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DIRECTED GRAPHS AND THE JACOBI-TRUDI 
IDENTITY 

I. P. GOULDEN 

1. Introduction. Let \aiLXn denote the n X n determinant with 
(/', y)-entry a-, and hk = hk(xx,. . . ,xn) denote the kl -homogeneous 
symmetric function of xx, . . . , xn defined by 

A* = 2 * 7 " . . . ; C " 

where the summation is over all mv . . . , mn ^ 0 such that mx -f . . . + 
mn= k. We adopt the convention that hk = 0 for k < 0. For integers ax ^ 
a2 = . . . = an ^ 0, the Jacobi-Trudi identity (see [6], [7] ) states that 

^^-i+friXn = \xiJ \nXn/\xi \nXn' 

In this paper we give a combinatorial proof of an equivalent identity, 
Theorem 1.1, obtained by moving the denominator on the RHS to the 
numerator on the LHS. 

THEOREM 1.1. For a, ^ . . . ^ an i^ 0, we have 

\Xi \nXn\nal-i+j\nXn = \XiJ \nXn-

Our proof is obtained by adopting the following strategy for proving an 
identity, say f = g. We define a set 9) of combinatorial objects and a 
weight function for the elements of Q), such that the generating function 
for 2 with respect to this weight is / (with no cancellation). We find a 
subset srf of 3) for which the generating function is g (again, no cancellation 
of terms). We then find an involution on Q) — stf such that the weight of 
each element of 2 — stf is equal to the negative of the weight of its image 
under the involution (so we say the involution is weight-reversing). This 
immediately proves that the generating function for 3) — stf is equal to 0, 
and so the identity follows. 

By considering tournaments as the combinatorial objects, this "involu
t i o n a l " method has been applied by Gessel [3] to prove the Vander-
monde determinant formula. Bressoud [1] has generalized this to prove the 
Weyl denominator formulae for the root systems Bn, Cn and Dn. In this 
case the combinatorial objects are tournaments in which the edges are 
coloured and the vertices are "handicapped". An involution for «-tuples of 
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1202 I. P. GOULDEN 

lattice paths is used by Gessel and Viennot [4] (see also [5], Section 5.4) to 
prove that the LHS of the Jacobi-Trudi identity equals the generating 
function for column-strict plane partitions with shape (a]9. . . , an). In the 
present paper this involutionary method is applied to a set of directed 
graphs. 

All of the above applications of the involutionary method give elegant 
and insightful proofs of results for which algebraic proofs are known. It is 
worth mentioning that Zeilberger and Bressoud [8] (see also [2] for a 
generalization) have obtained an involutionary proof of the #-Dyson 
Theorem, for which no other proof is known. 

In Section 2 of this paper we define a set of directed graphs 3, a weight 
function wt, and a subset stf of 3 such that the generating functions for 3 
and J3̂  respectively, are the LHS and RHS of Theorem 1.1. We also 
partition 3 — stf into two sets, 38 and #. Section 3 gives weight-reversing 
involutions for SS and ^separately, finishing a proof of Theorem 1.1 by 
the involutionary method. 

Finally, we define some terms. A tournament on n vertices is a loopless 
directed graph with labelled vertices l , . . . , w in which every pair of 
vertices (ij) is joined by exactly one edge, either directed from / toy, or 
from y to /'. A transitive tournament is a tournament with no directed cycles. 
For any transitive tournament there exists a permutation a e Sn such that 
vertex o(i) has out-degree n — /, for i = 1,. . . , n. We say that o is the 
winner permutation of the transitive tournament, and 

p = o(n)o(n — 1) . . . a(l) 

is the loser permutation (this is motivated by supposing that an edge 
directed from i toy means that person / "beats" person j). We denote the 
sign of the permutation o by sgn(a). 

2. Directed graphs. Consider directed loopless graphs on In labelled 
vertices, which consist of n "black" vertices, labelled l , . . . , w , and n 
"white" vertices, labelled 1,. . . , n. For fixed a = ( a b . . . , an), where 
«j ^ a2 = . . . = an i^ 0, let 3 consist of all such graphs in which: 

(i) the edges incident with black vertices only form a transitive 
tournament on n vertices (called the black tournament). 

(ii) the edges incident with white vertices only form a transitive 
tournament on n vertices (called the white tournament). 

(iii) the edges incident with both a black and a white vertex are all 
directed from the black vertex to the white vertex, with multiple edges 
allowed. 

(iv) the only restriction is that in-degree (white vertex /) = at + n — i, 
for / = ! , . . . , « . 

For D G 3, let at = out-degree (black vertex /), for / = 1 , . . . , « , let a 
be the winner permutation of D's black tournament, and let p be the loser 
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permutation of D's white tournament. Define a weight for D, denoted 
wt(Z)), by 

wt(D) = sgn(a) sgn(p) JC?» . . . xa
n\ 

and for any s u b s e t s c ^ let the generating function for y with respect to 
this weight be denoted by 0 ( ^ ) , so 

4>(^) = 2 wt(Z>). 

Finally, let N(i,j) denote the number of edges directed from black vertex / 
to white vertex j in D, where Uj= 1,. . . , n. 

For example, for a = (4, 2, 2, 0) the graph Ex in Figure 1 is in 2, with 
a = 3241, p = 2134, sgn(a) = 1, sgn(p) = - 1 , N(2, 1) = N(3, 1) = 2, 
JV(1, 2) = JV(2, 3) = N(4, 1) = N(4, 3) = 1, and wt(£,) = 

X i X i ^ i ^ i . 

> Jf > 

« — y > < 

Figure 1 : An element of Q for a = (4, 2, 2, 0). 

Note that Ex is drawn with the vertices arranged in two rows. The top 
row contains the black vertices, in order a( l ) , . . . , o(n) from left to right 
and the bottom row contains the white vertices, in order 1,. . . , n from left 
to right. Moreover, white vertex / is directly below black vertex a(/), for 
/' = 1 , . . . , n. We shall follow this convention when drawing elements of 
@, since it allows a convenient geometrical description of the bijections in 
Section 3. 

Condition (iv) on 2 implies that if OLJ = 0, then p(y) = j and N(o(i),j) 
= 0 for / = 1 , . . . , n. This is illustrated by Ev where a4 = 0. 

The significance of the set 3) is revealed by the next result, which shows 
that the LHS of Theorem 1.1 is the generating function for 2. 
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PROPOSITION 2.1. For ax =" a2 = . . . = an i^ 0, we have 

/V00/! Let i? consist of all elements of 3) whose black tournament has 
winner permutation a and whose white tournament has loser permutation 
p. Then clearly 

*(®) = 2 2 *(\P). 
a^Sn p^Sn 

Now from the definition of winner and loser permutation, for elements 
of S)ap we have 

n 

"o(k) = n - k+ % N(a(k)9 p(l) ), k = 1, . . . , /!, 

and restriction (iv) for <@ yields 
n 

n - I + 2 JV(a(*), p(/)) = aM + « - p(/), 
k = 1 

or equivalently, 

(*) 2 JV(0(*), p(/) ) = Up(l) - p(/) + /, / = 1,. . . , n. 

The definition of 0 now gives 

*(0o,p) = sgn(a) sgn(p) 2 Û x "-k + &N(°(kMI)\ 
/ c = 1 

where the summation is over N(o(k), p(l) ) i^ 0 for k, I = 1, . . . , n, subject 
to restriction (*). Thus 

n n 

* ( ^ p ) = sgn(a) sgn(p) I I x ^ f I I A, 

where 

A^sn*^*'» 
in which the summation is over all N(o(k), p(l) ) = 0 for k = 1, . . . , w, 
with the restriction that 

2 tf(a(*), P(/) ) = «*/) " P(/) + /• 
A : = l 
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From the definition of the homogeneous symmetric functions of n 
variables, it follows that 

so 

n n 

*(#) = 2 sgn(a) I t *J£f 2 sgn(p) ] I h {l)+h 
oeS„ k=\ peS„ /=1 m 

and the result follows immediately. 

Now let s/ be the subset of S consisting of all graphs A m S m 
which: 

(i) the white tournament of A has loser permutation p = 12 . . . n. 
(ii) N(o(i), j) = 0 for / ¥= j , i, j = 1, . . . , n where a is the winner 

permutation of yTs black tournament. 
For example, if a = (4, 2, 2, 0) then the graph E2 in Figure 2 is in jtf, 

with a = 3241, and 

wt(2s2) = x i-x2-x3-x4-

Note that 

Figure 2: An element of s/ for a = (4, 2, 2, 0). 

condition (i) forces all edges between white vertices to be directed from 
right to left, and condition (ii) forces any edge from a black vertex to a 
white vertex to lie in a single column. 

The significance of the subset sf of S is revealed by the next result, 
which shows that the RHS of Theorem 1.1 is the generating function 
f o r j ^ 
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PROPOSITION 2.2. For a, ^ a2 = . . . = an â 0, we have 

<H*) = \x?+n-\x„. 
Proof. Let sia consist of all elements of si whose black tournament has 

winner permutation a. Then clearly 

aeS„ 

For elements of J ^ we have 

ao(k) = n - k + #(a(*) , *) 

for /c = 1, . . . , n by conditions (i) and (ii) for si. Also, restriction (iv) for 3) 
applied to elements of si0 yields 

ak + r l - l c = n - l c + N(a(k), k) for k = 1, . . . , n, 

so 

N(o(k),k) = <xk for A: = 1 /i. 

Combining these results, we find that sia consists of a single graph, for 
which aa(k) = ak + n — k, k = 1, . . . , n, so 

*C*0 = 2 sgn(a) f [ J C ^ " " * , 
aGS„ k=\ 

and the result follows immediately. 

Let <% be the subset of 3) consisting of those graphs in which N(o(i),j) 
> 0 for some w ^ i > j ^ 1. Clearly si and SI are disjoint, since the 
existence of such i > j violates condition (ii) for si. 

Finally, we let V = 2) - si - ai, so Si and ^partition 3) - si. In Section 
3 we complete an involutionary proof of Theorem 1.1 by finding 
weight-reversing involutions for Si and #. 

3. Involutions and the Jacobi-Trudi identity. First we consider a 
mapping \p for Si. For D e 3 let 

# ( / ) ) = { (i,j) \N(o(i),j) > 0 , n ^ i > j ^ \ } . 

Now Si consists precisely of those graphs B for which S?(B) ¥= 0. For 
example, Ex in Figure 1 is in Si, since 

# ( £ , ) = { (2, 1), (3, 1), (4, 2) } * 0. 

Thus, for 5 e # , if 

(J, 0 = Max(Min{<^(5) } ) 
' J 

then (s, /) is well-defined. We obtain \j;(B) = B' from B as follows: reverse 
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the edge (o(s — 1), o(s) ) in the black tournament, and replace one of the 
N(o(s), t) > 0 edges from black vertex o(s) to white vertex t by an 
additional edge from black vertex o(s — 1) to white vertex /. 

For example ^(Ex) = E3 and ^(E3) = Eh where E]9 E3 G SS are given in 
Figures 1 and 3. Note that 

wt(£3) = x\x\x\x\= -wt (£ , ) . 

Figure 3: An image under $ for a = (4, 2, 2, 0). 

We now prove that ^ is a weight-reversing involution in general. 

T H E O R E M 3.1. The mapping \f/:<% —-> @\B I—> Bf is an involution with 

wt(^) = - w t ( £ ) , so 

<&(&) = 0. 

Proof. Let the parameters of the graph B' be denoted by a prime (e.g., 
the loser permutation of the white transitive tournament is denoted by p' 
and the out-degree of black vertex / by a[). 

Since no edges in the white tournament are affected, we have p' = p. 
Since o(s — 1) and a(s) are consecutive in the winner permutation of the 
white transitive tournament, reversing the edge between them yields a 
transitive tournament, with o(s — 1) and o(s) trading places in the winner 
permutation, so 

a' = a(l) . . . o(s - 2)o(s)o(s - l)o(s + 1) . . . a(n). 

The out-degrees of black vertices a( 1 ) , . . . , o(s — 2), o(s + 1) , . . . , o(n) 
are unaffected by i//, and the black vertices a(s — 1) and a(s) each has 
one out-directed edge replaced by another out-directed edge, so a\ = at for 
/ = 1,. . . , n. Similarly, the in-degrees of the white vertices are unchanged 
by;//. 
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/**\ 

Since the only edges between black and white vertices that are changed 
are those between black vertices o(s — 1) = o'(s), o(s) = o'(s — 1) and 
white vertex t, we obtain 

N'(o'(i)J) = N(o(i)9j) , ij = 1 , . . . , * ; / * s - 1, 5, 
#'(*'(* - \),j) = N(o(s)9j) J = 1 « ;y * r, 
N'(o'(s)J) = N(a(s - \)J)J = 1, . . . , * ; . / # f, 

#'(*'(* - 1), 0 = #(*(*), 0, 
JV'(a'(s), 0 = N(a(s - 1), 0 + 1. 

Thus we have shown that B' e ^ , since (s, t) e ^(1?') and conditions 
(i)-(iv) for 3) are satisfied. Also wt(i?') = — wt(i?), since sgn(a') = 
— sgn(a). We complete the proof of this result by showing that B" = B, 
where B" = ^(B'). 

An inspection of (**) shows that 

{j\ (ij) G @(B) for some /' = 1,. . . , n) 

= {j\ 0J) ^ &(B') for some i = 1, . . . , w}, 

so / = t\ since / and f are the smallest elements of these two sets, 
respectively. Similarly 

{/| (/, t) G ®(B) } U {s - 1} = {/| (/, /) e ®(B') } U {s - 1}, 

and $' = s. 
Thus (V, /') = (s, t), so a" = a, p" = p, and two applications of (**) 

yields 

N"(o'\i)J) = N(o(i),j), for ij = 1, . . . , *. 

Thus i?" = B and the result follows. 

Now we consider a mapping £ for C. If D G j ^ — â?, let 

^•(D) = { (1,7) |tf (a(i), pO) ) > 0, 1 ^ i < j ^ n). 

For example, for E4, E5(<E <g) in Figure 4, J^(£4) = { (1, 2), (1, 3), 
(2, 3) }, JF(£5) = { (1, 3) }, and for £ 2 ( e sf) in Figure 2, ^ (E 2 ) = 0. 
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Figure 4: Two elements of #for a = (4, 2, 2, 0). 

In fact, it is true in general that for D e 2 - ^^{D) = 0 if and only if 
D e i The "if" part of this statement is true since D e i implies that 
p(j) = J f° r au,y> s o N(a(0> P(j) ) = 0 for all i ^ y, and thus / < y*. 

This, and the fact that D £ & also tells us that the "only i f part is true 
for p = 12 . . . n. To prove the "only i f part for other p, assume JF(D) = 0 
for D £ s/, and let k be the maximum y such that p(j) ¥* y. Then k ^ 2, 
p(fc) < A: and N(o(i),j) = 0 for /' ^ y when /' > A: or y > k, since J*"(Z)) = 0 
implies 

N(a{i)MJ)) = 0 for/ < y, 

and D £ 38 implies 

N(a(i)J) = 0 for/ > y. 

These combine to give 

iV(a(/), p(£) ) = 0 for all / = 1 , . . . , AI. 

But the in-degree restriction gives 

n 

2 N(o(i), p(k)) = am - p(k) + k > 0, 
/ = 1 

since a^k) ^ 0 and k > p(&), so we have a contradiction, finishing the 
proof. 

Thus for C e «; if 

(w, v) = Max(Min{J^(C) }, 
j i 

then (w, v) is well-defined. We obtain £(C) = C from C as follows: reverse 
the edge (p(v), p(v — 1) ) in the white tournament, and replace one of the 
N(o(u), p(v)) edges from black vertex o{u) to white vertex p(v) by an 
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additional edge from black vertex o(u) to white vertex p(v — 1). 
For example £(£4) = E5 and £(E5) = E4. Note that 

wt(£4) = — x}x2x3x4 = —wt(E5) 

and (w, v) = (1, 3) for both graphs, which holds in general by the next 
result, completing the involutionary proof of Theorem 1.1. 

THEOREM 3.2. The mapping £:#—> #:C H-> C is an involution with wt(C') 
= — wt(C), so 

${<£) = 0. 

Proof. We follow closely the proof of Theorem 3.1, since \p and £ are very 
similar, and omit details that are common. 

The out-degrees of black vertices, in-degrees of white vertices, and the 
permutation a, are all unaffected by £. The positions of p(v — 1) and 
p(v) are interchanged in p to create p' with sgn(p') = — sgn(p), so for all C 
G % we have created C e 3) with wt(C') = — wt(C). To prove that £ is an 
involution (so C e # ) it is sufficient to prove that (w', v') = (w, v). 

Now the minimality of u implies 

N(a(i)MJ)) = 0 for/ < j , i < u. 

We obtain p(/') = / for / = 1, . . . , u — 1 and N(o(i),j) = 0 for i < u or 
j < u by the same argument (reversed) that was used above to prove that 
&(D) = 0 implies Z)e jaf for D G ^ - SI. Thus p(v - 1) ^ w, so C £ 96. 
Furthermore, (w, v) G J^Z)') while (i,j) £ ^(Df) for / < w, so wr = u and 
C £ s/, giving C G #. Finally, the maximality of v implies that there are 
no edges between black vertex o(u) and white vertex p(y) = p'(y) for j > v 
in both C and C , so vr = v. 
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