TRANSITIVE EXTENSIONS OF CERTAIN PERMU-TATION GROUPS OF RANK 3

TOSIRO TSUZUKU

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

We denote a permutation group H on a set Γ by (H,Γ) . (H,Γ) is called *a permutation group of rank* 3 if (H,Γ) is transitive and (H_a,Γ) , $a \in \Gamma$, has exactly three orbits, where H_a is the stabiliger of a point *a*, namely, $\{\alpha \in H \mid a^a = a\}$

In this note the following theorems will be proved.

THEOREM 1. (I). If (H, Γ) is a permutation group of rank 3 such that the lengths of orbits of (H_a, Γ) , $a \in \Gamma$, are 1,1 and the order of H_a , then a pair of H and H_a is one of the following:

(1) H is the dihedral group of order 8 and H_a is a subgroup of order 2 which is not the center of H.

(2) H is the symmetric group of degree 4 and H_a is a cyclic subgroup of order 4.

(3) H is the symmetric group of degree 4 and H_a is a non-normal elementary abelien subgroup of order 4.

(4) H is the general linear group GL(2,3) of dimension 2 over GF(3) and H_a is a subgroup which is isomorphic to the symmetric group S_3 of degree 3.

(5) H is the two dimensional linear fractional group $LF_2(7)$ over GF(7) and H_a is a subgroup which is isomorphic to the alternating group A_4 of degree 4.

(II). If (G, Ω) is a transitive extension of (H, Γ) , then G is either

(1) $LF_2(7)$,

or (2) $V \cdot GL(2,3)$ where V is the two dimensional vector space over GF(3) and GL(2,3) acts on V in the natural way,

or (3) the alternating group A_7 of degree 7.

Received Nov. 29, 1966.

TOSIRO TSUZUKU

THEOREM 2. Let (H, Γ) be a transitive group of rank 3 and let $\Delta_0 = \{0\}$, Δ_1, Δ_2 be the orbits of (H_0, Γ) , $0 \in \Gamma$. Let us assume that

(i) H_0 is faithful on Δ_1 and Δ_2 ,

(ii) (H_0, Λ_1) is a Frobenius group whose Frobenius kernel Q and Frobenius compliment K are abelian (accordingly K is cyclic), and Q is semi-regular on Λ_2 , and

(iii) $|\mathcal{A}_1| \neq |\mathcal{A}_2|$ and $|\mathcal{A}_1| \ge 3$. (We denote the number of points in a set Σ by $|\Sigma|$).

If $(G, (\tilde{\Gamma})$ is a transitive extension of (H, Γ) , then G is the two dimensional linear fractional group $LF_2(11)$ over GF(11) and H is a subgroup of $LF_2(11)$ which is isomorphic to the alternating group A_5 of degree 5.

For a set X of permutations on a set Σ we put

$$F_{\Sigma}(X) = \{x \in \Sigma \mid x^{\sigma} = x \text{ for any } \sigma \in X\} \text{ and } f_{\Sigma}(X) = |F_{\Sigma}(X)|.$$

Proof of Theorem 1, (I). Since the stabiliger of a point has exactly two fixed points we have that $n(=|\Gamma|)$ is even and (H,Γ) is an imprimitive group with a complete system of sets of imprimitivity $\tilde{\Gamma} = \{\Gamma_1, \Gamma_2, \ldots, \Gamma_{\frac{n}{2}}\}$ such that $|\Gamma_i| = 2$ for $i = 1, 2, \ldots, \frac{n}{2}$. Put $\Gamma_i = \{i, \frac{n}{2} + i\}$ and let H_i be the stabilizer of i in (H,Γ) . Let u_1 be the number of involutions in H_1 and let u_i , for $n \ge i \ge 2$, be the number of involutions in H which interchange 1 and i, and which are conjugate to elements of H_1 . Then

$$\sum_{i=l}^{n} u_i = -\frac{n}{2} u_1$$

is the number of involutions in H which are conjugate to elements of H_1 . Since H_1 is transitive on $\Gamma - \Gamma_1$ we have that $u_{\frac{n}{2}+1} = \frac{n}{2} - 1$ and $u_i = 0$ or 1 simultaneously for all i other than 1 and $\frac{n}{2} + 1$. Hence we have that $u_1 = 1$ or 3. Assume that $u_1 = 1$ and let e be the involution of H_1 . Then the cycle structure of e is $(1) \left(\frac{n}{2} + 1\right) (\Gamma_2) (\Gamma_3) \dots (\Gamma_{\frac{n}{2}})$ where $(\Gamma_i) = (i, \frac{n}{2} + i)$. Let σ be an element of H which carries 1 into 2. Then $e^{\sigma} = (\Gamma_1) (2) \left(\frac{n}{2} + 2\right) (\Gamma_3) \dots (\Gamma_{\frac{n}{2}})$. Hence $F_{\Gamma}(e e^{\sigma}) = n - 2$. Hence n = 2or 4. If n = 2, then H is the dihedral group of order 8 and H_1 is a non central subgroup of order 2 of H. If n = 4, then H is the symmetric

32

group of degree 4 and H_1 is a cyclic group of order 4 (see §126, [1]). Assume that $u_1 = 3$, and let e_1 , e_2 , e_3 be involutions of H_1 . Since H_1 is regular on $\Gamma - \Gamma_1$, each two-cycle (Γ_i) appears in one (and only one) of the cycle decompositions of e_1 , e_2 , e_3 . Hence we have the following three cases; let τ be an element of H which carries 1 into 2.

Case (i).
$$e_1 = (1) \left(\frac{n}{2} + 1 \right) (\Gamma_2) (\Gamma_3) \dots (\Gamma_{\frac{n}{2}})$$

and

 $(\Gamma_1), (\Gamma_2), \ldots, (\Gamma_{\frac{n}{2}})$ do not appear in cycle decompositions of e_2 and e_3 . Then $f_{\Gamma}(e_1e_1^*) = n - 4$. Hence n = 6 and H is the symmetric group of degree 4 and H_1 is an elementary abelian non-normal subgroup of order 4 of H (see §126, [1]).

Case (ii).
$$e_1 = (1) \left(\frac{n}{2} + 1 \right) (\Gamma_2) \dots (\Gamma_{l+1}) (U_{l+2}) \dots (U_{\frac{n}{2}})$$

 $e_2 = (1) \left(\frac{n}{2} + 1 \right) (U_2) \dots (U_{l+1}) (\Gamma_{l+2}) \dots (\Gamma_{\frac{n}{2}})$
 $e_3 = (1) \left(\frac{n}{2} + 1 \right) (V_2) \dots (V_{\frac{n}{2}})$

where (U_i) and (V_i) , $i = 2, 3, \ldots, \frac{n}{2}$, are two-cycles which are not equal to any one of $(\Gamma_2), (\Gamma_3), \ldots, (\Gamma_{\frac{n}{2}})$. Then $\frac{n}{2} = 2l + 1$, since e_1 and e_2 are conjugate each other. e_1^r and e_2^r are involutions of H_2 and two-cycles $(\Gamma_1), (\Gamma_3), \ldots, (\Gamma_{\frac{n}{2}})$ appear in the cycle decompositions of e_1^r and e_2^r . Hence, if $l \ge 3$, then at least one of $e_i^r e_j, 1 \le i, j \le 2$, has more than two fixed points. This is a contradiction. Therefore l = 2. Then H, as a permutation group on $\tilde{\Gamma}$, is doubly transitive and contains a two cycle. Hence $(H, \tilde{\Gamma})$ is the symmetric group of degree 5, but this is impossible.

Case (iii).
$$e_1 = (1) \left(\frac{n}{2} + 1 \right) (\Gamma_2) \dots (\Gamma_{l+1}) (X_{l+1}) \dots (X_{\frac{n}{2}})$$

 $e_2 = (1) \left(\frac{n}{2} + 1 \right) (Y_2) \dots (Y_{l+1}) (\Gamma_{l+2}) \dots (\Gamma_{m+1}) (Y_{m+2}) \dots (Y_{\frac{n}{2}})$
 $e_3 = (1) \left(\frac{n}{2} + 1 \right) (Z_2) \dots (Z_{m+1}) (\Gamma_{m+2}) \dots (\Gamma_{\frac{n}{2}})$

where (X_i) , (Y_j) , (Z_k) are two-cycles which are not equal to any one of (Γ_2) , (Γ_3) , ..., (Γ_n) . Then, since e_1 , e_2 , e_3 are conjugate each other, $\frac{n}{2} = 3l+1$ and m = 2l. If $l \ge 4$, then at least one of $e_i e_j$, $1 \le i, j \le 3$, has more than two fixed points which is a contradiction. Hence l = 1, 2 or 3. If l = 1, then it is easily seen that H is isomorphic to GL(2,3) and H_1 is isomorphic to S_3 . If l = 2, then n = 14. H acts on $\tilde{\Gamma}$ faithfully, because if H is not faithful on $\tilde{\Gamma}$ then $e = (\Gamma_1)(\Gamma_2) \dots (\Gamma_t)$ is an element of (H, Γ) , and then $e e_1$ has more than two fixed points. This is impossible. Hence H has a faithful doubly transitive representation of degree 7 and the order Hence H is isomorphic to $LF_2(7)$ and H_1 is isomorphic to of H is $7 \cdot 6 \cdot 4$. If l = 3, then r = 18, $|H| = 10 \cdot 9 \cdot 4$, and H has a faithful A_4 (see §166, [1]). doubly transitive representation of degree 10 (on \tilde{I}). Since e_i is an odd permutation on Γ , H contains a normal subgroup H of order 10.9.2, which is doubly transitive on $\tilde{\Gamma}$, but this is impossible.

Proof of Theorem 1, II. We denote by $H_{(i)}$ the permutation group of Theorem 1, I, (i), and by $G_{(i)}$ a transitive extension of $H_{(i)}$. $G_{(1)}$ does not exist, because it is a doubly transitive group of degree 5 and order $5 \cdot 4 \cdot 2$, (see §166, [1]). $G_{(2)}$ does not exist and $G_{(3)} \cong LF_2(7)$, because they are doubly transitive groups of degree 7 and order 7.6 $\cdot 4$ (see §166 [1]). $G_{(4)} \cong V \cdot GL(2,3)$, because it is a solvable doubly transitive group of degree 9 and order $9 \cdot 8 \cdot 6$ (for instance, see [3]). $G_{(5)} \cong A_7$, because it is a doubly transitive group of degree 15 and order $15 \cdot 14 \cdot 12$ (for instance, see exercises 10 (p. 162) and 4 (p. 304), [2]).

Remark. We note that the stabiligers of two points in the groups (G, Ω) of Theorem 1, (II) are not cyclic groups.

Proof of Theorem 2. Let $|\mathcal{L}_1| = n$ and put $\mathcal{L}_1 = \{1, 2, \ldots, n\}$ and let K be a stabilizer of 1 in (H_0, \mathcal{L}_1) . Since Q is semi-regular on $\mathcal{L}_2, |\mathcal{L}_2| \equiv 0 (n)$. We denote $|\mathcal{L}_2| = nr$ and put $\mathcal{L}_2 = \{\overline{1}, \overline{2}, \ldots, \overline{nr}\}$ where we choose the point $\overline{1}$ such that the stabilizer of $\overline{1}$ in (H_0, \mathcal{L}_2) , denoted by K_0 , is contained in K. We also denote $|K| = q (\geq 2)$.

First we claim that n is odd. We assume that n is even. Let n_0 be the number of involutions in H_0 , and let $n_a, a \in \Gamma - \{0\}$, be the number of involutions in H which interchange 0 and a. Then $\{1 + n(r+1)\} n_0 =$

 $\sum_{a \in \Gamma} n_a \text{ is the number of involutions in } H. \quad n_i \leq q \text{ for } 1 \leq i \leq n \text{, because}$ if two involutions τ_1, τ_2 of H interchange 0 and i, then $\tau_1 \tau_2$ is contained in a subgroup $K_i = \{\sigma \in H_0 | \sigma(i) = i\}$ of order q. $n_{\overline{i}} \leq q/r$ for $1 \leq i \leq nr$, because if two involutions τ_1, τ_2 of H interchange 0 and \overline{i} , then $\tau_1 \tau_2$ is contained in a subgroup $K_i = \{\sigma \in H_0 | \sigma(\overline{i}) = \overline{i}\}$ of order q/r. Hence $\{1 + n(r+1)\} n_0 \leq n_0 + nq + nrq/r = n_0 + 2nq$, namely, $n_0(r+1) \leq 2q$. Since n_0 is divisible by q, we have that r = 1. This is a contradiction.

Next we claim that q is even. We assume that q is odd. Put $\overline{\Gamma} = \{\infty\} \cup \Gamma$. Let τ be an involution of G which ingerchanges ∞ and 0. Then $\tau^{-1}H_0\tau$ (simply denoted by $H_0^{\tau} = H_0$ and $Q^{\tau} = Q$. Since n, the number of subgroups of H_0 of order q, is odd, there exists at least one subgroup X of H_0 of order q which is invariant by τ . Since $|\mathcal{A}_1| \neq |\mathcal{A}_2|$, we have that $f_{\mathcal{A}_1}(X) = 1$, namely, $\tau(i_0) = i_0$ for some $i_0 \in \mathcal{A}_1$. This means that τ is an element of a group which is isomorphic to H. Since |H| = odd, this is impossible. Hence q is even.

Next we claim that q = r. We assume that $q \neq r$. Let K'_0 be a subgroup of H_0 which is conjugate to K_0 by an element of G. Then $f_{d_1}(K'_0) \neq 0$, because $(|K'_0|, n) = 1$. Hence $K'_0 = K$ for some i of $f_{d_1}(K_0)$, where σ_i is an element of Q such that $\sigma_i(1) = i$. Since K is cyclic, $K'_0 = K_0$. This means that if a subgroup of H_0 is conjugate to K_0 in G, then they are conjugate in H_0 . Hence, by a theorem of Witt (§9, [5]), the normalizer of K_0 in G, denoted by $N(K_0)$, is doubly transitive on $F_{\tilde{\Gamma}}(K_0)$. Since (H_0, A_2) $(H_0, H_0/K_0)$ and K is abelian, we have that $f_{d_2}(K_0) = f_{H/K_0}(K_0) = r$, hence $f(K_0) = r + 3$. Then it is easily seen that $(N(K_0)/K_0, F_{\tilde{\Gamma}}(K_0))$ is a doubly transitive group of degree r + 3, K/K_0 is the stabilizer of two points ∞ , 0 in this group, $F_{F_{\tilde{\Gamma}}(K_0)}(K/K_0) = \{\infty, 0, 1\}$, and K/K_0 is cyclic and regular on $F_{\tilde{\Gamma}}(K_0) - \{\infty, 0, 1\}$. Hence the group $(N(K_0)/K_0, F_{\tilde{\Gamma}}(K_0))$ should be one of the groups in Theorem 1, (II). From the remark at the end of proof of Theorem 1, $(N(K_0)/K_0, F_{\tilde{\Gamma}}(K_0))$ can not exist, because the stabilizer of two points is cyclic. Hence q = r.

Let τ be an involution of G. Since r is even, τ is conjugate to an element of $H - \bigcup_{\sigma \in G} H_0^{\sigma}$ or K. Hence $f_{\tilde{F}}(\tau) = 1$ or 3. Let τ_0 be an involution of G which interchanges ∞ and 0. Since $H_0^{\tau_0} = H_0$ and $|\mathcal{A}_1| \neq |\mathcal{A}_2|$, $\mathcal{A}_i^{\tau_0} = \mathcal{A}_i$. Since $|\mathcal{A}_1|$ is odd, τ_0 leaves a point of \mathcal{A}_1 , say 1,

TOSIRO TSUZUKU

invariant. Let α_i , $i \in A_1$, be an element of Q such that $\alpha_i(1) = i$. Then $\tau_0^{-1}\alpha_i\tau_0 = \alpha_{\tau_0(i)}$. Hence, since |Q| is odd, $|C_Q(\tau_0)| = 1$ or 3. We have that $Q = Q_1 \times Q_2$ where $Q_1 = C_Q(\tau_0)$ and $Q_2 = \{\alpha \in Q \mid \alpha^{\tau_0} = \alpha^{-1}\}$. In fact, for any element α of Q, $\alpha \alpha^{\tau_0} \in C_Q(\tau_0)$, and hence the order of $\alpha \alpha^{\tau_0}$ is 1 or 3. Hence $\alpha = (\alpha^2 \alpha^{\tau_0}) (\alpha^2 \alpha^{2\tau_0})$ where $\alpha^2 \alpha^{\tau_0} \in Q_2$ and $\alpha^2 \alpha^{2\tau_0} \in Q_1$. Let τ_1 be an involution of K. Then we know that $\tau_1^{-1}\alpha\tau_1 = \alpha^{-1}$ for all $\alpha \in Q$, and hence $Q_2 = C_Q(\tau_0\tau_1)$. Since $\tau_0\tau_1$ is an involution which interchanges ∞ , 0, and which fixes 1, we have that $|Q_2| = |C_Q(\tau_0\tau_1)| = 1$ or 3. Hence n = |Q| = 3 or 9. If n = 3, then q = r = 2, and we have that $G \cong LF_2(11)$ and $H \cong A_5$ (for instance, see [4]). If n = 9, then q = r = 8, 4, or 2, and it is easy to prove non-existence of such groups.

References

- [1] Burnside, W.S., Theory of groups of finite order, 2nd. ed. Cambridge Univ. Press, 1911.
- [2] Carmichael, R.D., Introduction to the theory of groups of finite order, Boston, 1937.
- [3] Huppert, B., Zweifach transitive, auflosbare Permutations-gruppen, Math. Zeitschr. 68 (1957). 126–150.
- [4] Ito, N., A note on transitive permutation groups of degree p, Osaka Math. J. 14 (1962), 213-218.
- [5] Wielandt, H., Finite permutation groups, Acad. Press, 1964.

Nagoya University