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On the continued fractions which represent the functions
of Hermite and other functions denned by differential
equations.

By Professor E. T. WHITTAKER, F.R.S.

(Read and Received 9th January

§ 1. Introduction.

The functions of Hermite, which are the same as the functions
associated with the parabolic cylinder in harmonic analysis, may be
defined* by the differential equation which they satisfy, namely,

where n denotes any constant.
The standard solution of the equation, which is denoted by

Dn(z), may be represented by the asymptotic expansion

; (2)

and a second independent solution of the differential equation is
D_n_1(iz), so that the complete solution is of the form

where a and b are arbitrary constants.
In §2 of the present paper it is shown that each of these

solutions Dn(z) and D_n_1(iz) can be calculated by means of a
continued fraction. In § 3 it is shown that the two continued

* Of. Hermite, Comples Sendus 58 (1864), pp. 93, 266.
WhitUker, Proc. Load. Math. Soc. 35 (1903), p. 417.
Myller-Lebedeff, Math. Ann. 64 (1907), p. 388.
Watson, Proc. Land. Math. Soc. (2) 8 (1910), p. 393.
Curzon, Proc. Load. Math. Soc. (2) IS (1912), p. 236.
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fractions thus introduced bear to each other a relation similar to
that between the two C.F.'s which represent the roots of a quad-
ratic equation. In § 4 it is shown that there exist four other
continued fractions connected with the Hermite functions, and
that these are suited for calculation when z is small, the former
C.F.'s being suited for calculation when z is large. In §5 it is
shown that other properties of the Hermite functions can be
derived readily from the continued fractions. In § 6 it is explained
why the C.F.'s represent certain particular solutions of the differ-
ential equation rather than others : and finally, in § 7 the results
are extended to a much more general class of functions, which are
defined by linear differential equations of the second order, and
include many of the functions required in the applications of
analysis.

§ 2. Two continued fractions associated with the Hermite
functions.

In the differential equation (1) write

y = « u;
it becomes

u" — zu' + nu = 0.
Differentiating this, we obtain

u'" - zu" + (n - 1)M' = 0.

Differentiating again, we obtain
u"" - zu'" + (TO - 2)u" = 0,

and so on ; this series of recurrence-equations at once gives formally
the continued fraction

u ' n n ~ l n - 2 n - 3 , ..
— = — (A),
u z- z- z- z-

If, on the other hand, we integrate the differential equation

instead of differentiating it, we have (denoting \udx by «„

uxdx by M2, etc.)I
u' -zv + (n + 1)«! = 0,
M - zux + (TO + 2)«2 = 0,
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and so on ; this series of recurrence-equations gives formally the
continued fraction

u' n + 1 ra+2 n + 3
— = z (D)
u z — z— z —

This method of solving differential equations is due to Euler.
Its subsequent neglect is not easily explicable, for its simplicity
and directness are very attractive; the methods of solution by
power-series and by definite integrals appear forced, and artificial
in comparison.

The question now is, which of the recognised solutions of the
differential equation in power-series correspond to the continued
fractions (A) and (B). This question is settled by applying the
usual method of converting continued fractions into series ; we
thus obtain from (A)

u' n t n ( n - l ) | n ( » l ) ( 2 « 3 ) |

u z z3 z5 ^

while from (B) we obta in

u' _ n + 1 (n+l)(ra + 2)
u z z3

Integrating, we obtain from (A')

while from (B') we obtain

> + . . . } (B")
Comparing (A") and (B") with equation (2), we see that (A") may
be written

u = ei2iD.(z) (A'")

while (B") may be written

u = in4-leiz*D_n_l(iz) (B"')

We see therefore that the two continued fractions (A) and (B),
which are associated with the differential equation (1) correspond
respectively to the two independent solutions Dn(s) and D_n_1(iz).
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These continued fractions are well suited to numerical com-
putation when z is large, and can be used for this purpose
directly, without the reduction to series-form and the subsequent
integration. They have, moreover, the advantage over series that
the approximation is more rapid—a well-known property of
continued fractions, depending ultimately on the fact that in a
CF. both the numerators and the denominators of the convergents
are helping on the approximation, whereas a series is (so to speak)
all numerator, and so is deprived of the assistance which might
be afforded by a denominator; for this reason a CF. convergent
which includes only the n a power of a variable in its numerator
and denominator will generally give as good an approximation as a
series which is continued as far as the terms involving the 2nth

power of the variable. In our case the continued fraction (A)
truncated at its third term

n n — 1 n - 2
z - z— z

is equivalent to a series carried as far as the term in 1/z*.

§ 3. Analogy with the solution of a quadratic equation.
The above result presents an analogy with the solution of an

ordinary quadratic equation by continued fractions; if, for
example, we consider the equation

x?-3x+ 2 = 0,
we can derive from it the two continued fractions

™ _ •? _ 2 2 2
•c — •> ^ _ ^ _ ^ _ . . .

and K = | _ | _ | _ . . .

of which the first has the value 2 and the second has the value 1 ;
and these are the two roots of the quadratic. The resemblance
with the work above becomes evident if we reflect that these are
precisely the two C.F.'s which we should obtain if we were to solve
the differential equation

_ - 3 - + 2 2 / = O

by the method of § 2.

§ 4. Four other continued fractions associated with the Hermite
functions.

The expansion (2) for the function T>Jz) is an asymptotic
expansion proceeding in descending powers of z, and therefore
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useful for calculation when 2 is large. If, on the other hand, 2 is
not large, we require series which proceed in ascending powers of 2.
It is easy to show that one solution of the diiferential equation (1)
is the series

-...} (3)

or En(2) = e

and another solution is

,6)

The standard solution D,(z) may be expressed in terms of these by
the equation

We shall now find continued fractions which correspond to the
solutions En(«) and On(z).

If in (1) we write
z2 = x, y = ue~

the equation becomes
d?u d/ii

ix-r— + ( - 2x + 2)— + nu = 0,
dx1 dx

and obtaining a continued fraction by successive differentiation of
this equation, we have

w' n i(n - 2)x 4(n - 4)tc
~^ = 2x-2-~2x^Q- 2x - 10 - ' ( '

if, on the other hand, we obtain a continued fraction by successive
integration of the same equation, it is found to be

* £ _ ! + „ _ £ + «)? <JLti>? (D)
u 3 + as- 5 + x-

Again, if in (i) we write z* = x, y = tvelx, the equation becomes

^ + (2a; + 2)~ + (n + l)w = 0.

By successive differentiation of this equation we obtain the con-
tinued fraction

"w = ~2as + 2 - 2« + 6 - 2a;+10- ^ '
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while by successive integration of the equation we obtain
(n - 3)*

5 -x-
2x— = 1 - x - -

w 3 -x -
.(¥)

It may easily be shown by the methods of § 2 that the continued
fractions (0), (D), (E), (F) correspond respectively to the series
(3), (4), (5), (6); thus whether s be large or small, the computation
of the parabolic-cylinder functions can be performed by means of
continued fractions.

Taking as an example n = %, z = J, the continued fraction (0)
furnishes the value of u'/u correctly to the first, second, third, or
fourth place of decimals according as the first, second, third, or
fourth convergent is used. Mr A. Milne has kindly calculated for
me the following table :

z

0

0-1

0-2

0-3

0-4

0-5

0-6

0-7

0-8

O9

1-0

1 du
u dx

- 0-2500

-0-2513

-0-2551

-0-2617

-0-2714

-0-2847

-0-3025

- 0-3260

-0-3569

-0-3983

-0-4548

1 du
u dz

- 0-0000

- 0-0503

-0-1020

-0-1570

-0-2171

-0-2847

- 0-3630

-0-4564

-0-5710

-0-7169

-0-9097
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The second column gives the value of . computed from the
u dx

continued fraction (C) ; and the third column gives the corresponding

value of — -j-, which is obtained by multiplying the number in

the second column by 2s. From this we can derive Alogu, then
logu, and finally u itself, if this be the form in which the function
is required.

§5. Deduction of the recurrence-formulae for the Hermite
functions.

It is easy to deduce from the continued fractions the
characteristic properties of the Hermite functions. For example,
we see at once that the continued fraction

n - 1 rc-2 n-3

til It- '

represents both n~' and -V , where un_j denotes the same

function of the parameter (n-1) that u,, is of n ; and therefore
we must have

or un' = CM,_,

where C is independent of z. Making z very large in (A"), we
see that the constant C has the value n ; so we have

«.' = *"*,_„
which can be written

dz 2~-»v'

This is one of the recurrence-formulae satisfied by the Hermite
function Dn(«).

§6. The selection of particular sohitions from the general
solution, in the continued-fraction method.

We are naturally led to enquire how the method of solving a
differential equation by a continued fraction leads in every case to
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some particular solution of the equation instead of to the general
solution ; for it does not at first sight seem evident where the
restriction to particularity is introduced in the process of solution.

To discuss this question, let us consider a simple equation such
as

and suppose the process of solution arrested at the rth step, so that
we obtain the finite continued fraction

2 2 2 2 £

This continued fraction represents y'/y if y is any solution whatever
of the equation; so that if for j/p+1'/3/|r> in the final quotient we
substitute the value 1 (corresponding to the solution y = e1), we get
the value 1 for the entire continued fraction ; and if for j / r + ! | /y r |

we substitute the value 2 (corresponding to the solution y = eiz),
we get the value 2 for the entire continued fraction. The question
now arises, what value has the entire C.F. when we assign to
y(r+1)/y(r) in the final quotient a value which is neither 1 nor 2. To
determine this, first take y(r+I)/y(r) = 1 + «, where e is supposed small,
so that its square can be neglected, then the entire continued
fraction has the value 1 + 2~re; so that if to the last quotient we
assign a value near to unity, the entire C.F. will have a value
nearer still to unity. On the other hand, if we take ylr+l)/ylr> = 2 +e,
where e is small, then the entire C.F. has the value 2 + 2r« ; so that
if to the last quotient we assign a value near to 2, the entire C.F.
will have a value much more remote from 2.

The two values 1 and 2 of the entire C.F. may therefore,
by analogy with the theory of orbits in dynamics, be called the
stable and unstable values respectively; and it is in consequence of
its instability that the value 2 drops out.

§ 7. Extension of the preceding results to more general functions.

The functions of Hermite are included* in an extensive class

* Of. a paper by the present writer in Bull. Amir. Math. Soe. (2) 10
(1903), p. 126.
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of functions denoted by the symbol W,. ,„(«) ; this class of
functions comprehends also the error-function, the incomplete-
gatnma-function, the logarithm-integral, the cosine-integral, and
the Bessel functions.

It will now be shown that the results of § 4 can be extended to
these/unctions Wt „,(«).

For these functions satisfy the differential equation

<Pu ( , k l -

This equation has the solutions

and

1 -I— zl 2 s2+
+ l . - 2 m + l 1 . 2 . - 2 + l 2 + 2

(10)

- 2 1 -•-*./1 _ l - m + k j-m + k^-m + k
+ 1 . 2 . -2m + l . -2W+2" ' " 7

(11)

and the standard solution Wt m(z) is expressible in terms of these
two solutions by the formula

Now writing u = y«*+W', the differential equation (7) becomes

By successive differentiation of this, as in § 2, we obtain the con-
tinued fraction

y~ 2m + l + z - 2m + 2 + z - 2m+ 3 + 2
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Moreover, since the differential equation (7) is unaltered when
TO is changed to - in, another continued fraction (corresponding to
a second solution of the differential equation) can be obtained by
changing the sign of TO in this ; and since the equation (7) is also
unaltered when the signs of k and z are reversed simultaneously, we
can obtain two more continued fractions from these by reversing
the signs of k and z. These C.F.'s correspond respectively to the
series (8), (9), (10), (11) above.

Thus we obtain altogether 4 continued fractions associated with
the function Wt m(z); these correspond exactly to the 4 C.F.'s
obtained in § 4 for the Hermite functions. By taking special
values for k and TO, we can deduce various continued fractions
for the error-function, cosine-integral, etc.
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