
TRANSITIVE EXTENSIONS OF CERTAIN PERMU-
TATION GROUPS OF RANK 3

TOSIRO TSUZUKU

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

We denote a permutation group i/ on a set Γ by {H, Γ). {H, Γ) is

called a permutation group of rank 3 if (H, Γ) is transitive and (Haf Γ), « e Γ ,

has exactly three orbits, where Ha is the stabiliger of a point a, namely,

{ α ε F U 9 ^ }

In this note the following theorems will be proved.

THEOREM 1. (I). If (H,Γ) is a permutation group of rank 3 such that the

lengths of orbits of {Ha,Γ), α e Γ, are 1,1 and the order of Ha, then a pair of

H and Ha is one of the following:

(1) H is the dihedral group of order 8 and HΛ is a subgroup of order 2 which

is not the center of H.

(2) H is the symmetric group of degree 4 and Ha is a cyclic subgroup of order

4.

(3) H is the symmetric group of degree 4 and Ha is a non-normal elementary

abelien subgroup of order 4.

(4) H is the general linear group GL{2,3) of dimension 2 over GF{3) and Ha

is a subgroup which is isomorphic to the symmetric group S3 of degree 3.

(5) H is the two dimensional linear fractional group LF2{Ί) over GF{7) and

Ha is a subgroup which is isomorphic to the alternating group AA of degree 4.

(II) . If (G, Ω) is a transitive extension of {H,Γ), then G is either

(1) LF2(7),

or (2) V - GL{2,3) where V is the two dimensional vector space over GF{3) and

GL(2,3) acts on V in the natural way,

or (3) the alternating group Λ7 of degree 7.
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THEOREM 2. Let (H, Γ) be a transitive group of rank 3 and let i 0 = {0},

Δ19 Δ2 be the orbits of (HQ,Γ), O G Γ . Let us assume that

(i) HQ is faithful on Δx and Δ2,

(ii) (HQ, Δx) is a Frobenius group whose Frobenius kernel Q and Frobenius

compliment K are abelian {accordingly K is cyclic), and Q is semi-regular on Δ2, and

(iii) \Δχ\ ψ | J 2 I and Mil ^ 3 . (We denote the number of points in a set

Σ by \Σ\).

If (G, (Γ) is a transitive extension of (H9 Γ)9 then G is the two dimensional linear

fractional group LF2(11) over GF(11) and H is a subgroup of LF2(11) which is

isomorphic to the alternating group A$ of degree 5.

For a set X of permutations on a set Σ we put

FΣ(X) = {x e Σ\ xσ = x for any a e X} and fΣ(X) = \FΣ(X)\ .

Proof of Theorem 1, (I). Since the stabiliger of a point has exactly two

fixed points we have that n(= |Γ|') is even and (H, Γ) is an imprimitive

group with a complete system of sets of imprimitivity Γ — {Γi9Γ2, . . , Fn}
2

such that \Γt\ = 2 for i = 1,2, . . , - £ - . Put Γt = it, ~ + t] and let iξ

be the stabilizer of i in (i7, Γ). Let w2 be the number of involutions in

Hx and let uί9 for n^i^2, be the number of involutions in H which

interchange 1 and /, and which are conjugate to elements of Hx. Then

is the number of involutions in H which are conjugate to elements of Hx.

Since Hx is transitive on Γ — Γx we have that Un_,1 = -~— — l and ut = 0

or 1 simultaneously for all z other than 1 and —^—+ 1. Hence we have

that ux~l or 3. Assume that «t = 1 and let e be the involution of Hx.

Then the cycle structure of e is (1) (~^~ + l) (Γ2) (Γ3). . (Γn) where (Γ£) =

(i, -^— + /) . Let <7 be an element of H which carries 1 into 2. Then

ea = (ΓJ (2) f-4- + 2) (Γ3). . . (Γn ) . Hence FΓ(* e') = w - 2. Hence n = 2

or 4. If n = 2, then i/ is the dihedral group of order 8 and Hx is a non

central subgroup of order 2 of H. If w = 4, then // is the symmetric
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group of degree 4 and Hx is a cyclic group of order 4 (see §126, [1]). Assume

that uλ = 3, and let e19 e29 e3 be involutions of Hx. Since Hx is regular on

Γ — Γ1 , each two-cycle (Γt) appears in one (and only one) of the cycle

decompositions of e19 e29 e%. Hence we have the following three cases; let

τ be an element of H which carries 1 into 2.

Case (i). ex = (1) (-%- + l ) (Γ2) (Γ3). . . (Γ n)

and

(Γj), (Γ2), . . . 9 {Γn) do not appear in cycle decompositions of e2 and
2

£ 3 . Then frfae*) = n — 4. Hence n = 6 and £Γ is the symmetric group

of degree 4 and Hx is an elementary abelian non-normal subgroup of order

4 of H (see §126, [1]).

Case (ii). ex = (1) ( - | - + l ) (A). . . (Γι+1) (ί7 ι+2). . . (ί/_n)

^ == (i) (--- + 1 ) (u2)... (£/ι+i) ( Λ + 2 ) . . . ( r ^ )

2) (Vn}

where (Ut) and (F,), t = 2,3, . . . , -?-> are two-cycles which are not equal

to any one of (Γ2), (Γ3) , . , . , ( Γ « ) . Then ~ξ— = 2/ + 1, since ^ and e2

2 ^

are conjugate each other. e\ and ^^ are involutions of H2 and two-cycles

(Λ) > (A) > » (Γ1^) appear in the cycle decompositions of e\ and e\.
2

Hence, if / ^ 3 , then at least one of e\en l<i9 j^29 has more than two

fixed points. This is a contradiction. Therefore 1 = 2. Then H9 as a

permutation group on Γ, is doubly transitive and contains a two cycle.

Hence {H,Γ) is the symmetric group of degree 5, but this is impossible.

Case (iii). ex = (1) (-^- + l ) (Γ2). . . (Γι+1) (Xι+1) (Xn)

e2 = (1) ( - | - + l ) (Xt). . . (F i + 1) (Γ ι + ί ). . . (Γm + 1)(FM + 2). . . ( F Λ )

~ f1W ^ i . 1 w7^ 17 \ (T \ (T \
\ I / -3-
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where {Xt), (Yj), (Zk) are two-cycles which are not equal to any one of (Γ2),

(Γ3), . . . , (Γn) . Then, since eί9 e2, ez are conjugate each other, -^—= 3/+ 1

and m = 21. If / ̂  4, then at least one of e\ ej9 1 ̂  i, j < 3, has more

than two fixed points which is a contradiction. Hence / = 1, 2 or 3. If

1 = 1, then it is easily seen that H is isomorphic to GL{2,3) and Hx is

isomorphic to S3. If / = 2, then n = 14 . i/ acts on Γ faithfully, because

if H is not faithful on Γ then e = (Λ) (Γ2). . . (Γt) is an element of {H, Γ),

and then e et has more than two fixed points. This is impossible. Hence

H has a faithful doubly transitive representation of degree 7 and the order

of H is 7 6 4 . Hence H is isomorphic to LF2(7) and i?i is isomorphic to

Λ4 (see §166, [1]). If / = 3, then r = 18, \H\ = 10 9 4, and # has a faithful

doubly transitive representation of degree 10 (on Γ). Since eL is an odd

permutation on Γ, H contains a normal subgroup H of order 10 9 2, which

is doubly transitive on Γ, but this is impossible.

Proof of Theorem 1, II . We denote by H^ the permutation group of

Theorem 1, I, (i), and by G(o a transitive extension of Ha). G(i) does not

exist, because it is a doubly transitive group of degree 5 and order 5 4 2,

(see §166, [1]). G(2) does not exist and G(3) = LF2(7), because they are

doubly transitive groups of degree 7 and order 7. 6 4 (see §166 [1]).

G(4) = V GL(2,3), because it is a solvable doubly transitive group of degree

9 and order 9 8 6 (for instance, see [3]). G(5) = A7, because it is a doubly

transitive group of degree 15 and order 15 14 12 (for instance, see exercises

10 (p. 162) and 4 (p. 304), [2]).

Remark. We note that the stabiligers of two points in the groups (G, Ω) of

Theorem 1, (II) are not cyclic groups.

Proof of Theorem 2. Let | Δx \ = n and put Δx = {1,2,. . . , n} and let

K be a stabilizer of 1 in {H0,Δj) . Since Q is semi-regular on Δz, \Δ2\ =0(w).

We denote |Δ2\ = nr and put J2 = {1,2,. . . , rϊr} where we choose the point

ϊ such that the stabilizer of ϊ in (HQ9 Δ2), denoted by Kΰ, is contained in

K. We also denote \K\ =q{^2).

First we claim that n is odd. We assume that n is even. Let n0 be

the number of involutions in Ho, and let na,a^Γ — {0}, be the number

of involutions in H which interchange 0 and a. Then {1 + n(r + ϊ)}n0 =

https://doi.org/10.1017/S0027763000012605 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012605


TRANSITIVE EXTENSIONS OF CERTAIN PERMUTATION GROUPS OF RANK 3 35

Σ na is t h e n u m b e r o f i n v o l u t i o n s i n H. nt^q for l^i<n9 b e c a u s e
αe Γ

if two involutions τl9 τ2 of H interchange 0 and z, then τλτ2 is contained in

a subgroup Kt = {a e ίΓ01<r(ι) = z} of order #. nτ<qlr for l^i <nr9

because if two involutions rj,τ2 of if interchange 0 and z, then τxτ2 is

contained in a subgroup Kt = {a e H^\a(ΐ) = 7} of order # / r . Hence

{1 + w(r + 1)> ̂ o ̂  ô + ^# + rcr# / r — no + 2 ^ # , namely, no(r + 1) < 2q . Since

n0 is divisible by #, we have that r = 1. This is a contradiction.

Next we claim that q is even. We assume that q is odd. Put Γ —

-Coo} u Γ. Let τ be an involution of G which ingerchanges oo and 0.

Then τ"1 HQτ (simply denoted by H\) = HQ and Qτ = Q . Since n, the

number of subgroups of HQ of order q, is odd, there exists at least one

subgroup X of Ho of order q which is invariant by τ . Since | Δ11 ψ \ Δz \ ,

we have that fj^X) = 1, namely, τ(/0) = ί'o f° r some f0 e Δx. This means

that τ is an element of a group which is isomorphic to H. Since |//| =

odd, this is impossible. Hence q is even.

Next we claim that q = r. We assume that q ψ r. Let K'o be a

subgroup of ϋΓ0 which is conjugate to Ko by an element of G. Then

fΔx{Kr

%)η^0, because (|/Γ0|, w) = 1. Hence Kr

o

a*^ K for some z' of fjι{Kύ)9

where a is an element of Q such that <r, (l) = i. Since ϋΓ is cyclic,

K'o
a* = Xo This means that if a subgroup of Ho is conjugate to Ko in G,

then they are conjugate in Ho. Hence, by a theorem of Witt (§9, [5]), the

normalizer of Ko in G, denoted by N(KQ), is doubly transitive on

Since (HQ9 Δ2) (HQ, HJ KQ) and K is abelian, we have that fj2{KQ) = .

= r, hence f(KQ) = r + 3. Then it is easily seen that (N(K*) / KQ, F~{KQ))

is a doubly transitive group of degree r + 3, KI Ko is the stabilizer of two

points oo,0 in this group, FF~CKo){KI Ko) ={oo,o, 1}, and K/ Kύ is cyclic and

regular on Ff{KQ) - {oo,0,1>. Hence the group (N(KQ)IK09 F~(K0)) should

be one of the groups in Theorem 1, (II). From the remark at the end

of proof of Theorem 1, (N(KQ) I Kΰ9 F~(Kΰ)) can not exist, because the

stabilizer of two points is cyclic. Hence q = r.

Let τ be an involution of G. Since r is even, τ is conjugate to an

element of H— U Hi or K. Hence f~{τ) = 1 or 3. Let r0 be an

involution of G which interchanges oo and 0. Since H\* — HQ and

Mil T^ | i 2 l > ̂ 1° = ^ t . Since | J j | is odd, r0 leaves a point of Δ1, say 1,
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invariant. Let ai9 i e Δι, be an element of Q such that at(ί) = / . Then

rfttiTo = «rβ(0 Hence, since | Q | is odd, |C ρ (τ 0 ) | = 1 or 3 . We have that

Q = QjX Q2 where Q2 = CQ(τ0) and Q2 = { α e Q | α Γ o = cΓ 1}. In fact, for any

element a of Q, «αT« e CQ(r0), and hence the order of aaτ* is 1 or 3.

Hence a = (α2ατ<>) {a2a2τή where α2ατ« e Q2 and a2a2T« e Q i . Let τ t be an

involution of K. Then we know that τ\xaτx — a~ι for all α e ( j , and hence

O2 = Cqiτ^x). Since ΓOΓJ is an involution which interchanges 00,0, and

which fixes 1, we have that \Q2\ = \CQ(τQτ1)\ — 1 or 3 . Hence n — \Q\ = 3 or

9 . If n = 3, then q = r = 2, and we have that G s LF2(11) and H^Λ5

(for instance, see [4]). If n = 9, then q = r = 8, 4, or 2, and it is easy to

prove non-existence of such groups.
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