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1. Introduction

In this paper we shall be interested in the Weierstrass transform denned by

(1.1) / (*)= k(x - y, l)da(jO
J — OO

converging (conditionally) for x in some interval, where

(1.2) /c(x,0=(47r0~Vx2/4(.

A representation theorem is a set of necessary and sufficient conditions on
f(x) so that/(x) be represented by (1.1) with a{y) belonging to a certain class of
functions. Representation theorems were discussed in [2], [3, Ch. VIII], [4], [5],
[7] and [8]. In these papers conditions on f(x) were given in order that a(y)
would belong to one of the following classes:

(a) a(y) is increasing or decreasing, (see [8] and [3, p. 204]).
(b) a(y)eB.V[- oo,oo],(see [7] and [3, p. 198]).
(c) a(y) satisfies §™xk(x — y, 1)| da(y)\ < oo for all xe(a,b) for some

a,b a<b, (see [4, p. 37] and [2]).
(d) a(y) = $y(j)(u)du and <j> eLp(- oo, oo) 1 < p ^ oo (see [3, p. 195]).
(e) aGO = ^4>{u)du and e~(x-")2l%(u)eLp 1< p < oo for xe(a,b) for

some a and b, (see [4, p. 43] and [2]).
(f) Same as (e) for p = 1 (see [4, p. 48]).
(g) | <j)(u)\ ^ Neay\ a < i and - oo < y < oo, (see [3, p. 207]).

Obviously there are functions f(x) representable by (1.1) with determining
functions a(y) that are not in any one of the classes (a)->(g). Our main result
will be to find necessary and sufficient conditions on /(x) so that there exist a
function a(y) locally of bounded variation for which (1.1) converges conditionally
in some interval (a, b) a <b. This obviously is the widest class of/(x) for which
the Weierstrass-Stieltjes transform (1.1) exists. We may also restrict ourselves to
the transform /(x)
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92 Z. Ditzian [2]

(1.3) /(s)= rk(s-y,\)<j>(y)dy,
J-oo

of locally Lebesgue integrable function <j>{y). The widest class of/(x) represented
by (1.3) corresponds to the class of <j>{y) for which (1.3) converges conditionally
in a strip al < Re s < a2- Representation of this class is of special interest and
will be the result of section 6. New representation theorems will be given for/(s)
satisfying (1.1) and (1.3) where the integral converges absolutely in sections 5 and 7
respectively. A representation theorem for/(s) satisfying (1.3) where

(1.4) | </>(u)| £ Me"2/4min(e-au/2, <T6"/2)

will be given in section 3. This result generalizes a corresponding result of
Hirschman and Widder [3, p. 207], it is also used in proof and for motivation
in the rest of the paper.

2. A preliminary theorem for temperature functions

To prove our representation theorem for Weierstrass transforms of functions
satisfying (1.4) we first have to obtain a result about functions satisfying the Heat
equation which is interesting by itself. To state this result we have to define class
H [3, p. 181].

DEFINITION 2.1. A function u(x,i) is said to belong to class H in domain D
if uxx(x, t) = u,(x, t) and u(x, t) e C2 in D.

THEOREM 2.1. The conditions

(1) u(x,t)eH for 0 < t < 1, - oo < x < oo

and

(2) | « ( * , 0 | £ ^ =

for 0 <t < I — o o < x < o o and some ax < a2, are necessary and sufficient that

(2.1) «(x,0= ("Kx - y,t)<Ky)dy,
J ~ CO

where the integral (2.1) converges absolutely for 0 < f < 1, — oo < x < oo and
<j)(y) satisfies

(2.2) | 4,(y)\ S MeyV* min e~a'y/2 for all y.
i = l,2

To shorten some of the expressions we write
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[3] The Weierstrass transform 93

(2.3) a( a | , x ,O

PROOF. We first prove the necessity of conditions (1) and (2). Condition (1)
is implied by (2.1). Combining (2.1) and (2.2) we write:

,0| S rKx-y
J — co

^M [ k(x-y,ty2/* (mine~fliW2 )dy
J-oo U = l,2 j

/• 00

^ M min k(x — y,t)exp[^y2 — ^a
i = 1.2 J-oo

. . . 1 f x2 xat aft 1

. M I x2 \ . f xa, aft
= TT^texp (40^0) ,mr2

exp L" 20=0 + 4(r^
which completes the proof of necessity of condition (2).

We shall prove now the sufficiency of conditions (1) and (2). Define F(x,0by

(2.4) V(x,t) = rk(x-y,t)e>2l4[mine-a'»2\dy = \°°k(x - y,i)dfl{y).
J-00 U = l,2 I J-00

(Choosing /}(0) = 0 a normalized fi(y) is unique). Recalling [l ,p. 146 (21)] that

(2.5) re-
ul/4xe''sudu = 7i*a*e"2£r/c(«*s)

Jo

where Erfc(x) = 2n~i §™e~'2dt we calculate V(x,t) and obtain

Obviously the necessity of (1) and (2) implies

(2.6) V(x, t) £ - p L = exp ( X ) min R(a,,x, t) = H(x, t).
V 1 — t \*\L~1)/ 1 = 1,2

We shall need in our proof that for every fixed al and a2 and e > 0
0 < t < <5(e)
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(2.7) V(x,t)^(l-s)H(x,t).

We can choose ^ (e ) so that for \y\ ^ >h(£) ey2'4 min; = 1 2 e~"'y/2 ^ 1 — e/3 and
then using (2.3) we obtain for \x\ ^ ^ ( e ) and 0 < t< ij(e) V(x,t) ^ 1 - 2s/3.
Since H(x,t) is continuous at a neighbourhood of (0,0) and if (0,0) = 1 we have
for J xj ^t]2 and 0 < t < d2 V(x, t) ^ (1 — s)H(x,t). For | x\ 2; r\2 we can choose
<53 < <52 such that for t <S3

• „/ N jR(ai,x,t) x < -r\2

mm R(a,,x,t)= { ; : ~
i = i.2 \R(a2,x,t) x^t]2.

To prove (2.7) it is enough now to show for \t\ < 5 5S <53 and x~2iv\2 tha t

\-a\)t (ai-a1)x

Texp
L4(i

>2-e
2(t - t2f 2(1 - 0*

and corresponding results for x Si — t]2. Using the estimate

I e r ay ^ ye ay — \e
Jx Jx

for x 2; 1 and straightforward computation we can prove (a) and (b) and therefore
(2.7).

We recall now that (see Th. 12.2 of [3, p. 202]) necessary and sufficient
conditions for u(x, t) to be written as

u(x,t) =
J-c

k(x - y, t)da(y) inO<f<c>, — oo < x < oo

with a{y) nondecreasing is

u(x, 0 ^ 0 and u(x,t)eH for 0 < t < 5, — oo < x < oo.

Using (2.7) we have

-e) - 1 F(x ,0 0 < t < 5(e),

and this implies the existence of y;(<) i = 1,2, both nondecreasing and unique
after normalization, such that

(2 .8) M(l-e)-1V(x,t) + (-l)iu(x,t) = f k(x - y, t)dy,(y) 0<t<5 i = l,2.
J— oo
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Recalling (2.4) there exists a.(y) locally of bounded variation such that

(2.9) u(x,t) = f k(x - y,t)da(y)
J — 00

for 0 < ( < <5(e) and yt(y) = M{\ — s)~lP(y) + (— l)'a(j'). Following now argu-
ments in [7] and [3, p. 207] we get a(y) = jy<f>(x)dx and

(2.10) \4>{y)\^M(\-s)-ley2'* min e'a'yl2.
i = 1,2

The function a(y) is independent of e, in spite of the dependence of yt(y) on s,
since a(y) satisfying (2.9) in 0 < t < 5 is unique. (/>(_y) now satisfies (2.10) for all e
and therefore (2.2) but then (2.1) converges absolutely in 0 < t < 1.

REMARK 2.1.a. In condition (2) of Theorem 2.1 we replace 0 < t < 1 by
0 < t < 8 and call it (2)*. Conditions (1) of Theorem 2.1 and (2)* can replace (1)
and (2) as necessary and sufficient for (2.1) and (2.2). The necessity is obvious
while sufficiency follows the proof of Theorem 2.1.

3. The asymptotic representation theorem

In this section a representation theorem for the Weierstrass transform of 4>
satisfying (1.3) will be obtained. This result will be used in the motivation and
proof of the following theorems of this paper. For our theorem we define first,
class ^4[a,i>].

DEFINITION 3.1. A function /(z) analytic in a < Re z <b belongs to class
A[a, 6] if f(x + iy) = 0 (ey2/4) uniformly for x in every closed subinterval of (a, b).

Define also (see [3]) K(s,t) by

(3.1) K(s,i)--

THEOREM 3.1. The conditions (V) f{z) e A\al,a2'\ and

Jd
K(s- x,t)f(s)ds

d-ioo
^ Mriex2/4> min R(at,x,l - t)

(where R(at,x,t) was defined by (2.3)) for some d, ax < d <a2 and 0 < r < 1 are
necessary and sufficient that

(3.2) f{x) = rk{x-y,Y)4>(y)dy
J — GO

converges absolutely for ax<x < a2 and

(3.3) I 4>(y) | ^ Me*2'* min e~a'y/2.
i l 2
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PROOF. T O prove necessity of (1) and (2) we observe that (3.3) implies
J exp[ — (x — y)214]<j>(y) ||i < °° for ax < x < a2 and therefore using Lemma 1
of [4, p. 32] (3.3) implies condition (1). Using Theorem 7.3 of [3, pp. 189-191]
we obtain for at < d < a2

(3.4) — K(z-x,t)f(z)dz = k(x-u,l-t)<t>(u)du.
2711 Jd-ix J-00

The necessity of condition (2) follows now the corresponding part of Theorem
2.1 replacing t by 1 — t.

To prove (1) and (2) are sufficient we define

(3.5) a(Xji_f) = A f "°K(s-x,tMs)ds.
2™ Jd_ioo

Using Cauchy's theorem and the asymptotic behaviour of both K(s,t) and/(s) it
follows that (3.5) is independent of d, provided d satisfies ax < d < a2. Recalling
that (d/dx)2K(s - x,t) = - (d/dt)K(s - x,t) and differentiating under the integral
sign in (3.5), which is easily justified, we obtain

(3.6) \-j-\ u{x, 1 — 0 = A~U(X> 1 — 0 for 0 < f < 1 and - oo < x < oo .

The sufficiency part of Theorem 2.1 implies now

(3.7) u(x, 1 - 0 = k(x- y,l- t)(j)(y) dy for 0 < t < I - oo < x < oo
J-00

-vhere <j)(y) satisfies (3.3). For such <j)(y)

(3.8) /,(*)= rk(x-y,l)cf>(y)dy
J ~- oo

converges absolutely for ax < x < a2. To complete the proof it will be sufficient
to show/ # (x )= / (x ) o n a , < x < a2. Using the Lebesgue convergence theorem we
obtain

(3.9) /«(x) = lim u(x, 1 - 0 = lim f °° k(x - y, 1 - i)4>(y) dy.

r->0+ r->0+ «/-oo

Combining (3.5) and (3.9) we have

-| t*d + ico

f.(x) = lim — K(s-x,t)f(s)ds
r->0+ z n l Jd-iac

= lim -L T ""K(s-x,t)f(s)ds
r->0+ z n l Jx-iao

= lim 4 - (C°K(iy,t)f(x + iy)dy= lim f k(y,l)f(x + i
r->o+ ^ " J-oo f-»o+ J-x,
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[7] The Weierstrass transform 97

Since for xe\_AuA2~\, al<Ai<A2<a2 and 0 < f ̂  1 - <5 $-xk{y, 1)
| / (x + iy-Ji)\ dy ̂  M §™cce~y2l*ey2a~p)l4'dy < oo we can use again Lebesgue
convergence theorem now to show that f(x) = lim Jf xk(y, l)/(x + iy^Jt)dy

r-»o +
which completes the proof.

We conclude this section with a few remarks. We shall define first, class
B(a,b).

DEFINITION 3.2. A function /(z) analytic in a < Rez < b belongs to class
B[a, b~\ iff(x + iy) = 0(ye"2/*) | y | -»• oo uniformly for every closed subinterval of
(a,b).

REMARK 3.1.a. In a related result of Hirschman and Widder [3, p. 207]
where the Weierstrass transform of <t>(y) satisfying |$O0| ^ Meayl 0 < a < %
is represented the condition /(z)eB[a, ft] is required. Using Nessel's result [4, p.
31] in the theorem above [3, p. 207] we can assume there/(z) eA\a, fo] instead of
f{z)eB[a,bl

REMARK 3.1.b. If we follow carefully the sufficiency proof of Theorem 3.1
we can see that/(z)e5[a,b] can replace f{z)eA\a,b] there. (The necessity parts
is easier then).

REMARK 3.I.e. In fact, in both theorems/(z) = 0(|y|"e)'2/4) y -* oo uniformly
in any closed subinterval of (a, b) can replace A[a, ft] and B[a, 6]. But we do use
only B\a, b] for theorems that will be proved later in this paper.

REMARK 3.1.d. In theorem 3.1 in condition (2) 0 < ( < 1 could be replaced
by 1 — <5 < t < 1. This follows from Remark 2.1.a since Theorem 3.1 uses for its
sufficiency part, the sufficiency part of Theorem 2.1 with 1 — t replacing (.

4. Functions of locally bounded variation whose Weierstrass transform
converges conditionally

In this section the most general class of functions.a(y) for which Weierstrass-
Stieltjes transform is defined will be treated.

THEOREM 4.1. The conditions
(1) /(z)eB[a1 )a2] a, < a2 {Def. 3.2).
(2) For some d a1<d<a2

I f ( f +"°K(s - U)f(s)ds\ dt ^ M(ai,a2)(-V2/4( min R(ahx,l - t)
I JO \Jd-icc I 1 = 1,2

for all oil satisfying at < ô  < a2 < a2, 0 < t < 1 and — oo < x < oo ; and
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(3) K(s-^,t)f(s)ds
Ja ' J d — ioo

for any (a,b) — oo < a < b < oo; are necessary and sufficient that; f(x) will be
represented as f(x) = |fook(x — y, l)da(f) where the integral converges con-
ditionally for at < x < a2.

REMARK 4.1.a. Actually we shall prove that (1) (2) for a fixed pair (a1a2)and
(3) willimplytheconditionalconvergenceof(l.l)forx e(jS1,^2)ai < pt < /?2 < a2

and that will imply (1), (2) and (3) with yt instead of <xt where fit < yt < y2 < fi2-

PROOF. We shall show (1),(2) and (3) are necessary first. The necessity of (1)
follows [3, p. 180]. The conditional convergence of (1.1) in (a1,a2) implies (see
[3, p. 190]).

(4.1) | a(>>)| ̂  M(a1,a2)e
)'2/4min e^'2

1 = 1,2

for any ( a^^ ) satisfying ax < at < a2 < a2, and also for at <d <a2

(4.2) — f 'KK(s-x,t)f(s)ds = C k{x-u,\-t)dx{u).
znl Jd + ioo J-oo

Writing now

- u, 1 -
• 0 0 C X Q- - r/:

J-ccJO

= — I k(x — u, 1 — t)a{u)du
J — oo

I - M, 1 - t)a(u)du = It

The interchange of order of integration above is justified by Fubini theorem using
(4.1). Theorem 3.1 used on both It and I2 implies condition (2). Recalling that
a(y) satisfies J"*i J| da(y) | ̂  A^a, b) (<x(y) is locally of bounded variation), we have

-b /•oo l fb i ( • « - 1

/ I f
Ja J —

- u, 1 - - u, 1 - t)doc(u)

+

/»6 ( - 6 + 1

k(Z-u,l-t)dx(u
Ja Ja—1

f I f k(t;-u,\-t)da{u) dA
Ja IJb+1 )

= 2n{J1 +J2+J3}.
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It is easy to see that J2 ^ A%{a, b). To estimate Jt ( t reatment of J3 is similar) we

write

S f
a I J - GO

f | a ( a -

Obviously J*2 is bounded independently of * (we choose a(0) = 0). For I; e(a, b)
a n d u e ( - o o , a - l ) d/d£fc(£ - «,1 - 0 > 0

Ki =

S f k(a-u,l -t)\<x(u)\du + |
J — co J~ c

= 0(1) f -> 1 -

Therefore J2 is bounded for 1 — c> < * < 1 which completes the proof of condition (3).
To prove that conditions (1), (2) and (3) are sufficient our first step will be to

show for a fixed t 0 < t < 1 and for xe(a1,a2)
i* co I 1 /* d + ioo \

(4.3) k(x - S,t) — X(s - 1,0/(«)ds d5 =/(x).
J-00 I 2 ? " Jj-iQO J

Condition (2) implies the convergence of the integral in (4.3) (conditional

convergence). Condition (1) combined with Cauchy Theorem implies for al< dt,

d <a2

J
"d + ioo ndi+ioo

K(s - U)f(s)ds = K(s-S,t)f(s)ds.
d — iaa Jdi—ioo

Straightforward computation yields for 0 < t < t < 1
(4.5) I k(x — £,T) I \ I K(s — £, 0/( s ) l ds\ d£, < oo .

J — co [Jd — ioo J

Therefore using (4.4) and (4.5) for at < x < a2 and [3, p. 177, (1)] we have

f k(x-S,,x)~ [ "K(s - Z,i)f(s)ds}d?
J-00 Zl11 Jd-i0C

f(s) I I k(x - £,T)K(S — £,,i)df\ ds

/•CO /• CO

= f(x + iy)dy I k{^,x)k{i£, — u,t)dl;
J — co J ~~ co

= f f(x + iy)k(y,t-x)dy.
J— CO
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Obviously

lira f{x + iy)k(y, t - x)dy =/(x)
z-*1— •/ —oo

and therefore to prove (4.3) it is enough to show

(4.6) (k(x-^,r)-k(x-U)) -.—. K(s - £,t)f(s)ds d£ = o(l) T->*-
I J-oo I / 7 n Jci-ioo )

which we can obtain applying condition (2) again.
Our next step will be to determine tx(y). We define a,(y) by

(4.7) a'OO = (I ( +'\s - S,tms)ds\dt.
Jo (Jd-ioo )

Using condition (3) and Helly-Bray's Theorem [5, p. 31] there exist a sequence tn

and a function a(y), y e [a, b] such that l im , ,^ $b
af(y)datn(y) = jb

ag(y)da.(y) for
all g{y) e [a, b] where J*| Ja(y) j £ L(a, b) and a,^}') tend to a(y) at all points of
continuity of a(y). We take the sequence ct,n(t)(y) to correspond to [— 1,1] (for
[a.£]) and a subsequence of ar{Bl),y, a,,^,^) to correspond to [ -2 , 2] etc.
Define now aHm)(y) by Cantor diagonal selection principle. It seems as if we have
different functions <x(n,y) for each interval [ — n,n] but normalizing the u(n,y)
and recalling that a,n(I0(y) is a subsequence of atn(k_1>(y) we observe that a unique
function a(y) exists, is locally of bounded variation, satisfies

lim g(y)dxt(m)(y) = g(y)da{y) Vn
m-*oo J~n J — n

and lim^a, a,(m)(y) = a(j) at all points of continuity of a{y) (that is at all but a
countable set of points). Therefore, for any (a2a2) al < at < a2 < fl2

g lim |a,w(j;) | g M(aia2) lim | ((«) f

(ai,j;, 1 - t(n)) g M(a1,a2)e)>2/4 min e""'31'2
( = 1,2 ( = 1,2

This implies
/» 00

(4.8) /*(x)= fe(x-y,l)rfa(3;)
J — OO

converges conditionally in a! < x < a2. The above means that for A^AX and
B^B1 for a fixed x, xe(al,a2)

(4.9)

Using condition (2) one can show recalling (4.3) that for A :g A2 < A± and
B ^ B2 > B^ and t, tQ S t < 1
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(4.10)

The Weierstrass transform 101

fBk(x-y,t)dat(y)-f(x)
JA

<s

(where A2 and B2 are independent off)- Choose A = - N B = N. For t satisfying
t o < f* < t< 1 we "

(4.11) | J (k(x - y,l) - k(x - y,t))dat(y)

Choosing t(m) > t(m0) > t^ we have

(4.12) i f k(x - y,\)datim){y) - f fc(x - y,l)Ja(y) < E.
I J - N J-JV

Combining (4.9), (4.10), (4.11) and (4.12) we have |/(x) - /* (x ) | < 4s. But both
/(x) and/^(x) are independent of N and t and therefore/(x) =/*(x). The above
being true for at < x < a2 we have

/•OO

/ ( x ) = fc(x - y , \)da(y) ax<x<a2
J — oo

which completes the proof of our theorem.

5. Absolute convergence

In this section necessary and sufficient conditions on/(x) to be represented
as absolutely convergent Weierstrass-Stieltjes transform will be achieved. We
shall need the following definition:

DEFINITION 5.1. A function /(z) analytic in the strip a < Re z <b and
satisfying/(x + iy) = 0(ev2/4) uniformly in any closed subinterval belongs to class
C[a,bl

THEOREM 5.1. The conditions

(1) f(x)eC[aua2],a1<a2

and

(2)
d - ioo

K(s - Z,t)f(s)ds min
1 = 1,2

,.,x,l - 0

where at < d < a2, 0 <t <l, - o o < x < o o and cc1,a2 are any pair satisfying
ax < <*! < a2 < a2; are necessary and sufficient that; f(z) = l™Jc{z-y,l)da(y)
and the integral will converge absolutely for ax < Rez < a2.

PROOF. The necessity proof of (2) is computational and that of (1) follows
[4, p. 32].
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To prove the sufficiency of (1) and (2) we observe that these conditions imply
conditions (1), (2) and (3) of Theorem 4.1 and therefore the conditional con-
vergence of f(x) = J" xk(x — y, l)dx(y). We can complete the proof if we show
that/* (x) =$™ook(x - y, 1)J doc(y)\ < oo for at < x < a2. We recall that

(5.1) \"\da{y)\ g l im ("\doLtJiy)\
Jo «-*co Jo

where txt(y) was denned in (4.7). Condition (2) implies now for at < x <cc2

| dx(y)\ ^ M lim e"2/4( min R(ahu,l - t)r
Jo

1 = 1,2

The last estimate establishes the absolute convergence of ^xk(x — y, l)d<x(y).

REMARK 5.1.a. One can observe that the class of functions oc(t) is the same
as treated by Nessel [4, p. 37]; the conditions are different however. Condition
(2) here replaces Nessel's condition

(5.2)

(t - x)2/4] • , I (1 - 4jr-)exp[(s - x)2/4]f(s)ds

for all T. Also here mast of the proof follows as a corollary of the representation
of the more general class.

6. Weierstrass transform of locally Lebesgue integrable functions

Representation theorem for Weierstrass transform

(6.1) f(x)
= f

where (j>(y) is locally Lebesgue integrable and (6.1) converges conditionally in
some strip would be obtained as follows:

THEOREM 6.1. Conditions (1) and (2) of Theorem 4.1 and

(3)* f\ [""[Kis-^tJ-Kis-MlMds # = o(l) ^ l - , l - < 5 < f , < l
Ja i Jd-iao

for any a,b — oo < a < b < oo (but the rate at which the double integral tends
to zero depends on (a,b)), are necessary and sufficient for f(x) to be represented
by (6.1) converging conditionally in at <x < a2 and (j)(y)eLl(a,b) for all
— co < a < b < oo .
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PROOF. Condition (1) and (2) are necessary since they were necessary already
for Theorem 4.1. To prove (3) we write

J
-* b 4 /•d + ic

a ^ni Jd_I 0 0

-i

To estimate Iy (I2 is estimated similarly) we follow the proof of Theorem 4.1 and
write

• b,

+ 0(1)
/• 6 . ^ 6 + 1

' i =
Ja I J a - 1

For a fixed e there exist iV such that §*Nk(x, l)dx ^ 1 — e and therefore for
(1 - tt)N < 1 we write

\j k(v,
|<6+

+ £
/a-l

We now use Fubini's Theorem to write

J-N Ja-l

Recalling that T(/J) = #|0(£ + h) - 4>(g)\d£ satisfies r(h) = o(l) A-»0+ we
complete the proof of condition (3).

To prove sufficiency we recall that conditions (1) (2) and (3)* imply the
corresponding conditions of Theorem 4.1 and therefore

fix) = r k(x - y,l)da(y).
J — oo

Condition (3)* implies <x(y) = \y4>{u)du and this completes the proof of our
theorem.

7. Absolutely convergent Weierstrass transform

The following theorem corresponding to those of former section can be
obtained.

THEOREM 7.1. The condition (I)f(z) e A[a1,a2'],(2) condition(2) oj Theorem
5.1, and (3) condition (3)* of Theorem 6.1, are necessary and sufficient for f(x)
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to be written asf(x) = / " ^ ( x — y,l)<j)(y)dy the integral converging absolutely
for ai < x < a2.

The proof is similar to proof of former theorems in this paper and would
not be given here.

The same class of functions has also a different representation theorem
[4, p. 48, Satz 3].

References

[1] Erdelyi (and others), Tables of integral transforms, Vol. /(McGraw Hill, 1954).
[2] H. P. Heinig, 'Representation of functions as Weierstrass-transforms', Canadian Mathematical

Bulletin 10 (1967), 711-722.
[3] 1.1. Hirschman and D. V. Widder, The Convolution Transform (Princeton Univ. Press, 1955).
[4] R. J. Nessel, 'Ueber die Darstellung holomorpher Funktionen durch Weierstrass and Weier-

strass-Stieltjes Integrate', Journal fur die reine und angewandte Mathematik (1965),
31-50.

[5] H. Pollard, 'Representation as Gaussian integral', Duke Math. Jour. 10 (1943), 59-65.
[6] D. V. Widder, The Laplace transform. (Princeton Univ. Press, 1946).
[7] D. V. Widder, 'Necessary and sufficient conditions for representation of a function by a

Weierstrass transform', Trans. Amer. Math. Soc. 71 (1951), 430-439.
[8] D. V. Widder, 'Weierstrass transforms positive functions', Proc. of Nat. Acad. of Science

37 (1951), 315-317.

Department of Mathematics
University of Alberta
Canada

https://doi.org/10.1017/S144678870000968X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000968X

