (1.9), and (1.10), including B = Lp(R
d) with 1 ≤

p < ∞ and B = UC(R
d) (of uniformly continuous functions on R

d with the L∞(R
d)

norm). The condition (1.10) is needed only when P(D) is not the Laplacian and then

only for some matrices M, but in the applications which we encounter, (1.10) is easily

satisfied.

Our main result is given in the following Theorem.

Theorem 1.1 Suppose f ∈ B with B satisfying (1.8), (1.9), and (1.10) and At f is

given by (1.1) with µ satisfying (1.2)–(1.6). Then

(1.11) ‖ f − At f ‖B ≈ inf
P(D)g∈B

(‖ f − g‖B + t2 ‖P(D)g‖B) ≡ K( f , P(D), t2)B,

where the elliptic operator P(D) is given by

(1.12) P(D) f = Pµ(D) f =

∑

j,k

a j,k
∂2

∂x j∂xk

f with a j,k =

∫

Rd

x jxkdµ(x).
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In Section 2 we will show that it is sufficient to consider the case a j,k = δ j,k, that is,

when P(D) is the Laplacian. In Section 3 we will prove the direct result. Preliminary

estimates for the converse result are given in Section 4, and the converse theorem

is given in Section 5. In Sections 6 and 7 we give applications of Theorem 1.1 and

show that many known results as well as new theorems follow from Theorem 1.1.

The applications demonstrate the close relationship between different approximation

processes induced by their relation to the K-functionals. We note that (1.11) yields

a strong converse inequality of type A (see [Di-Iv]), that is, the information about

smoothness is given by the rate of approximation of an average by a single dilation

rather than by taking the supremum on a range of dilations. The results shown will be

somewhat more general than Theorem 1.1 as the restrictions on dµ for many of the

results, and in particular the direct estimate, will be weaker, and the restriction (1.10)

on B is dropped when P(D) of (1.11) is the Laplacian.

We note that while some would consider the condition dµ(u) ≥ 0 onerous, it is

satisfied by all applications in Sections 6 and 7 and is used in the proof. Admittedly,

dµ(u) ≥ 0 can be replaced in Sections 2 and 3 by
∫
|dµ(u)| ≤ M (in addition to

other conditions in this section). However, in later sections, dµ(u) ≥ 0 is crucial in

the proof that At is a contraction, which is used to show that ‖Am
t f ‖ is bounded in-

dependently of m. We further remark that strong converse inequalities for operators

with nonpositive kernels are very rare (see [Da-Di, Da]), and in the cases where they

were established, a very particular kernel is dealt with, not one satisfying some (mild)

conditions.

2 Reduction to the Case when P(D) Is the Laplacian

In many applications P(D) given in (1.11) is the Laplacian, but there are some inter-

esting situations in which P(D) is not the Laplacian. In this section we will show that

it is sufficient to deal with P(D) = ∆ ≡ ∂2

∂x2
1

+ · · · + ∂2

∂x2
d

. This will be done via several

simple lemmas.

Lemma 2.1 For a bounded positive measure µ satisfying (1.3), P(D) given by (1.12)

is elliptic.

Proof Being elliptic means
∑

j,k a j,k y j yk > 0 for all y ≡ (y1, . . . , yd) 6= 0, and that

is evident from (1.3).

We define the measure µ̃ by

(2.1) µ̃(Ω) ≡ µ(M−1(Ω))

for some invertible matrix M. It is clear that µ̃ is a positive measure satisfying∫
Rd dµ̃(u) = 1. Other properties of µ̃ are also inherited from those of µ, as will be

shown in the following lemma.

Lemma 2.2 If the measure µ satisfies conditions (1.2), (1.3), (1.4), (1.7) and (1.5),

with G given by (1.6), then the measure µ̃ given by (2.1) also satisfies properties (1.2),

(1.3), (1.4), (1.7), and (1.5).
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Proof We recall that yk = (Mu)k =
∑d

l=1 mk,lul. We now write

∫

Rd

y jdµ̃(y) =

∫

Rd

d∑

l=1

m j,luldµ(u) =

d∑

l=1

m j,l

∫

Rd

uldµ(u) = 0.

To show that µ̃ satisfies (1.3) if µ does, we write for |z| = 1

∫

Rd

(y · z)2dµ̃(y) =

∫

Rd

( d∑

j=1

z j y j

) 2

dµ̃(y)

=

∫

Rd

( d∑

j=1

d∑

l=1

m j,lulz j

) 2

dµ(u)

=

∫

Rd

( d∑

l=1

( d∑

j=1

m j,lz j

)
ul

) 2

dµ(u)

=

∫

Rd

(MT z · u)2dµ(u),

and as M is invertible, |MT z| ≈ |z| = 1 and (1.3) is satisfied (with different con-

stants).

To show that (1.4) with a given r is satisfied by µ̃ if it is satisfied by µ for the same

r, we write

∫

Rd

|y j |rdµ̃(y) =

∫

Rd

∣∣∣
d∑

l=1

m j,lul

∣∣∣
r

dµ(u)

≤ max
j,l

|m j,l|r
∫

Rd

( d∑

k=1

|uk|
) r

dµ(u)

≤ max
j,l

|m j,l|rdr

∫

Rd

max
k=1,...,d

|uk|rdµ(u)

≤ max
j,l

|m j,l|rdr

∫

Rd

d∑

k=1

|uk|rdµ(u)

≤ C(M, r, d) max
k=1,...,d

∫

Rd

|uk|rdµ(u),

where C(M, r, d) = max j,l=1,...,d |m j,l|rdr+1.

To verify that property (1.5) is satisfied for G̃(x), that is induced by µ̃, we write

F(dµ̃)(x) =

∫

Rd

e−ixudµ̃(u) =

∫

Rd

e−ix·Mudµ(u)

=

∫

Rd

e−iMT x·udµ(u) = F(dµ)(MT x).
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Therefore,

(
F(dµ̃)(x)

)m
=

(
F(dµ)(MT x)

)m
=

∫

Rd

e−iMT x·yG(y)dy

=

∫

Rd

e−ix·MyG(y)dy =

∫

Rd

e−ix·v G(M−1v)

| det M| dv,

which means G̃(v) =
G(M−1v)
| det M| . Clearly, G̃(v) ≥ 0, ‖G̃(·)‖L1(Rd) = 1 and

‖G̃(· + h) − G̃(·)‖L1(Rd) ≤ C̃2|h|α,

where C̃2 depends on C2, M, and α. Similarly,

|x|α1 |F(dµ̃)(x)| = |x|α1 |F(dµ)(MT x)| ≤ C|MT x|α1 |F(dµ)(xT x)| ≤ C1.

We define Ãt f (x) by

(2.2) Ãt f (x) ≡
∫

Rd

f (x − tu)dµ̃(u).

We further note that both At f and Ãt f are defined for f ∈ B, where B is a Banach

space for which translations are continuous isometries i.e., satisfy (1.8) and (1.9) and

both At and Ãt are contractions from B into B.

Lemma 2.3 Suppose B satisfies (1.8), (1.9), and (1.10), M : R
d → R

d is a linear map

with det M 6= 0, F(x) = LM−1 f (x) = f (M−1x), and At f and Ãt F are given by (1.1)

and (2.2) with µ satisfying (1.2) and (1.3) and µ̃ given by (2.1). Then we have

(2.3)
∥∥F − Ãt F

∥∥
B
≈ ‖ f − At f ‖B .

Proof We first observe that

Ãt LM−1 f (x) =

∫

Rd

f (M−1x − tM−1u)dµ̃(u),

and hence

LMÃt LM−1 f (x) =

∫

Rd

f (x − tM−1u)dµ̃(u) =

∫

Rd

f (x − tv)dµ(v) = At f (x).

We now have

‖ f − At f ‖B =
∥∥ f − LMÃt LM−1 f

∥∥
B

=
∥∥LM(F − Ãt F)

∥∥
B
.

Using (1.10) (in fact only for the matrices M and M−1), one has

∥∥LM(F − Ãt F)
∥∥

B
≈ ‖ f − At f ‖B ,

which completes the proof.
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The following (known) lemma is set here to fit with our notations.

Lemma 2.4 For any positive measure µ satisfying (1.2) and (1.3), there exists a matrix

M with det M 6= 0 and a measure µ̃ given by (2.1) such that

bk,l =

∫

Rd

yk yldµ̃(y) = δk,l =

{
1, k = l,

0, k 6= l.

Proof For ai, j =
∫

Rd uiu jdµ(u) and the matrix M = (mk,l)k,l=1,...,d,

bk,l =

∫

Rd

yk yldµ̃(y) =

∫

Rd

( d∑

i=1

mk,iui

)( d∑

j=1

ml, ju j

)
dµ(u)

=

d∑

i, j=1

mk,iml, j

∫

Rd

uiu jdµ(u) =

d∑

i, j=1

mk,iml, jai, j .

As (ai, j)i, j=1,...,d is a positive definite matrix, we have an orthogonal matrix M1 such

that for M = M1, the matrix (bk,l)k,l=1,...,d is a diagonal matrix with positive entries

bk,k = λk > 0, k = 1, . . . , d. We can now multiply M1 by the diagonal d×d matrix D̃

with the diagonal entries dk,k = λ
−1/2
k , k = 1, . . . , d; and M = D̃M1 is the desired

matrix.

For the elliptic operator P(D) =
∑d

i, j=1 ai, j
∂2

∂xi∂x j
and a matrix M = (mi, j) with

det M 6= 0, we define PM(D) by

PM(D) =

d∑

k,l=1

bk,l
∂2

∂yk∂yl

, bk,l =

d∑

i, j=1

mk,iml, jai, j .

Another version of Lemma 2 is that for the elliptic operators P(D) =
∑d

i, j=1 ai, j
∂2

∂xi∂x j
,

there exists a matrix M such that PM(D) =
∂2

∂y2
1

+ · · · + ∂2

∂y2
d

= ∆.

Lemma 2.5 For a matrix M satisfying det M 6= 0, the elliptic operator P(D) =∑d
i, j=1 ai, j

∂2

∂xi∂x j
and B satisfying (1.8), (1.9), and (1.10), one has

K( f , P(D), t2)B ≡ inf
g

(‖ f − g‖B + t2 ‖P(D)g‖B)

≈ inf
G

(‖LM f − G‖B + t2 ‖PM(D)G‖B) ≡ K(LM f , PM(D), t2)B.
(2.4)

Proof We can write

inf
G

(‖LM f − G‖B + t2 ‖PM(D)G‖B)

≤ C
(
‖LM−1 (LM f − g1)‖B + t2 ‖LMPM(D)LM−1 g1‖B

)

≤ C
(
‖ f − LM−1 g1‖B + t2 ‖P(D)LM−1 g1‖B

)
.
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Choosing g1 close to g for which the infimum of K( f , P(D), t2)B is achieved, we ob-

tain

K(LM f , PM(D), t2)B ≤ CK( f , P(D), t2)B,

and as M is invertible, (2.4) follows.

3 The Direct Estimate

The direct result is given in the following theorem.

Theorem 3.1 Suppose At f given in (1.1) with µ satisfying (1.2), (1.3), and (1.4) for

r = 3, and suppose further that B is a Banach space of functions satisfying (1.8), (1.9),

and (1.10). Then

(3.1) ‖ f − At f ‖B ≤ C inf
P(D)g∈B

(‖ f − g‖B + t2 ‖P(D)g‖B) ≡ CK( f , P(D), t2)B,

where P(D) =
∑d

i, j=1 ai, j
∂2

∂xi∂x j
and ai, j =

∫
Rd xix jdµ(x).

The infimum in (3.1) is nominally taken on the class of functions g for which

P(D)g ∈ B. The proof of Theorem 3.1 will consist of several lemmas.

Lemma 3.2 Under the conditions of Theorem 3.1 we have for ϕ ∈ C(3)(R
d)

(3.2)

∥∥∥∥Atϕ − ϕ − t2

2
P(D)ϕ

∥∥∥∥
C(Rd)

≤ C1t3 sup
|ξ|=1

∥∥∥∥
∂3ϕ

∂ξ3

∥∥∥∥
C(Rd)

.

Proof We follow [Di-Iv, Lemma 9.2] and use Taylor’s formula on ϕ(x + tu), writing

ϕ(x + tu) = ϕ(x) + t

d∑

j=1

u j
∂ϕ(x)

∂x j

+
t2

2

d∑

k,l=1

ukul
∂2ϕ(x)

∂xk∂xl

+ R(t, x, u)

where

R(t, x, u) =
t2

2

d∑

k,l=1

ukul

( ∂2ϕ(v)

∂xk∂xl

− ∂2ϕ(x)

∂xk∂xl

)

with v ∈ R
d and v = v(t, x, u), a point in the segment [x, x + tu]. As At is a positive

operator on C(R
d),

∥∥∥∥Atϕ − ϕ − t2

2
P(D)ϕ

∥∥∥∥
C(Rd)

≤ ‖At (|R(t, x, ·)|)‖C(Rd) .

We now use (see [Ch-Di])

sup
|ξi |=1

∥∥∥∥
∂3ϕ

∂ξ1∂ξ2∂ξ3

∥∥∥∥
C(Rd)

≤ sup
|ξ|=1

∥∥∥∥
∂3ϕ

∂ξ3

∥∥∥∥
C(Rd)
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and |v − x| ≤ t|u| to obtain

|R(t, x, u)| ≤ t3

2

d∑

k,l=1

|uk||ul||u| sup
|η|=1

∥∥∥∥
∂

∂η

∂

∂xk

∂

∂xl

ϕ

∥∥∥∥
C(Rd)

≤ t3

2
|u|

d∑

k,l=1

|ukul| sup
|ξ|=1

∥∥∥∥
∂3

∂ξ3
ϕ

∥∥∥∥
C(Rd)

≤ t3

2
d|u|3 sup

|ξ|=1

∥∥∥∥
∂3

∂ξ3
ϕ

∥∥∥∥
C(Rd)

.

The use of (1.4) for r = 3 will complete the proof of (3.2).

We observe that the proof of Lemma 3.2 can be simplified for the case d = 1.

We use the averaging operator on the cube in R
d, i.e.,

(3.3) St f (x) =
1

(2t)d

∫ t

−t

. . .

∫ t

−t

f (x + (u1, . . . , ud))du1 . . . dud

and

(3.4) Sk+1
t f (x) = St (Sk

t f )(x)

as an intermediary whose approximation properties are known. In fact, we know

that, for St f and Sm
t f given by (3.3) and (3.4),

(3.5) ‖St f − f ‖B ≈ ‖Sm
t f − f ‖B + t2 ‖∆Sm

t f ‖B ≈ K( f ,∆, t2)B

for m ≥ 3 and any B satisfying (1.8) and (1.9) and for B = C(R
d) (see [Di-Iv,

Section 9]). It can be shown that when f 6∈ UC(R
d) but f ∈ C(R

d), neither

‖St f − f ‖C(Rd) → 0, nor K( f ,∆, t2)C(Rd) → 0 as t → 0+, and hence (3.5) is not

useful for such f . We now investigate the behaviour of Ãt given by (2.2) with M

given in Lemma 2.4.

Lemma 3.3 For Ãt F given in (2.2) with M of Lemma 2.4 and St F of (3.3), we have

(3.6)
∥∥ Ãt F − F

∥∥
C(Rd)

≤ C
∥∥St F − F

∥∥
C(Rd)

≤ C̃K(F,∆, t2)C(Rd).

Proof Recalling that Ãt is a contraction, we have

∥∥ Ãt F − F
∥∥

C(Rd)
≤

∥∥ Ãt F − Ãt S
m
t F

∥∥
C(Rd)

+
∥∥ Ãt S

m
t F − Sm

t F
∥∥

C(Rd)
+

∥∥Sm
t F − F

∥∥
C(Rd)

≤ 2
∥∥Sm

t F − F
∥∥

C(Rd)
+

∥∥ Ãt S
m
t F − Sm

t F
∥∥

C(Rd)
.
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As Sm
t F ∈ C(m−1)(R

d), we can use Lemma 3.2 for ϕ = Sm
t F with m ≥ 5 and P(D) =

∆ to obtain

∥∥∥∥Ãt S
m
t F − Sm

t F − t2

2
∆Sm

t F

∥∥∥∥
C(Rd)

≤ C1t3 sup
|ξ|=1

∥∥∥∥
∂3

∂ξ3
Sm

t F

∥∥∥∥
C(Rd)

.

We now recall from [Di-Iv, Lemma 9.3] and [Di-II, Lemma 2.1] that for ψ ∈ C(4)(R
d)

∥∥∥∥
∂3ψ

∂ξ3

∥∥∥∥
C(Rd)

≤
√

6 sup
h6=0

∥∥h−2
∆

3
hξψ

∥∥1/2

C(Rd)
·
∥∥∥∥

∂4ψ

∂ξ4

∥∥∥∥
1/2

C(Rd)

≤ C2 ‖∆ψ‖1/2

C(Rd)

∥∥∥∥
∂4ψ

∂ξ4

∥∥∥∥
1/2

C(Rd)

.

(3.7)

Using [Di-Iv, Lemma 9.4] and
∥∥Sk

t F − Sl
t F

∥∥
C(Rd)

≤ |k − l| ‖St F − F‖C(Rd), we have

∥∥∥∥
∂4

∂ξ4
Sm

t F

∥∥∥∥
C(Rd)

=

∥∥∥∥
∂

∂ξ
St

∂3

∂ξ3
Sm−1

t F

∥∥∥∥
C(Rd)

≤ C3

t

∥∥∥∥
∂3

∂ξ3
Sm−1

t F

∥∥∥∥
C(Rd)

≤ C3

t

∥∥∥∥
∂3

∂ξ3
Sm

t F

∥∥∥∥
C(Rd)

+
C3

t

∥∥∥∥
∂3

∂ξ3
S3

t (Sm−3
t F − Sm−4

t F)

∥∥∥∥
C(Rd)

≤ C3

t

∥∥∥∥
∂3

∂ξ3
Sm

t F

∥∥∥∥
C(Rd)

+
C4

t4
‖St F − F‖C(Rd)

≤ C5 max
(

t−1

∥∥∥∥
∂3

∂ξ3
Sm

t F

∥∥∥∥
C(Rd)

, t−4 ‖St F − F‖C(Rd)

)
.

Combining all of the above, we have

∥∥ Ãt F − F
∥∥

C(Rd)
≤ C6

(
‖St F − F‖C(Rd) + t2 ‖∆Sm

t F‖C(Rd)

)
.

Following (3.5), we have

t2 ‖∆Sm
t F‖C(Rd) ≤ C̃1 ‖Sm

t F − F‖C(Rd) ≤ mC̃1 ‖St F − F‖C(Rd) ,

and, therefore, the first inequality of (3.6). The second inequality of (3.6) follows

from (3.5).

We now extend the result to any Banach space B satisfying (1.8) and (1.9).

Lemma 3.4 For F ∈ B satisfying (1.8) and (1.9), Ãt of Lemma 2.3, and St F of (3.3)

(3.8)
∥∥ Ãt F − F

∥∥
B
≤ C ‖St F − F‖B ≤ C̃K(F,∆, t2)B.
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Proof Using (3.5), we have to show only the first inequality. For F ∈ B satisfy-

ing (1.8) and (1.9) we take G ∈ B ′ (the dual to B) such that ‖G‖B ′ = 1. Clearly, the

convolution of F and G ψ = F ∗ G ∈ UC(R
d), and we may choose G so that

|Ãtψ(0) − ψ(0)| = |(Ãt F − F) ∗ G(0)| ≥
∥∥ Ãt F − F

∥∥
B
− ε.

Using (3.6), we have

|Ãtψ(0) − ψ(0)| ≤
∥∥ Ãtψ − ψ

∥∥
C(Rd)

≤ C ‖Stψ − ψ‖C(Rd) ≤ C ‖St F − F‖B ,

and as ε > 0 is arbitrary, (3.8) follows.

Proof of Theorem 3.1 Using (2.3) and (2.4), we obtain (3.1) as a consequence of

(3.8), where Ãt is given by (2.2) with µ̃ of (2.1) and M of Lemma 2.4.

4 Some Preliminary Results Needed for the Converse Theorem

Following [Di-Iv, Section 4], we need some inequalities of the Bernstein type to prove

the converse inequality. The estimates needed will be proved in this section using

condition (1.5), that is the Lipschitz condition on G, the k-th convolution iterate

of dµ. Alternatively (see Lemma 4.4), we have condition (1.7) on the asymptotic be-

haviour of the Fourier transform of dµ. We give both conditions as each one happens

to be more easily checked in some applications.

The immediate implications of (1.5) are summarized in the following lemma.

Lemma 4.1 Suppose

G ≡ G1 ∈ L1(R
d), ‖∆hG‖L1(Rd) ≡ ‖G(· + h) − G(·)‖L1(Rd) ≤ C̃|h|α

for some α > 0 and Gm ≡ Gm−1 ∗ G1. Then

∥∥∆
l
hGm

∥∥
L1(Rd)

≤ C̃1|h|αm for l > αm,(4.1)

∂s

∂ξs
Gm ∈ L1(R

d) for s < αm,(4.2)

∥∥∆
l
hGm

∥∥
L∞(Rd)

≤ C̃2|h|αm−d for l > αm − d > 0,(4.3)

and

|x|s|F(Gm)(x)| ≡ |x|s|Ĝm(x)| ≤ C̃3 for s < αm,(4.4)

where ∆
l
hψ(x) = ∆

l−1
h ∆hψ(x), and F(Gm)(x) = (F(G)(x))m is the Fourier transform

of Gm.

Proof We write ‖∆m
h Gm‖L1(Rd)

= ‖∆hG ∗ · · · ∗ ∆hG‖L1(Rd) ≤ C̃m|h|mα, and us-

ing the Marchaud inequality, we obtain (4.1). The Ul’yanov inequality (see for in-

stance [Di-Pr, Theorem 2.3]) now implies (4.3). The existence of the derivative

and (4.2) is routine. From (4.2) it follows that ∆
sG2m ∈ L1(R

d) for s < αm, and

hence, |x|2s|F(G2m)(x)| ≤ C ‖∆sG2m‖L1(Rd), which implies (4.4).
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Lemma 4.2 Suppose G(u) ≥ 0,
∫

Rd G(u)du = 1, ‖∆hG‖L1(Rd) ≤ C|h|α for some

α > 0, and
∫

Rd |u|d+1G(u)du ≤ C. Then for any ε > 0 and l, r = 1, 2, . . . , there exists

k = k(ε, l, r) such that

(4.5)
∥∥∆

lGk

∥∥
L1(Rd)

≤ ε and

∥∥∥∥
∂r

∂ξr
Gk

∥∥∥∥
L1(Rd)

≤ ε

where ∆ is the Laplacian and Gk = Gk−1 ∗ G.

Proof Using iterations and the Kolmogorov-type inequality given by

∥∥∥∥
∂r

∂ξr
Gk

∥∥∥∥
L1(Rd)

≤ K
∥∥∆

lGk

∥∥ r
2l

L1(Rd)
‖Gk‖1− r

2l

L1(Rd)
for r < 2l

(see [Di-I, Theorem 6.2] with B = L1(R
d)), we have to prove only the first inequality

of (4.5) for some fixed l. (We choose l = d + 3.) It was shown in the proof of

[St-We, Lemma 3.17, p. 26] that

(4.6) ‖ψ‖L1(Rd) ≤ C
∑

|β|≤d+1

‖Dβψ̂‖L1(Rd),

where Dβ
=

(
∂

∂x1

) β1 · · ·
(

∂
∂xd

) βd
and |β| = β1 + · · · + βd.

We apply (4.6) to ψ = ∆
lGk with k to be chosen later. Therefore, we have to show

(4.7) ‖Dβ{|x|2lĜ(x)k}‖L1(Rd) ≤ ε1 for |β| ≤ d + 1 and k ≥ k0.

Under the conditions of our lemma and using (4.4) of Lemma 4.1, we have

(4.8) |Ĝ(x)| ≤ 1, |DγĜ(x)| ≤ C, |x|α1 |Ĝ(x)| ≤ C for α1 < α, and |γ| ≤ d + 1.

We set R
d

= D1 ∪ D2 ∪ D3, where D1 = {x : |x| ≤ r}, D2 = {x : r < |x| < R},

and D3 = {x : |x| ≥ R}, and we estimate ‖Dβ{|x|2lĜ(x)k}‖L1(D j ) to obtain (4.7). We

deal first with the estimate on D3. We choose R (using (4.8)) such that |Ĝ(x)| ≤ 1
2

for

|x| ≥ R. As |Ĝ(x)| ≤ C|x|−α1 for α1 < α, |Ĝ(x)|m ≤ Cm|x|−d−2l−1 for m = [ d+2l+2
α ],

and as |DγĜ(x)| ≤ C for |γ| ≤ d + 1, we have

|Dγ{Ĝ(x)k}| ≤ Ck|γ||Ĝ(x)|k−|γ| ≤ C̃k|γ||Ĝ(x)|k−m−|γ||x|−d−2l−1

≤ C ′k|γ|
1

2k
|x|−d−2l−1.

Since |Dγ |x|2l| ≤ C max(|x|2l, 1) for all γ, we conclude that

‖Dβ{|x|2lĜ(x)k}‖L1(D3) ≤ C2k|β|
1

2k
≤ C2

kd+1

2k
,
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which is small enough provided that k ≥ k3.

We choose l such that l = d + 3 (as it is sufficient to prove (4.5) for some fixed l)

and we estimate ‖Dβ{|x|2lĜ(x)k}‖L1(D1) on D1 = {x : |x| ≤ k−λ, λ =
d+1

2(d+2)
}, that

is, r = k−λ with λ < 1
2
. Using |Dγ |x|2l| ≤ C|x|2l−d−1 for |γ| ≤ d + 1, we have for

|β| ≤ d + 1

‖Dβ{|x|2lĜ(x)k}‖L1(D1) ≤ C1kd+1(k−λ)2l−d−1(k−λ)d
= C1kd+1k−λ(2d+4)k−λ

= Ck−λ,

and ‖Dβ{|x|2lĜ(x)k}‖L1(D1) is sufficiently small for k ≥ k1 ≥ k3.

Using (4.3) for m satisfying αm − d > 1, and recalling
∫

Rd Gm(u)du = 1, there

exists a point u0 such that Gm(u0) = a > 0. Using (4.3) again (with αm − d > 1),

we have

|Gm(u + h) − Gm(u)| ≤ A|h| for all u, h ∈ R
d,

and therefore,

Gm(u) ≥ a

2
for

{
u : |u − u0| ≤

a

2A

}
.

We now define ψa,R(u) ≡ ψ(u) with R of D3(R) by

ψ(u) = ψa,R(u) =

{
a
2
, |u − u0| ≤ min

(
a

2A
, π

R

)
,

0, otherwise.

This implies
∫

Rd ψa,R(u)du = b with 0 < b < 1 and b depending only on m, A, a,

and R. To estimate the Fourier transform of Gm, we write Ĝm(x) = (Gm − ψa,R)̂ (x)+

ψ̂a,R(x), and as Gm(u) − ψa,R(u) ≥ 0, |(Gm − ψa,R)̂ (x)| ≤ 1 − b. The Fourier

transform of ψa,R is given by

ψ̂a,R(x) = e−iu0x a

2

∫

|v|≤min( a
2A

, π
R

)

e−ixvdv = e−iu0x a

2

∫

|v|≤min( a
2A

, π
R

)

cos xvdv

= e−iu0x a

2

∫

|v|≤min( a
2A

, π
R

)

dv − e−iu0xa

∫

|v|≤min( a
2A

, π
R

)

sin2 xv

2
dv.

Hence, using sin2 ξ
2
≥ ( ξ

π )2 for |ξ| ≤ π, we have for |x| ≤ R

|ψ̂a,R(x)| = b − a

∫

|v|≤min( a
2A

, π
R

)

sin2 xv

2
dv

≤ b − a

π2

∫

|v|≤min( a
2A

, π
R

)

(xv)2dv

≤ b − a

π2
|x|2

∫

|v|≤min( a
2A

, π
R

)

( xv

|x||v|
) 2

|v|2dv.

Since ∫

|v|≤min( a
2A

, π
R

)

( xv

|x||v|
) 2

|v|2dv ≥ c > 0,
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where c ≡ c(a, A, R, d) does not depend on x, we have

|ψ̂a,R(x)| ≤ b − a

π2
c|x|2 = b − c1|x|2,

and hence |Ĝm(x)| ≤ 1 − c|x|2 for |x| ≤ R. To estimate ‖Dβ{|x|2lĜ(x)k}‖L1(D2), we

use the fact that for 2l − d − 1 > 0 and |γ| < |β| ≤ d + 1, the function |x|2l−|γ|(1 −
c|x|2)k1 attains maximum at |x|2 ≈ 1

k1
with k1 = k/m, and is decreasing for |x|2 ≥ c

k
.

Using (4.8) and the estimate above, we have for |β| ≤ d + 1

‖Dβ{|x|2lĜ(x)k}‖L1(D2) ≤ C̃(k−λ)2l−d−1(1 − Ak−λ)kkd+1,

and as λ < 1
2
, the last expression is sufficiently small when k ≥ k2 ≥ k1 ≥ k3.

Therefore, for l = d+3, we proved
∥∥∆

lGk

∥∥
L1(Rd)

< ε provided that k is sufficiently

large.

As a corollary of Lemma 4.2, we have the following useful result.

Lemma 4.3 Suppose µ is a positive measure satisfying
∫

Rd dµ(u) = 1, as well as (1.2),

(1.3), (1.4) with r = d + 1, and (1.5). Then for ε > 0 and each r and l, there exists k

such that

(4.9)
∥∥∥

∂r

∂ξr
t−dGk

( x

t

)∥∥∥
L1(Rd)

≤ ε

t r
and

∥∥∥∆
2lt−dGk

( x

t

)∥∥∥
L1(Rd)

≤ ε

t2l
,

where Ĝk(x) = (d̂µ(x))mk with m of (1.6). Moreover, for At given by (1.1), Ak
t f =

At (Ak−1
t f ) and ε > 0, there exists k such that

(4.10)
∥∥∥

∂r

∂ξr
Ak

t f
∥∥∥

B
≤ ε

t r
‖ f ‖B

for any B satisfying (1.8) and (1.9).

Proof The proof of (4.9) is essentially just a change of variable in (4.5). The in-

equality (4.10) for B = C(R
d) follows immediately from (4.5). To derive (4.10)

for all Banach spaces B satisfying (1.8) and (1.9), we follow an often used technique

(see [Ch-Di, Di-Iv, Di-II] and Lemma 3.4).

We also have an alternative condition to (1.5) which sometimes is more accessible.

Lemma 4.4 Suppose a positive measure dµ satisfies (1.2), (1.3), and (1.4) for r =

d + 1. Then

(i) |x|α1 |d̂µ(x)| ≤ A1 for some α1 > 0, and

(ii) ‖∆hG‖L1(Rd) ≤ A|h|α for some α > 0 where Ĝ(x) = (d̂µ(x))m for some integer

m, are equivalent.

Proof Using (4.4), (ii) implies (i). Using (1.4), |Dβ d̂µ(x)| ≤ C for |β| ≤ d + 1.

We can now follow the proof of Lemma 4.2 (with l = d + 3) and use I to obtain

|Dβ(d̂µ(x))m| ≤ C for |β| ≤ d + 1, and ‖Dβ{|x|2l(d̂µ(x))m}‖L1(Rd) ≤ C1 for all

β satisfying |β| ≤ d + 1 and some integer m and therefore, G ∈ L1(R
d), Ĝ(x) =

(d̂µ(x))m and ‖G(· + h) − G(·)‖L1(Rd) ≤ C2|h|.
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Remark 4.5 For L2(R
d), the proof of

∥∥∥
∂r

∂ξr
Ak

t f
∥∥∥

L2(Rd)
≤ ε

t r
‖ f ‖L2(Rd)

is simpler and does not use (1.4) as we have to show only that the multiplier

|x|2l(d̂µ(x))k is small provided that k is big enough.

5 The Converse Result

In Section 4 we proved the main ingredients for the converse result. We now state and

prove the converse theorem which, together with the direct result given in Section 3,

will complete the proof of the equivalence theorem i.e., Theorem 1.1.

Theorem 5.1 Under the conditions of Theorem 1.1,

(5.1) inf
P(D)g∈B

(‖ f − g‖B + t2 ‖P(D)g‖B) ≤ C ‖ f − At f ‖B .

Proof We first prove our result for Ãt F for which F ∈ C(R
d), F(x) = f (M−1x) and

PM(D) = ∆. Using Lemma 3.2, we write

∥∥∥ Ãl+1
t F − Ãl

t F − t2

2
Ãl

t F
∥∥∥

C(Rd)
≤ C1t3 sup

|ξ|=1

∥∥∥
∂3

∂ξ3
Ãl

t F
∥∥∥

C(Rd)

with l ≥ l0 and l0 sufficiently large so that ∂4

∂ξ4 Ãl
t F ∈ C(R

d), and this is possible

by combining (4.2), (1.5), and (1.6). Moreover, we will select l to be bigger later in

the proof when the need arises. We now use (3.7) (implied by [Di-Iv, Lemma 9.3]

and [Di-II, Lemma 2.1]) with ψ = Ãl
t F to obtain

∥∥∥
∂3

∂ξ3
Ãl

t F
∥∥∥

C(Rd)
≤ C2‖∆Ãl

t F‖
1/2

C(Rd)
·
∥∥∥

∂4

∂ξ4
Ãl

t F
∥∥∥

1/2

C(Rd)
.

We choose l1 < l large enough so that Ãl1
t F ∈ C(3)(R

d), which is possible following

Lemma 4.1 and (1.5), and for a given ε1 > 0, we choose l − l1 large enough so that

∥∥∥
∂

∂ξ
Ãl−l1

t Ψ

∥∥∥
C(Rd)

≤ ε1

t
‖Ψ‖C(Rd)

which is possible following (4.10) of Lemma 4.3. Following [Di-Iv, Section 9], we

can now write
∥∥∥

∂4

∂ξ4
Ãl

t F
∥∥∥

C(Rd)
≤ ε1

t

∥∥∥
∂3

∂ξ3
Ãl1

t F
∥∥∥

C(Rd)

≤ ε1

t

∥∥∥
∂3

∂ξ3
Ãl

t F
∥∥∥

C(Rd)
+

ε1

t

∥∥∥
∂3

∂ξ3
(Ãl

t − Ãl1
t )F

∥∥∥
C(Rd)

≤ ε1

t

∥∥∥
∂3

∂ξ3
Ãl

t F
∥∥∥

C(Rd)
+

ε1

t4
C2(l − l1)

∥∥ Ãt F − F
∥∥

C(Rd)

≤ 2 max
( ε1

t

∥∥∥
∂3

∂ξ3
Ãl

t F
∥∥∥

C(Rd)
,
ε1C2(l − l1)

t4

∥∥ Ãt F − F
∥∥

C(Rd)

)
.
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Combining the above, we have

C1t3
∥∥∥

∂3

∂ξ3
Ãl

t F
∥∥∥

C(Rd)
m ≤ C3

(
t2

∥∥∆Ãl
t F

∥∥
C(Rd)

) 1/2

[
max

(
ε1t3

∥∥∥
∂3

∂ξ3
Ãl

t F
∥∥∥

C(Rd)
, ε1(l − l1)

∥∥ Ãt F − F
∥∥

C(Rd)

)] 1/2

.

Therefore, we have

∥∥ Ãl+1
t F − Ãl

t F − t2

2
∆Ãl

t F
∥∥

C(Rd)
≤ C4 max

(√
ε1t2

∥∥∆Ãt F
∥∥

C(Rd)
,
∥∥ Ãt F − F

∥∥
C(Rd)

)

and

(5.2) t2
∥∥∆Ãl

t F
∥∥

C(Rd)
≤ C5

∥∥ Ãt F − F
∥∥

C(Rd)
,

which implies (5.1) with g = Ãl
t F for the operator Ãt and B = C(R

d).

The technique used in Lemma 3.4 (and elsewhere) now extends (5.2) to all B sat-

isfying (1.8) and (1.9). The considerations in Section 2 and in particular (2.3) of

Lemma 2.3 and (2.4) of Lemma 2.5 transfer (5.1) from Ãt F to At f with ∆ becoming

P(D).

6 Applications

In this section we will show that the equivalence Theorem 1.1 is applicable to many

averaging operators.

Theorem 6.1 Suppose S ⊂ R
d is a bounded convex set with an interior point and cen-

ter of gravity at (0, . . . , 0), and suppose G(u) =
1

m(S)
χS(u), where m(S) is the Lebesgue

measure of S and χS(u) is the characteristic function of S. Then

(6.1) ‖At f − f ‖B ≈ inf
P(D)g∈B

(‖ f − g‖B + t2 ‖P(D)g‖B),

where

At f (x) =
1

m(S)

∫

Rd

f (x + tu)χS(u)du,

P(D) is given by (1.12) for dµ(u) = G(u)du, and B is a Banach space satisfying (1.8),

(1.9), and (1.10).

Proof The boundedness of S implies m(S) < ∞, and, setting dµ(u) = G(u)du, it

implies (1.4) for all r and the right-hand inequality of (1.3). The left-hand inequality

of (1.3) follows from the fact that S has an interior point. We prove condition (1.5)

for α = 1, where m of (1.6) equals 1 i.e., that

(6.2)

∫

Rd

|G(u + h) − G(u)|du ≤ M|h|.
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To establish (6.2), we define for any h ∈ R
d

Sh = {v : v = u + ah, 0 ≤ a ≤ 1, u ∈ S}

and hS = {v : v, v − h ∈ S}. We let A be the orthogonal projection of S on the

hyperplane perpendicular to h. Clearly,

m(Sh) ≤ m(S) + |h|m(A) ≤ m(S) + |h|m(∂S)

and

m(hS) ≥ m(S) − |h|m(A) ≥ m(S) − |h|m(∂S),

where m(A) and m(∂S) are the Lebesgue measures of A and of the boundary of S

denoted by ∂S. For any h ∈ R
d, we now have

1

m(S)

∫

Rd

|χS(x + h) − χS(x)|dx =
1

m(S)

∫

Sh\hS

dx ≤ 2|h|m(∂S)

m(S)
,

which is (6.2). Satisfying all the conditions of Theorem 1.1, we have (6.1).

Remark 6.2 In the application given in Theorem 6.1, it is clear that P(D) does not

have to be the Laplacian. Any affine transformation of the simplex, cube, or ball in

R
d satisfies the condition when the center of gravity is moved to (0, . . . , 0). For the

ball and the cube, (6.1) was proved in [Di-Ru] and [Di-Iv, Section 9], respectively.

Other applications are half of (or other part of) the ball, a cone 0 ≤ x · v ≤ cos θ for

fixed v and θ, cut by a hyperplane not passing (0, . . . , 0) and containing a positive

multiple of v, or by the ball |x| ≤ a (an ice cream-type cone), all properly centered.

In fact, one can use sets which are not convex (but with (0, . . . , 0) as their center of

gravity), like for instance the set between two balls, cubes or simplices, one inside the

other.

We now give an application for which (1.5) is satisfied with some α, 0 < α < 1.

Theorem 6.3 Suppose u ∈ R
d, 0 < α < 1, dµ(u) = G(u)du,

G(u) =

{
M|u|α−d |u| ≤ 1

0 otherwise
,

∫

Rd

G(u)du = 1

and B satisfies (1.8) and (1.9), and suppose also that

At f (x) =

∫

Rd

f (x + tu)G(u)du.

Then (6.1) is satisfied with P(D) = ∆.

Proof We have to verify the assumption of Theorem 1.1 for dµ(u) = G(u)du, of

which all but (1.5) (or equivalently (1.7)) are immediate. To verify (1.5), we note

that for |x| ≥ 1 + |h| both G(x) and G(x + h) equal zero, and write
∫

Rd

|G(x) − G(x + h)|dx =

{∫

D1

+

∫

D2

+

∫

D3

}
|G(x) − G(x + h)|dx ≡ I1 + I2 + I3,
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where D1 = {x : |x| ≤ 2|h|}, D2 = {x : 2|h| < |x| < 1 − |h|} and D3 = {x :

1 − |h| ≤ |x| ≤ 1 + |h|}. We now have

I1 ≤
∫

D1

(
|G(x)| + |G(x + h)|

)
dx ≤

∫

|x|≤2|h|

|G(x)|dx +

∫

|x|≤3|h|

|G(x)|dx

≤ M
{∫

|x|≤2|h|

|x|α−ddx +

∫

|x|≤3|h|

|x|α−ddx
}

≤ M1|h|α.

To estimate I2, we write G(x + h) − G(x) = |h| ∂
∂η G(ξ), where η (|η| = 1) is in the

direction of h and ξ is a point between x and x+h. Therefore in D2, |G(x)−G(x+h)| ≤
M2|h||x|α−d−1 and

I2 ≤ M2|h|
∫

2|h|≤|x|≤1−|h|

|x|α−d−1dx ≤ M3|h|α.

For x ∈ D3, the estimates |G(x)|, |G(x + h)| ≤ M(1 − |h|)α−d ≤ M4 hold, and hence

I3 ≤
∫

D3

(|G(x)| + |G(x + h)|)dx ≤ 2M4m(D3) ≤ M5|h|.

As in both above applications dµ(u) had compact support, we put forward an

example for which dµ(u) has all of R
d as its support.

Theorem 6.4 Suppose u ∈ R
d, β > 0, dµ(u) = G(u)du,

G(u) = Me−|u|β ,

∫

Rd

G(u)du = 1

and B satisfies (1.8) and (1.9). Then (6.1) is satisfied with P(D) = ∆ and At f (x) =∫
Rd f (x + tu)G(u)du.

The proof of Theorem 6.4 consists of verifying (1.2)–(1.5) which are essentially

straightforward.

7 Applications when dµ(u) is Singular

In this section we give applications of Theorem 1.1 when dµ(u) is supported by a set

of Lebesgue measure zero in R
d and hence is singular. It is well known that in R (or

T) for the operator

Ah f (x) =
1

2
f (x − h) +

1

2
f (x + h),

one has

(7.1) sup
0<h≤t

‖Ah f − f ‖B ≡ ω2( f , t)B ≈ inf
g ′ ′∈B

(
‖ f − g‖B + t2 ‖g ′ ′‖B

)
,
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and simple examples can be given to show that the supremum cannot be replaced by

‖Ah f − f ‖B for a single h ≈ t . Similarly, for x ∈ R
d and

Ah f (x) =
1

2d

d∑

j=1

[ f (x + he j) + f (x − he j)],

where {e j}d
j=1 is a set of orthogonal unit vectors in R

d, one has

(7.1) ′ sup
0<h≤t

‖Ah f − f ‖B ≈ inf
∆g∈B

(
‖ f − g‖B + t2 ‖∆g‖B

)
,

and the supremum on the left of (7.1) ′ cannot be dropped. However, it was shown

in [Be-Da-Di] that averages on the circle or sphere (d > 1) do yield a strong converse

inequality of type A. In this section we will show that the result in [Be-Da-Di] is in

fact part of much wider phenomena.

Theorem 7.1 Suppose that E ⊂ R
d, d > 1, is a boundary of a bounded convex set S,

E = ∂S, and that the Gaussian curvature of E is different from 0 everywhere. Suppose

further that dµ(u) is the d−1 Lebesgue measure of E normalized to satisfy
∫

E
dµ(u) = 1

and that the center of gravity of E with respect to dµ(u) is (0, . . . , 0). Then

‖At f − f ‖B ≈ inf
P(D)g∈B

(
‖ f − g‖B + t2 ‖P(D)g‖B

)
,

where At is given by (1.1) i.e.,

At f (x) =

∫

E

f (x + tu)dµ(u) ≡
∫

Rd

f (x + tu)dµ(u),

B satisfies (1.8), (1.9), and (1.10), and P(D) is given by (1.12).

We recall that the Gaussian curvature at a given point u ∈ E (see [St, p. 348]) can

be described as follows. For the point u ∈ E moved to the origin, the tangent plane

to E at u (now the origin) is spanned by the orthogonal vectors x1, . . . , xd−1, and in

the neighbourhood of u the surface E is described by xd = ϕ(x1, . . . , xd−1) (where

xd ⊥ x j j < d). The Gaussian curvature at u is now given by the determinant of

the matrix
∂ϕ(x1,...,xd−1)

∂xl∂xk
at the origin. In short, we require that any plane containing

u ∈ E and the perpendicular to the tangent plane of the surface E at u intersects E

with a curve which, written as a function of x representing the perpendicular vector

to the tangent plane, has a second derivative different from 0 at u. It is assumed that

the boundary is smooth enough, that is, for any point u, ϕ defined locally, belongs to

C2
loc.

Proof The conditions (1.2), (1.3), and (1.4) follow easily. We use [St, p. 348, (27)]

to obtain |d̂µ(x)| ≤ M|x|(1−d)/2, which implies (1.7) for d > 1.
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Remark 7.2 (i) It was not necessary to have the Gaussian curvature different

from 0. In fact, we need (1.7) and not the stronger condition |d̂µ(x)| ≤
M|x|(1−d)/2. For example, the measure given by the uniform weight on the

cylindrical body

E = {x = (x1, . . . , xd) : x2
1 + · · · + x2

d−1 = 1, |xd| ≤ 1}

for d ≥ 3 easily satisfies (1.7) (with α1 =
1
2

when d = 3) and hence the condi-

tions of Theorem 1.1.

(ii) The uniform weight on part of a sphere or a boundary of a bounded convex set

of Gaussian curvature different from zero, centered at the origin, also satisfies

the conditions of Theorem 1.1.

(iii) Sums of measures that satisfy the conditions of Theorem 1.1 properly centered

will also satisfy the conditions of Theorem 1.1.

(iv) A guide to m-dimensional bounded manifolds (m < d) on which a normalized

uniform weight will satisfy the conditions of Theorem 1.1 is given in [St, p. 351,

Theorem 2].

(v) We conjecture that the measure given by the normalized uniform weight on the

boundary of a cube or a simplex properly centered will also yield (1.11). Unfor-

tunately, the methods of this paper cannot imply it, as neither (1.7) nor (1.5) is

valid.

(vi) In this section, the support of the measure is of very smooth character. It is

interesting to ask about implications such as (1.7) for other situations. For in-

stance, is (1.7) satisfied when we have a boundary of a convex set E which is less

smooth, perhaps with the added condition that the measure of E between two

parallel hyperplanes, the distance between which is δ, is smaller than cδλ with

positive λ?
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