TRANSITIVE EXTENSIONS OF CERTAIN PERMU-
TATION GROUPS OF RANK 3

TOSIRO TSUZUKU
To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

We denote a permutation group H on a set I' by (H,I). (H1I) is
called a permutation group of rank 3 if (H,I") is transitive and (H,,I"), a€ [,
has exactly three orbits, where H, is the stabiliger of a point @, namely,
{e € H|a®* = a}

In this note the following theorems will be proved.

Tueorem 1. (I). If (H,I") is a permutation group of rank 3 such that the
lengths of orbits of (H,, "), a€ I, are 1,1 and the order of H,, then a pair of
H and H, is one of the following:

(1) H s the dihedral group of order 8 and H, is a subgroup of order 2 which
s not the center of H.
(2) H 1s the symmetric group of degree 4 and H, is a cyclic subgroup of order

(3) H is the symmetric group of degree 4 and H, is a non-normal elementary
abelien subgroup of order 4.

(4) H s the general linear group GL(2,3) of dimension 2 over GF(3) and H,
is a subgroup which is isomorphic to the symmetric group S, of degree 3.

(5) H s the two dimensional linear fractional group LF,(7) over GF(7) and
H, is a subgroup which is isomorphic to the alternating group A, of degree 4.

I). If (G, Q) is a transitive extension of (H,I'), then G s etther

(1) LFy(7),
or (2) V-GL(2,3) where V is the two dimensional vector space over GF(3) and
GL(2,3) acts on V in the natural way,

or (3) the alternating group A, of degree 7.
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THEOREM 2.  Let (H,I") be a transitive group of rank 3 and let 4, = {0},
4,, 4, be the orbits of (H,,I"), 0€ I'.  Let us assume that

(1) H, is faithful on 4, and 4,,
(1) (H,,4,) is a Frobenius group whose Frobenius kernel Q and Frobenius

compliment K are abelian (accordingly K is cyclic), and Q is semi-regular on 4, and

(i) [4,] # |4,] and |4, =3. (We denote the number of points in a set
2 by 121).

If (G,(I") is a transitive extension of (H,I'), then G is the two dimensional linear
Sractional group LF,(11) over GF(11) and H is a subgroup of LF,(11) which is
isomorphic to the alternating group A; of degree 5.

For a set X of permutations on a set 3 we put

FyX)={xe |2’ =2 for any s € X} and f;(X) = |Fz(X)I|.
Proof of Theorem 1, (I). Since the stabiliger of a point has exactly two

fixed points we have that n(= [I'|) is even and (H,I) is an imprimitive
group with a complete system of sets of imprimitivity I' ={I";, I, .., '}
2

such that |[I;] =2 for i=1,2,.., ’21 . Putr,= [i, %+ z} and let H,
be the stabilizer of ¢ in (H,I"). Let #, be the number of involutions in
H, and let #,, for n=i>=2, be the number of involutions in H which

interchange 1 and ¢, and which are conjugate to elements of H;. Then

n oy

iIMs

u, = =2
= 2

is the number of involutions in H which are conjugate to elements of H;.

Since H, is transitive on I'— Iy we have that u»  , = —’;—— 1 and #; =0
2

or 1 simultaneously for all i other than 1 and %+ 1. Hence we have
that #, =1 or 3. Assume that #, =1 and let e be the involution of H,.

Then the cycle structure of e is (1) <—72L + 1) (L) (5) . « (I'n) where (I';) =
2
(i,%+ z) . Let ¢ be an element of H which carries 1 into 2. Then
e’ = () (2 (% + 2) (I's)e o .(I'n). Hence Frlee’)=n—2. Hence n=2
2

or 4. If n=2, then H is the dihedral group of order 8 and H, is a non
central subgroup of order 2 of H. If n=4, then H is the symmetric
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group of degree 4 and H, is a cyclic group of order 4 (see §126, [1]). Assume
that u, =3, and let e,, e, e¢; be involutions of H,. Since H, is regular on
I'—TI,, each two-cycle (I';) appears in one (and only one) of the cycle
decompositions of e, e, e;. Hence we have the following three cases; let
7 be an element of H which carries 1 into 2.

Case (). e =(1) (-2 + D)) (). (r2)

and

('Y, (I'y)s ..., (I n) do not appear in cycle decompositions of e, and
2
e;. Then fr(eer) =n—4. Hence n=6 and H is the symmetric group

of degree 4 and H, is an elementary abelian non-normal subgroup of order
4 of H (see §126, [1]).

-
&= (B +1) U .« Ui Tiaa) -« - (Tn)
_ n
&= (1) (-2 + 11 P )
where (U;) and (V.), i=2,3, ..., g , are two-cycles which are not equal
to any one of (I), (I), ..., (I"x»). Then _;‘— =2l +1, since ¢, and e,
2

are conjugate each other. ef and e are involutions of H, and two-cycles

(I'), (I's)y « .., (I"n) appear in the cycle decompositions of et and eg.
2

Hence, if /=3, then at least one of ele;, 1<i, j <2, has more than two

fixed points. This is a contradiction. Therefore =2, Then H, as a

permutation group on [, is doubly transitive and contains a two cycle.
Hence (H,I) is the symmetric group of degree 5, but this is impossible.

Case (iii). ¢, = (1) (_g-- + 1) (F) e oo (Pont) (Xist) e v veeeeanns (X )
€= (1) (G- + 1) (Ve (Vi) (Cusade + + (Cs)(¥V o). - - (¥ )
es = (1) (%+1>(Zz) ............ (Zaia) (Tia) o+ - (')
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where (X,), (Y,), (Z,) are two-cycles which are not equal to any one of (I3),

(I')y ..., (I'n). Then,sincee,, ¢,, e, are conjugate each other, —gm: 3l+1
2

and m=2/. If [=4, then at least one of efe;, 1<4,j=<3, has more
than two fixed points which is a contradiction. Hence /=1, 2 or 3. If
/=1, then it is easily seen that H is isomorphic to GL(2,3) and H, is
isomorphic to S;. If I =2, then n=14. H acts on I faithfully, because
if H is not faithful on I* then e= (I,) (). .. (") is an element of (H,I),
and then ee, has more than two fixed points. This is impossible. Hence
H has a faithful doubly transitive representation of degree 7 and the order
of His 7-6-4. Hence H is isomorphic to LF,(7) and H, is isomorphic to
A, (see §166, [1]). If [ =3, then r=18,|H|=10-9-4, and H has a faithful
doubly transitive representation of degree 10 (on I). Since e; is an odd
permutation on I', H contains a normal subgroup H of order 10-9-2, which
is doubly transitive on I°, but this is impossible.

Proof of Theorem 1, II. We denote by Hi) the permutation group of
Theorem 1, I, (i), and by G¢) a transitive extension of Hyy. Gy does not
exist, because it is a doubly transitive group of degree 5 and order 5-4-2,
(see §166, [1]). G does not exist and Gey= LF,(7), because they are
doubly transitive groups of degree 7 and order 7.6-4 (see §166 [1]).
Gwy=V-GL(2,3), because it is a solvable doubly transitive group of degree
9 and order 9-8-6 (for instance, see [3]). Gey)=A;, because it is a doubly
transitive group of degree 15 and order 15-14-12 (for instance, see exercises
10 (p. 162) and 4 (p. 304), [2]).

Remark. We note that the stabiligers of two points in the groups (G, Q) of
Theorem 1, (II) are not cyclic groups.

Proof of Theorem 2. Let |4,] =n and put 4,={1,2,..., n} and let
K be a stabilizer of 1 in (H,, 4,). Since @ is semi-regular on 4, |4,| =0 (n).
We denote [4,] = nr and put 4, ={1,2,..., nr} where we choose the point
1 such that the stabilizer of 1 in (H,, 4,), denoted by K,, is contained in
K. We also denote [K|=¢g(=2).

First we claim that » is odd. We assume that » is even. Let xn, be
the number of involutions in H,, and let n,,ae I"— {0}, be the number
of involutions in H which interchange 0 and «. Then {1+ n(r+ 1)}#n, =
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S n, is the number of involutions in H. #n;<gq for 1<i<mn, because
acTl

if two involutions z,, r, of H interchange 0 and i, then r,c, is contained in
a subgroup K; ={s€ Hylo(i) =i} of order q. n;=<q/r for 1=i=<nr,

because if two involutions r,,z, of H interchange 0 and i, then =z, is
contained in a subgroup K;={s< H,|o(i)=1i} of order ¢q/r. Hence
{d+nr+ 1)} n<ny+ng+ nrq/r =n,+ 2ng, namely, ny(r +1)<2q. Since
n, is divisible by ¢, we have that » =1. This is a contradiction.

Next we claim that ¢ is even. We assume that ¢ is odd. Put I =
{o}uI. Let ¢ be an involution of G which ingerchanges co and 0.
Then <" Hye (simply denoted by H{)=H, and Q" =@Q. Since n, the
number of subgroups of H, of order ¢, is odd, there exists at least one
subgroup X of H, of order q which is invariant by «. Since |[4;|# |4,],
we have that f4,(X) =1, namely, «(i,) = i, for some i, € 4,. This means
that « is an element of a group which is isomorphic to H. Since [H| =
odd, this is impossible. Hence ¢ is even.

Next we claim that g=7r. We assume that g#». Let K, be a
subgroup of H, which is conjugate to K, by an element of G. Then
f4,(Ky) # 0, because (|K,[,n)=1. Hence K, < K for some i of f4,(K,),
where o¢; is an element of @ such that ¢,1)=i. Since K is cyclic,
K, = K,. This means that if a subgroup of H, is conjugate to K, in G,
then they are conjugate in H,. Hence, by a theorem of Witt (§9, [5]), the
normalizer of K; in G, denoted by N(K,), is doubly transitive on Fr(Ky) .
Since (Hy 4,) (Hy, Hy/ K,) and K is abelian, we have that f4,(Ky) = fr)x,(Ki)
=r, hence f(K))=r+3. Then it is easily seen that (N(K,)/K,, F(Ky)
is a doubly transitive group of degree »+3, K/K, is the stabilizer of two
points 00,0 in this group, FFﬁ(Ko)(K/Ko) ={0,0,1}, and K/ K, is cyclic and
regular on F (K —{c0,0,1}. Hence the group (N(K;)/ K,, F(Ky) should
be one of the groups in Theorem 1, (II). From the remark at the end
of proof of Theorem 1, (N(K,)/K,, F:(Ky) can not exist, because the
stabilizer of two points is cyclic. Hence g¢=r.

Let  be an involution of G. Since r is even, r is conjugate to an
element of H——“léGH;‘, or K. Hence fple)=1 or 3. Let 7, be an
involution of G which interchanges < and 0. Since H{» = H, and

4,1 #+ 14,1, 450 = 4,. Since |4,] is odd, ¢, leaves a point of 4,, say 1,
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invariant. Let a;, i € 4,, be an element of @ such that «,(1) =i. Then
t5leTy = arn).  Hence, since |Q] is odd, |Cylzy)] =1 or 3. We have that
Q =Q, X Q, where @, = Cy(r,) and @, ={a € Q|a" = a'}. In fact, for any
element a of @, aa™ & Cy(r,), and hence the order of aa™ is 1 or 3.
Hence a = (a®a™) (@®a®™) where a?a’ € Q, and a?a?v€Q,. Let r;, be an
involution of K. Then we know that z7'ar; = a7 for all « € @, and hence
Q, = Cy(ryry).  Since r,r;, is an involution which interchanges 0,0, and
which fixes 1, we have that |Q,] = |Cy(zer)] =1 or 3. Hence n =|Q| =3 or
9. If =3, then g=7r=2, and we have that G=LF,11) and H= A4,
(for instance, see [4]). If =9, then ¢g=7=28, 4, or 2, and it is easy to

prove non-existence of such groups.
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