
1

FUNDAMENTAL CONCEPTS

1.1 Introduction
The object of this chapter is to lay out the principal ideas and nomenclature of group
theory in preparation for the physical applications discussed in later chapters. We
shall look at what group theory deals with, we shall define the mathematical meaning
of a group, we shall show examples of several groups, and we shall discuss the key
subject of matrix representations of groups (with an example). A review of matrix
algebra and definitions of some special matrices concludes the chapter.

As a student of science, you spent several years studying calculus, differential
equations, and the properties of important mathematical functions (trigonometric
functions, exponentials, Bessel functions, etc.). You used these tools to solve prob-
lems in Newtonian mechanics, electromagnetism, and maybe even problems in
quantum mechanics.

At its heart, group theory is very different from calculus. It is more abstract and
more fundamental, with little reliance on explicit mathematical functions. As we shall
see in this text, group theory, though abstract, nevertheless has great power in dealing
with a wide range of physical phenomena. One example is the angular momentum
(“spin”) of an electron that is experimentally a dimensionless “point” particle with no
analogue in Newtonian mechanics.

In physical applications, group theory calculates numerical results by using
mathematical functions in the group’s representation matrices.

More profoundly, group theory can give deeper insight into subjects you may
have already studied; for instance, the conservation of energy and the structure of
hydrogen-atom wave functions in quantum mechanics. Newton invented calculus
to explain how forces acting on an object determine its motion. In modern high-
energy particle physics the forces are not well known, yet group theory in its abstract
generality provides predictive schemes for classifying “strange” particles.

P. W. Anderson (1923–2020, Nobel laureate in physics 1977) wrote “It is only
slightly overstating the case to say that physics is the study of symmetry.”
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2 1 Fundamental Concepts

1.2 Operations
Group theory deals with operations, also called transformations. In this book the
symbols for operations are written in bold. We use the convention that an operation
operates on the object (the operand) to its right.

Consider the simple example of a transformation T that operates on a variable x
(the operand) to change its sign to �x. This is written symbolically as

Tx D �x:

If T operates on the function ax C b, where a and b are constants, T operates
only on x and has no effect on constants. Hence

T.ax C b/ D aTx C b

D �ax C b:

If T operates twice in succession, the sequence TT can be written as T2:

T2x D TTx
D T.Tx/
D T.�x/
D x:

An even simpler operator is the identity operator, which produces no change in
the operand. The identity operator in group theory is conventionally given the symbol
E, from the German Einheit, unity or, literally, oneness:

Ex D x:

These simple examples illustrate the abstract nature of group theory. The operators
are not expressed in terms of explicit mathematical functions; instead, operators are
defined in terms of their effect on the operand.

1.2.1 Symmetry Operations
The figure shows an equilateral triangle
in the x-y plane. The dot marks the loca-
tion of the triangle’s geometric center,
the point equally distant from all three
apexes.

Consider now three operations, E,
A, and B, that rotate the triangle about
its geometric center through the speci-
fied angles.
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1.2 Operations 3

E: rotate by 0ı .equivalently; rotate by 360ı/

A: rotate by 120ı

B: rotate by 240ı

As the notation implies, operation E (rotation by 0ı) clearly plays the role of the
identity operation.

In this digital age, clocks with hands are no longer common but
the terms counterclockwise and clockwise for the sense of a rota-
tion are firmly entrenched. If a rotation when seen looking down
the rotation axis toward the origin turns in the same sense as the
hands of a clock, it is termed a clockwise rotation (cw), and if the
rotation is in the opposite sense, it is counterclockwise (ccw) as illus-
trated by the sketches. This text follows the usual convention that
counterclockwise rotations are positive.

The sketch shows the effect of the
operations E, A, and B on the triangle.
The operations have left the appear-
ance of the triangle unchanged, which
is the essence of the concept of sym-
metry. Frank Wilczek (Nobel laureate in
physics 2004) coined a pithy phrase to
describe the connection between oper-
ations and symmetry: “change without change.” With reference to the triangle
example, we have made a change – an operation was performed on the triangle by
rotating it – but the triangle still looks the same.

More generally, if an operation on an object leaves it unchanged, or invariant, the
object must have a symmetry property. In the triangle example a 3-fold symmetry is
revealed by rotation through the particular angles 0ı, 120ı, and 240ı.

The symmetry of an equilat-
eral triangle under certain rota-
tions is an example of a rotation
symmetry. There are many other
examples of geometric symme-
try. Consider the repeated pat-
tern in the sketch, which could
be a decorative frieze along the
edge of a building. The two rows are parallel to the x-axis and are equidistant from
the x-axis. The columns are all equally spaced along x by a distance `, and the dots
signify that the pattern extends far to the left and far to the right.

If the pattern is translated parallel to the x-axis by an integer multiple of `, its
appearance remains the same. This is an example of translation symmetry, important
for the discussion of crystal lattices in Chapter 4.

https://doi.org/10.1017/9781108923217.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108923217.002


4 1 Fundamental Concepts

If the pattern is folded along the x-axis, the two rows coincide. Each row is a
mirror image of the other, an example of reflection symmetry, also called mirror
symmetry.

Symmetry is appealing and has long played a role in art and architecture, from
ancient rock carvings to mosaics in ancient Rome to ephemeral foam patterns on
coffee drinks.

For the black-and-white geometric pattern in the
figure, the z-axis is normal to the page and passes
through the origin. Rotations about z by 0ı and 180ı

and reflections about the diagonals are symmetry
operations. Rotations about z by 90ı and 240ı and
reflections about the x- and y-axes are not symmetry
operations.

The equilateral triangle has additional symmetries
revealed by no longer requiring the triangle to lie in the x-y
plane. The figure shows three new axes aa, bb, and cc. Each
axis passes through an apex and is perpendicular to the oppo-
site edge. It follows by geometry that the axes intersect at the
geometric center of the triangle.

Suppose now that the triangle is “flipped” 180ı about axis
aa. The front becomes the back and vice versa; the appear-
ance of the triangle is unchanged, so this is a symmetry
operation on the triangle, and similarly for flips about axes bb and cc.

The three rotation operations in the plane and the three flip operations iden-
tify six symmetry operations for the equilateral triangle. These operations are easily
demonstrated with a cardboard triangle.

Inversion symmetry is abstract and cannot be shown pictorially or demon-
strated by a physical model. Space inversion reverses the signs of the coordi-
nates so that x is replaced by �x, y by �y, and z by �z. These replace-
ments are conveniently expressed by the symbol ‘, which means “maps to” or
“is replaced by.” Thus, inversion can be written x ‘ �x, y ‘ �y, and
z ‘ �z.

Consider a sphere of radius R, which can be described algebraically by the equa-
tion x2 C y2 C z2 D R2. Upon applying the space inversion operation to the
coordinates, the equation is unchanged; the sphere is invariant under space inver-
sion. We shall see important examples of inversion when symmetry and the quantum
theory of atoms are discussed in Chapter 5.

But the use of symmetry in decorative arts and the description of geometric figures
barely scratches the surface of its deep importance. Steven Weinberg (1933–2021,
Nobel laureate in physics 1979) has written that symmetry is the “key to nature’s
secrets,” which is why the application of symmetry principles to physical problems is
the subject of this text.
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1.2 Operations 5

1.2.2 Products of Operations
Consider again the set of three operations fE;A;Bg from the triangle example dis-
cussed in Section 1.2.1. The product of two operations is the result of applying first
one operation followed by a second. If, for example, A is applied first, followed by
B, the product is written symbolically as BA. The operation on the right, here A, is
considered to be applied first. Note that although the product BA has the appearance
of “multiplication” of B times A, abstract group theory puts no restrictions on the
method by which operations are actually combined. Some books on group theory use
the term “multiplication” where we use “product.” Such terms are symbolic only, with
no reference to ordinary arithmetic.

In the example, B is applied to A “from the left.” Alternatively, an operation can be
applied “from the right” to give, in this case, AB. These same ideas are also used with
equations relating operations. Equations involving operations conform to the usual
rule from algebra that both sides are to be treated equally. Consider, for example, the
product of two operations T1 and T2 to give a third operation T3:

T2T1 D T3:

Now apply an operation C from the left; C must act on both sides of the relation to
maintain the equality.

CT2T1 D CT3

Applying C from the right gives

T2T1C D T3C:

The distinction between operations from the left and from the right is important.
The reason is that for many group operations the order of combination makes a differ-
ence, unlike the multiplication of numbers or algebraic functions. If two operations T1
and T2 are combined, the two possible products T1T2 and T2T1 may not necessarily
be equal. However, if T1T2 D T2T1, then T1 and T2 are said to commute.

1.2.3 Product Tables
Rotation symmetry operations on the equilateral triangle are rotations through defined
angles about defined axes, so it is easy to determine the product of any two operations.
Consider, for example, the product BA. First applying A produces an initial rotation
of 120ı. The second operation B causes an additional rotation through 240ı, for a net
result of 360ı (equivalently 0ı). This is the same result as using operation E alone, so
the product is written

BA D E:
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6 1 Fundamental Concepts

Table 1.1 Products of E, A, and B

E A B

E EE D E EA D A EB D B
A AE D A AA D B AB D E
B BE D B BA D E BB D A

Table 1.2 Products of E, A, and B

E A B

E E A B
A A B E
B B E A

The same reasoning can be used to evaluate all of the nine possible products of E; A,
and B, being sure as a general rule to maintain the order of the operations. The prod-
ucts are conveniently displayed in the form of a product table, where an operation in
the top horizontal row is applied first followed by an operation from the left-hand
vertical column. For clarity in this first illustration, both the product and the net
result are given in Table 1.1, but after this a table will show only net results, as in
Table 1.2.

The tables show that AA D A2 D B; geometrically, two successive counterclock-
wise rotations by 120ı give the same result as a single counterclockwise rotation by
240ı. All the members of this set are powers of a single member A. The triangle rota-
tion operations E, A, and B are cyclic because they can all be written as powers of A:
E D A0, A D A1, and B D A2.

Table 1.2 shows that in this particular example the operations fE;A;Bg all com-
mute with one another, for instance, AB D BA. The identity operation E always
commutes with any operation T because ET D TE D T.

1.2.4 The Inverse of an Operation

For any operation T there may be an inverse operation, symbolized T�1, that undoes
the effect of T on the operand. Because the identity operation E always signifies no
change, it follows that TT�1 D T�1T D E. An operation always commutes with its
inverse.

In the triangle example, A is a counterclockwise rotation through 120ı, so one
way to undo the effect of A is by a further counterclockwise rotation through an
additional 240ı, to give a net rotation of 360ı D 0ı. In the set fE;A;Bg the inverse of
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1.2 Operations 7

A is identified as A�1 D B. By similar reasoning, B�1 D A. These results can also be
read from Table 1.2. The entries AB D BA D E show, for example, that B D A�1.

Another operation that undoes the effect of A is to rotate clockwise through 120ı

to bring the triangle back to the starting point. This clockwise rotation is equivalent to
a counterclockwise rotation through �120ı. This is a new operation and not a member
of the operations E, A, and B, which are defined here only for counterclockwise
rotations.

Here is an example involving inverses and a product table. Consider the set fE;Ag

with the following partial product tables:

E A

E E A
A A A2

What is the unidentified member A2? Try A2 D A. Multiply both sides from the left
by A�1.

A2 D A

A�1A2 D A�1A

.A�1A/A D E
EA D E

A D E

The result A D E gives the dull and useless Table 1.3.
The alternative possibility A2 D E gives the more useful product Table 1.4 that

has two distinctly different members.
In the product table for a set of operations, a given symmetry operation appears

only once in each column as seen in the example. As a proof consider a set of dis-
tinctly different symmetry operations A, B, C, and D. Suppose that A occurs twice
in the column headed by B, so that BC D A and BD D A. Then C D B�1A and
D D B�1A so that C D D, a contradiction because the operations are assumed to be
different. Similarly, each operation occurs only once in a given row.

Table 1.3 A = E

E E

E E E
E E E
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8 1 Fundamental Concepts

Table 1.4 A2 = E

E A

E E A
A A E

1.3 What Is a Group?

With a solid foundation on the nature of operations, their products, and their inverses,
it is time to take up the heart of the matter: the definition of a group. The definition
is summarized in the following five axioms (i) to (v). They may seem a little dry, but
they are needed because if a set of operations can be shown to form a group, a raft of
useful theorems are then immediately applicable.

To illustrate the axioms, we shall show that the set of triangle rotation operations
fE;A;Bg form a group.

(i) A group consists of a set of operations called members of the group. We shall
show that the set fE;A;Bg are members of a group.
(ii) The product of any two members of a group is also a member of the group;
products do not take us to new operations outside the set of group members.
Table 1.2 shows that the products of E, A, and B are all members of the same set.
Contrariwise, clockwise rotations of the triangle do not appear in Table 1.2 and
are therefore not members of this group.
(iii) The group contains an identity member E that produces no change when
combined with any group member. Table 1.2 for the triangle rotations show that
EE D E, EA D AE D A, and EB D BE D B, showing that the notation is
justified; E is truly the identity member in the set.

(iv) For every member T of a group, there is also a member T�1 in the group that
is the inverse of T, such that TT�1 D T�1T D E. As shown in Section 1.2.4 and
also in Table 1.2, E�1 D E, A�1 D B, and B�1 D A.
(v) An additional axiom is that the products of operations are associative so
that T1.T2T3/ D .T1T2/T3, where the products in parentheses are evaluated
first, then combined with the remaining operation. This axiom will be satisfied
automatically by the operations in applications.

Let � be the symbol for the group fE;A;Bg. The number of members in a group
is called the order of the group: � is of order 3.

Note that E is always a member of any group and satisfies the group definition
axioms. Therefore E is itself a group (of order 1). If a subset of group members are
themselves a group, the subset is called a subgroup. E is a trivial subgroup of every
group. The whole group itself is also a trivial subgroup of the group.

https://doi.org/10.1017/9781108923217.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108923217.002


1.4 Examples of Groups 9

In the group � , the set fE;Ag is not a subgroup, because the product AA D B, an
operation not included in the set. In a subgroup, just as in a group, the product of two
operations in the subgroup must also be a member of the subgroup.

The product table for a set of operations can be checked to see whether the group
axioms are satisfied. The product table tells all.

1.3.1 Discrete and Continuous Groups

Groups with a finite (countable) number of members are called discrete or finite
groups. The triangle rotation group � = fE;A;Bg has a finite number of members
and is an example of a discrete group.

Consider now a flat circular disk with a perpendicular
axis through its center, as suggested by the sketch. Rota-
tion of the disk by an arbitrary counterclockwise angle �
leaves the disk invariant, so this leads us to suspect that
there is a group involving rotations. The rotations form a
group: rotation by 0ı is the identity, two successive rota-
tions by �1 and �2 give the same result as a single rotation
by �1 C �2, and to every rotation � there corresponds an
inverse rotation 360ı � � .

Because � can be any angle, this group has an “infinite” (uncountable) number
of members; it is an example of a continuous group. A continuous group depends
on a continuous parameter, in this example the angle � . Continuous groups are
important in physics, for example, in the quantum-mechanical wave function of a
hydrogen atom, which depends on two continuous parameters: the polar angle � and
the azimuthal angle �.

1.4 Examples of Groups

1.4.1 Abelian Groups

A group in which all of the members commute is called an Abelian group, after the
Norwegian mathematician Niels Henrik Abel (1802–29). The triangle rotation group
composed of the set fE;A;Bg is an Abelian group. This group is also a cyclic group
and can be written as fE;A;A2g as shown in Section 1.2.3.

All groups of order less than 6 are Abelian.

1.4.2 The 32 Group

Table 1.5 is the product table for a group of order 6, a popular example in textbooks
on group theory. It is termed the 32 (“three-two”) group.
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10 1 Fundamental Concepts

Table 1.5 The 32 group (order 6)

E A B C D F

E E A B C D F
A A E F D C B
B B D E F A C
C C F D E B A
D D B C A F E
F F C A B E D

The product table shows that the group axioms are satisfied:

(i) Only members from the set appear in the product table.

(ii) The product of two members is a member of the set.
(iii) There is an identity member identified as E that obeys the properties of the
identity operation such as EA D AE D A.
(iv) Every member of a group has an inverse in the set as shown by products such
as DF D E so that F D D�1.

Members of a given group may or may not commute. For example, AB D F and
BA D D. A and B do not commute, so 32 is not an Abelian group. It is the smallest
group that is nonAbelian, accounting for its popularity as a teaching tool.

Table 1.5 shows that the 32 group has three nontrivial subgroups of order 2,
namely fE;Ag, fE;Bg, and fE;Cg and also a subgroup of order 3 fE;D;Fg, but no
others. A theorem in group theory states that for a group of order n each of its sub-
groups has an order that is a factor of n. The example of the 32 group demonstrates
this theorem because 6 = 2 � 3 for the nontrivial subgroups of orders 2 and 3. 6D 6 � 1
is satisfied by the trivial subgroup fEg of order 1 and by the group itself of order 6.

It follows from this theorem that if the order of a group is a prime number, the
group has no nontrivial subgroups and must therefore be a cyclic group. The group �

of order 3 is an example.

1.4.3 The Permutation (Symmetric) Group

This section discusses the apparently different example of the permutation group.
Here is the permutation group of order 6.�
1 2 3

1 2 3

� �
1 2 3

2 1 3

� �
1 2 3

1 3 2

� �
1 2 3

3 2 1

� �
1 2 3

3 1 2

� �
1 2 3

2 3 1

�
P1 P2 P3 P4 P5 P6
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A permutation rearranges a set of numbers. A permutation group of degree n has
n different numbers, so there are n choices for the first number in the permutation,
n � 1 for the second : : : hence nŠ D n � .n � 1/ : : : 1 different permutations. This
example is a permutation group of degree 3: there are 3 numbers and 3Š D 3 �2 �1 D 6

permutations as shown.
A permutation can be viewed as a one-to-one mapping of n different numbers

into a possibly different order. The permutation P1 does not cause a reordering, so
it is evidently the identity operation E. Using the ‘ “maps to” symbol, j ‘ k

means that the number j is replaced by k. For example, the permutation P5 is the
reordering 1 ‘ 3, 2 ‘ 1, and 3 ‘ 2. As another example, consider a function of
three variables f .x1; x2; x3/ D x3

2 C x1x2. If permutation P5 is applied to f , it
becomes x22 C x3x1.

A permutation is classed as even if the bottom row of its matrix requires an even
number of interchanges (transpositions) to bring it to standard ascending numerical
order, and as odd if it involves an odd number. For example, P2 is odd, because in the
bottom row only one interchange 1 $ 2 brings the bottom row to the numerical order
1 2 3. P5 is even, because two interchanges 1 $ 3 followed by 3 $ 2 are required.

The permutation group of degree n is also called the symmetric group of degree n.
The reason for the name “symmetric” is that permuting the labels of identical objects
(such as electrons) does not alter the symmetry – another example of “change without
change.” The symmetric group of degree n has been given a variety of symbols, and
this text uses Sn. The factorial n! increases more rapidly with n than either powers xn

or exponentials enx , so Sn can be a very large group even for relatively small n; for
example, S10 has 3; 628; 800 group elements.

Products of Permutations

To show how to find the product of two permutations, walk through the evaluation
of P4P5 as an example. Consider an operand x123 with three subscripts 123. First
apply the permutation P5, written as P5 x123 D

�
1 2 3
3 1 2

�
x123. P5 says 1 ‘ 3, 2 ‘ 1,

and 3 ‘ 2. The result is therefore P5 x123 D x312. Now apply P4 to this result,
P4 x312 D

�
1 2 3
3 2 1

�
x312. P4 says 1 ‘ 3, 2 ‘ 2, and 3 ‘ 1 to give the final product

P4P5 x123 D x132. This is the same permutation as P3 x123 D x132, so P4P5 D�
1 2 3
3 2 1

��
1 2 3
3 1 2

�
D
�
1 2 3
1 3 2

�
D P3.

Here is a simple way to find the product of permutations. Consider again the
product P4P5 D

�
1 2 3
3 2 1

��
1 2 3
3 1 2

�
. Rearrange the entries in P4 so that the top row of the

P4 matrix duplicates the bottom row of P5:
�
3 1 2
1 3 2

� �
1 2 3
3 1 2

�
=
�
1 2 3
1 3 2

�
. The result is P3.

It is as if the top row of the second permutation “cancels” the bottom row of the first.
Proceeding in this fashion develops the product Table 1.6 for the permutation

group of degree 3. Study of the product table verifies that the six permutations form a
group because there is an identity P1, each permutation occurs only once in each row
and column, and each permutation has an inverse, as shown in the table, wherever a
product is E.
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12 1 Fundamental Concepts

Cycle Notation

Another way of representing a permutation is by cycles. A permutation cycle is devel-
oped by tracing the permutation from one number to another until the cycle begins to
repeat. Consider permutation P2: starting with 1 in the top row, 1 ‘ 2 and 2 ‘ 1,
ending a cycle of length 2. Continuing to the next unused number 3, 3 ‘ 3 is a cycle
of length 1. Combining, P2 is written in cycle notation as .1 2/.3/. Similarly,

P1 .1/.2/.3/ P2 .1 2/.3/ P3 .1/.2 3/
P4 .1 3/.2/ P5 .1 3 2/ P6 .1 2 3/:

A cycle of length 1 means that the permutation does not change that number. Cycles
of length 1 are sometimes omitted in cycle notation.

To read a cycle, note that any number in the cycle maps to the number at its right,
and the number at the right-hand end of the cycle is considered to return to the start
of the cycle at the left-hand end. Take as an example the cycle .3 5 2 6 1 4/. Starting
from number 3, the permutation maps 3 to the number 5 at its right: 3 ‘ 5, etc. The
last element 4 cycles around to the beginning so that 4 ‘ 3.

1.5 Matrix Representations of Groups
Mathematicians have proved a great number of theorems on the properties of abstract
groups, but for work in physics it is a help to be able to relate abstract groups to
calculable mathematics. For applications of group theory, the mathematical objects of
choice are matrices, and the rule of combination (product) is matrix multiplication.
For applications in physics, group theory is much less the theory of abstract groups
and much more the theory of matrix representations, as this text amply demonstrates.

1.5.1 Isomorphism
Comparing the product Table 1.5 for 32 and Table 1.6 for S3 shows they have exactly
the same form except for the names of the members. When every member of one

Table 1.6 Permutation group of degree 3

E P2 P3 P4 P5 P6
E E P2 P3 P4 P5 P6
P2 P2 E P6 P5 P4 P3
P3 P3 P5 E P6 P2 P4
P4 P4 P6 P5 E P3 P3
P5 P5 P3 P4 P2 P6 E
P6 P6 P4 P2 P3 E P5
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1.5 Matrix Representations of Groups 13

group corresponds to one and only one member of another and vice versa, the groups
are said to be isomorphic (from Greek “identical form”). In the example of 32 and S3
the correspondence between the two sets of members is E $ P1, A $ P2, B $ P3,
C $ P4, D $ P5, and F $ P6.�
1 2 3

1 2 3

� �
1 2 3

2 1 3

� �
1 2 3

1 3 2

� �
1 2 3

3 2 1

� �
1 2 3

3 1 2

� �
1 2 3

2 3 1

�
E A B C D F

Incidentally, these groups are also isomorphic to the group of six symmetry operations
(rotations and flips) of the equilateral triangle.

If a set of matrices is isomorphic to the members of an abstract group, the matrices
are called a matrix representation of the group.

1.5.2 Homomorphism
Sometimes the requirement is dropped that each representation has a unique 1-to-1
correspondence between members of two groups. Instead of an isomorphism, this is a
homomorphism. The only requirement for a homomorphism is that the matrices have
the same product table as the abstract group.

Here is a simple homomorphism of � (Table 1.2) in terms of 1-dimensional
matrices. �

1
� �

1
� �

1
�

E A B

This set of permutations obviously obeys the product table for � . The homomorphism
where every group member is represented by the matrix

�
1
�

is called the identity
homomorphism 1. Every group has an identity homomorphism.

The 32 group of order 6 in Table 1.5 has, like every group, an identity
homomorphism. However, it also has another distinctly different 1-dimensional
homomorphism. �

1
� �

�1
� �

�1
� �

�1
� �

1
� �

1
�

E A B C D F

The permutation group S3 in Table 1.6 is isomorphic to the group of order 6, so this
homomorphism applies to it also with a change of labels.
These homomorphisms are said to be unfaithful, because it is possible to form a
matrix product such as AB D D that does not agree with the group’s product table.
Put another way, it is impossible to reconstruct the group’s product table from a
homomorphism. In contrast, an isomorphism is faithful, because there is a 1-to-1
correspondence between group members and their matrices.
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14 1 Fundamental Concepts

1.5.3 An Example of a Matrix Representation
This example sets up an isomorphism between the equilateral triangle group � D

fE;A;Bg and a set of matrices. Because the group operations of � describe rotations
in the plane, we start by seeing how to use matrices to express a planar rotation.

To lay the groundwork, consider
two Cartesian coordinate systems in the
plane. The X0-Y0 axes have the same
origin as the X-Y axes, but they are
rotated by angle � as the figure shows.

A point in the plane has coordi-
nates .x; y/ with respect to the X-Y
axes, as shown by the dashed lines. The
same point has coordinates .x 0; y 0/with
respect to the X0-Y0 axes, as shown by
the dotted lines.

Express .x 0; y 0/ in terms of .x; y/ using trigonometry.

a D x tan � b D .y � a/ sin �

x 0
D

x

cos �
C b D

x

cos �
C .y � a/ sin �

D
x

cos �
C y sin � �

x sin2 �
cos �

D
x

cos �
�
x .1 � cos2 �/

cos �
C y sin �

D x cos � C y sin � (1.1)
y 0

D .y � a/ cos � D .y � x tan �/ cos �
D �x sin � C y cos � (1.2)

Writing Eqs. (1.1) and (1.2) in matrix form:�
x 0

y 0

�
D

�
cos � sin �

� sin � cos �

��
x

y

�
:

One-column matrices such as
�
x
y

�
are called column vectors. The matrix itself is

square 2 � 2 with two rows and two columns.
The three members fE;A;Bg of group � correspond geometrically to specific

angles of rotation 0ı; 120ı; 240ı; evaluate the rotation matrix for each angle. Trigo-
nometric identities such as cos .�1 ˙ �2/ D cos .�1/ cos .�2/ ˙ sin .�1/ sin .�2/ and
sin .�1 ˙ �2/ D sin .�1/ cos .�2/˙ cos .�1/ sin .�2/ can be useful for referring sines
and cosines to the first quadrant. To keep the signs straight, note that sin � � 0 only
in the first and second quadrants, and cos � � 0 only in the first and fourth quadrants.

A common notation for the matrix representation of a group member T is D.T/,
from the German Darstellung, representation. Here is a matrix representation of the
members of � :
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1.6 Matrix Algebra 15

�
1 0

0 1

�  
�
1
2

p
3
2

�

p
3
2

�
1
2

!  
�
1
2

�

p
3
2p

3
2

�
1
2

!
D.E/ D.A/ D.B/:

The matrixD.E/ clearly acts as the group identity because its product with any matrix
in the set leaves that matrix unchanged.

This representation is faithful. If C and F are members of a group, a faithful
representation D.C/D.F/ D D.CF/ agrees with the product table entry CF because
of the isomorphism between the representation matrices and the group members. As
an example, consider the product D.A/D.B/ for the group � . 

�
1
2

p
3
2

�

p
3
2

�
1
2

! 
�
1
2

�

p
3
2p

3
2

�
1
2

!
D

 
1
4

C
3
4

p
3
4

�

p
3
4p

3
4

�

p
3
4

3
4

C
1
4

!
D

�
1 0

0 1

�
The product is D.E/ in agreement with the � product table AB D E. The result also
shows that the matrix D.A/ has an inverse equal to D.B/, and vice versa.

A mathematical theorem states that a matrix has a unique inverse only if the deter-
minant of the matrix ¤ 0. The determinants of all three representation matrices of �

are ¤ 0 assuring that each of the matrices has an inverse.
In this text the matrix representation D.A/ of a group member A is often written

simply A.
In summary, we found a faithful matrix representation of group � by establish-

ing an isomorphism with the abstract group members, in this example with the help
of the algebraic geometry of rotations. We showed that there is a correspondence
between the matrices and the abstract group members and also showed that the matri-
ces agree with the group’s product table, hence they obey the criterion for a faithful
representation.

1.6 Matrix Algebra
Matrix notation, matrix multiplication, and determinants of matrices are often studied
in math courses. This section is intended as a refresher.

A general notation is needed to describe matrices of arbitrary size. Every element
of a matrix is given two subscripts as, for example, aij . The first subscript (here i )
signifies the row, and the second subscript (here j ) signifies the column. If matrix
D.A/ has n rows and n columns, it is termed a square n � n matrix and in element
notation is written

D.A/ D

˙
a11 a12 : : : a1n
a21 a22 : : : a2n
:::

:::
: : :

:::

an1 an2 : : : ann

�

:
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16 1 Fundamental Concepts

If a matrix has m rows and n columns, it is described as m � n. Here is a 2 � 3

matrix: �
4 7 0

1 3 �1

�
:

1.6.1 A Constant Times a Matrix
If a constant multiplies a matrix, every element in the matrix is multiplied by that
constant. Let B=cA where c is a constant and A;B are matrices. In matrix element
notation:

bij D caij :

Every element of A is multiplied by c as shown:

c

�
0 2 0

1 0 �1

0 0 1

�
D

�
0 2c 0

c 0 �c

0 0 c

�
:

1.6.2 Addition of Matrices
Let C D A C B be the sum of two matrices, all with the same number of rows and
columns. In matrix element notation:

cij D aij C bij :

Corresponding elements are added. Here is an example:
�
1 4 0

3 0 �1

3 0 1

�
C

�
4 2 �3

�2 0 2

0 0 4

�
D

�
5 6 �3

1 0 1

3 0 5

�
:

1.6.3 Products of Matrices
Consider the product C D AB of n � n matrices. The element cik of the product
matrix is written

cik D

nX
jD1

aij bjk :

The sum runs from j D 1 to j D n as indicated on the summation sign. Often the
range of the summation is clear from the context, so that only the subscript summed
over (a dummy variable) needs to be shown on the summation sign:

cik D

nX
jD1

aij bjk �
X
j

aij bjk :
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1.6 Matrix Algebra 17

As an example, consider the product of two 2�2matrices AB D C . Written with
explicit subscripts:�

a11 a12
a21 a22

��
b11 b12
b21 b22

�
D

�
a11 b11 C a12 b21 a11 b12 C a12 b22
a21 b11 C a22 b21 a21 b12 C a22 b22

�
D

�
c11 c12
c21 c22

�
:

When multiplying ordinary numbers, the result is independent of the order: 2 �

3 D 3 � 2. This may not be the case with matrices, where the order can be important
as the following example demonstrates:

AB D

�
0 1

1 0

��
1 0

0 �1

�
D

�
0 �1

1 0

�
BA D

�
1 0

0 �1

��
0 1

1 0

�
D

�
0 1

�1 0

�
¤ AB:

Matrices can be multiplied even if they are not square, if the number of columns
in the first matrix is equal to the number of rows in the second, so that the first matrix
ism� s and the second is s�n. The product matrix is thenm�n. Here is the product
of a 2 � 3 matrix and a 3 � 1 matrix to give a 2 � 1 result:�

a11 a12 a13
a21 a22 a23

��b11
b21
b31

�
D

�
a11 b11 C a12 b21 C a13 b31
a21 b11 C a22 b21 C a23 b31

�
:

1.6.4 Determinant of a Matrix
The determinant of a n � n matrix has nŠ terms, where each term is the product
of n different elements of the matrix. The determinant of a square matrix A with
coefficients aij is symbolized jAj. Equations (1.3) show the determinants of a 2 � 2

matrix (2! = 2 terms) and a 3 � 3 matrix (3! = 6 terms).

jAj D

ˇ̌̌̌
a11 a12
a21 a22

ˇ̌̌̌
D a11 a22 � a12 a21

jAj D

ˇ̌̌̌
ˇ̌a11 a12 a13
a21 a22 a23
a31 a32 a33

ˇ̌̌̌
ˇ̌

D a11 .a22 a33 � a23 a32/ � a21 .a12 a33 � a13 a32/
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18 1 Fundamental Concepts

C a31 .a12 a23 � a13 a22/

D a11 a22 a33 � a11 a23 a32 C a13 a21 a32 � a12 a21 a33

C a12 a23 a31 � a13 a22 a31 (1.3)

To illustrate one method of determining the algebraic signs of the terms, consider the
case n D 3 as an example. In the last line of Eq. (1.3), the terms of the expansion
are rearranged so that they all have the form a1i a2j a3k . If the permutation

�
1 2 3
i j k

�
is even, the term has a plus sign; if the permutation is odd, the sign is minus. For the
second term in Eq. (1.3), the permutation

�
1 2 3
1 3 2

�
is odd (only one interchange 2 $ 3

is required), so the term has a minus sign as shown. Using this method to evaluate
the determinant of a matrix doesn’t apply if the elements are strictly numeric, but
it is fine if the elements are symbolic with explicit subscripts. The abstract form is
important in the quantum theory of multi-electron atoms where abstract permutations
are directly related to the interchange of identical electrons.

1.6.5 The Kronecker Delta
Matrix notation presents an opportunity to introduce a useful new symbol. Consider
TT�1 D E. The matrix for the identity has 1 everywhere along the main diagonal and
0 everywhere else. In matrix form the product is therefore written as

X
j

tij tjk
�1

D

˙
1 0 : : : 0

0 1 : : : 0
:::

:::
: : :

:::

0 0 : : : 1

�

:

The Kronecker delta symbol ıij is useful to denote the matrix elements of the
identity matrix. It is defined as

ıij D ıj i D

(
1 i D j

0 i ¤ j :

Using the Kronecker delta the matrix elements areX
j

tij tjk
�1

D ıik :

1.7 Special Matrices
This section defines some special matrices that arise in applications.

1.7.1 The Complex Conjugate of a Matrix
The range of matrix elements can be enlarged to include complex numbers of the
form ˛Cˇi where ˛ and ˇ are real numbers that have a real part ˛ and an imaginary
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1.7 Special Matrices 19

part ˇi and where i D
p

�1. The complex conjugate is .˛ C ˇi /� = ˛ � ˇi . If u is
a complex number, its complex conjugate is denoted by u�. The complex conjugate
of a matrix A is A�, and its elements are a�

ij as in this example:

A D

�
1C 2i 4 � i

3C 4i 6

�
A�

D

�
1 � 2i 4C i

3 � 4i 6

�
:

1.7.2 The Transpose of a Matrix
Consider a matrix A with elements aij . The transpose QA of A is the matrix formed
by interchanging the rows and columns of A so that the elements of QA are Qaij D aj i .
It follows that elements on the main diagonal are unchanged. Here is an example of a
matrix and its transpose:

A D

�
1 4 7

3 6 0

2 1 5

�
QA D

�
1 3 2

4 6 1

7 0 5

�
:

The transpose of a matrix product AB is QB QA. Proof is left to the problems.

1.7.3 The Adjoint of a Matrix
The adjoint of a matrix A is its transpose with complex conjugates of its elements.
The adjoint is symbolized A�. The result is the same whether the transpose or the
complex conjugate is done first:

A D

�
1C 2i 4 � i

3C 4i 6

�
A� D

�
1 � 2i 3 � 4i

4C i 6

�
:

1.7.4 Hermitian Matrices
If a matrix A is equal to its adjoint, so that A D A�, the matrix is said to be Hermi-
tian. Here are two examples of Hermitian matrices, one real, the other complex. All
Hermitian matrices are square:

�
1 3 2

3 6 0

2 0 5

� �
2 3 � i 2

3C i 0 �4i

2 4i 3

�
:

The left-hand matrix is a real symmetric matrix; all real symmetric matrices are Her-
mitian. Note also that for every Hermitian matrix, the diagonal elements must be real
even if the matrix is complex.

Hermitian matrices are fundamental in quantum mechanics. They guarantee
that physical quantities calculated according to quantum mechanics are always real
numbers as they must be.
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20 1 Fundamental Concepts

1.7.5 Unitary and Orthogonal Matrices
If the adjoint of a matrix A is equal to its inverse so that A� D A�1, the matrix is
said to be unitary. It follows that the product of a unitary matrix with its adjoint is the
identity. If A is real A D A�, then its transpose equals its inverse QA D A�1, and A is
said to be real orthogonal or simply orthogonal. All unitary and orthogonal matrices
are square.

The identity matrix E is an orthogonal matrix because E� D E and the product
EE D E shows that E is its own inverse, E�1 D E.

Here is the product of a matrix with its adjoint. It is equal to the identity, showing
that the matrix is orthogonal.

�
1
2

�

p
3
2

0
p
3
2

1
2

0

0 0 1

��
1
2

p
3
2

0

�

p
3
2

1
2

0

0 0 1

�

D

�
1 0 0

0 1 0

0 0 1

�

Orthogonal matrices have the property that if their rows or columns are considered
to be the components of n-dimensional vectors with respect to a set of unit basis
vectors Oe1; Oe2; : : : ; Oen, the row and column vectors are both unit orthogonal vectors
(called an orthonormal set). Take, for instance, the first row of the left-hand matrix in
the example. Its scalar product with itself is .1

2
Oe1 �

p
3
2

Oe2 C 0/ � .1
2

Oe1 �

p
3
2

Oe2 C

0/ D .1
4

C
3
4
/ D 1. The scalar product of its first and second column vectors is

.1
2

Oe1 C

p
3
2

Oe2 C 0/ � .�
p
3
2

Oe1 C
1
2

Oe2 C 0/ D .�
p
3
4

C

p
3
4
/ D 0.

1.8 A Brief History of Group Theory
The major part of group theory was developed by mathematicians in the nineteenth
and early twentieth centuries. Space does not permit citing all the famous names, but
a few are especially worthy of note. The French mathematician and political activist
Évariste Galois (1811–32) applied the name “group” to this branch of mathematics
and is considered to be the founder of group theory. Sadly, he died at the young
age of 20 after losing a duel. Ferdinand Georg Frobenius (1849–1917) in Germany
introduced the fundamental concepts of characters and representations.

Amalie (“Emmy”) Noether (1882–1935), “the greatest woman mathematician
who ever lived,” should also be mentioned. German-born, she taught in Germany
until forced from her post in 1933. She spent the brief remaining years of her life
at Bryn Mawr College in Pennsylvania and at the Institute for Advanced Study near
Princeton University. Her greatest achievement was her “wonderful theorem” prov-
ing that the symmetries of a physical system lead to conservation laws obeyed by the
system, another indication of the importance of group theory in physics.

The advent of quantum mechanics in the 1920s transformed group theory from an
abstract mathematical discipline to a powerful tool for understanding nature, particu-
larly phenomena in atomic physics, solid state physics, nuclear physics, and strange
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particle physics. In the early days of quantum mechanics some physicists did not
appreciate the power of group theory in physics and called it a “pest,” perhaps because
their universities had not offered physics courses in group theory.

Mathematical physicist Eugene Wigner (1902–95, Nobel laureate in physics
1963) was one of the first to realize the value of group theory, which he used to
explain the energy levels of electrons in atoms. Born in Budapest, he later became
an American citizen. He was at Princeton University for much of his career and he
shared the 1963 Nobel Prize for applying group theory to nuclear structure.

1.9 Brief Bios
Arthur Cayley (1821–95), a British mathematician, was the first to establish criteria
for defining a group. In his earlier days as a lawyer he wrote many papers in mathe-
matics as a hobby but later left his law practice, eventually becoming a professor of
mathematics at Cambridge University.

The German mathematician Leopold Kronecker (1823–91) obtained his doctorate
in mathematics at the age of 22, but then spent the next eight years managing valuable
properties inherited from a wealthy uncle. By age 30, Kronecker had enough money
for a comfortable life and returned to mathematics.

Hermitian matrices are named after the French mathematician Charles Hermite
(1822–1901). Hermite spent his time studying great mathematicians like Lagrange
and Gauss. He neglected humdrum course material and as a consequence did
poorly on the standard examinations. Luckily, professors recognized his abilities, and
Hermite went on to become one of the greatest mathematicians.

Summary of Chapter 1

Chapter 1 introduces fundamental concepts of group theory.

a) Group theory deals with abstract operations. Combinations of operations
(“products”) can be displayed in a product table.

b) The meaning of symmetry has been termed “change without change” because
applying a symmetry operation leaves an object the same as at the start.

c) To be classed as a group, a set of operations must satisfy certain axioms. The
product of any two members of the set must also be a member of the set. There
must be an identity member in the set. Each member of the set must have an
inverse in the set.
d) Examples of groups are presented, especially the triangle rotation group, the
32 group, and the permutation group S3 of order 6.

e) Groups are described as discrete if they have a finite number of group mem-
bers, or as continuous with an uncountable number of members that depend on a
continuous parameter, for example, a rotation angle.
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f) Isomorphism and homomorphism are possible relations between different
groups. Two groups are isomorphic if there is a unique one-to-one correspond-
ence between the members of one group and the members of the other, so that
each obeys the same product table. A homomorphism between two groups also
obeys the same product table, but a member of one group corresponds to more
than one member of the other.
g) A group has a faithful representation by matrices where there is an isomor-
phism between the group elements and the matrices so that the matrices obey the
group’s product table.

h) Matrix algebra is the principal mathematical tool in applications of group the-
ory. Examples are presented of matrix notation, matrix addition A C B , matrix
multiplication AB , and determinant of a matrix jAj. Several special matrices
are defined: complex conjugate A�, transpose QA, adjoint A� D QA�, Hermitian
A D A�, unitary A�1 D A�, orthogonal A�1 D QA.

i) The Kronecker delta ıij D ıj i D 1 for i D j or 0 for i ¤ j .

Problems and Exercises

1.1 Evaluate Tex for the transformation Tx D �x.

1.2 Evaluate T cos x for the transformation Tx D �x.

1.3 Express the inverse .AB/�1 of the product AB in terms of A and B.

1.4 Show that the positive and negative real integers (including 0) form a group
under the operation of addition.

1.5 Show that the real integers 1; 2; : : : do not form a group under the operation of
multiplication.

1.6 Show that the group members fE;A;Bg for the 3-fold rotation of an equilateral
triangle described in Section 1.2.1 can be written fE;B;B2g.

1.7 Write the product table for a group of order 2.

1.8 Write a product table for the 4-fold rotations of a square about its geometric
center. Is this a cyclic group?

E: rotate by 0ı

A: rotate by 90ı

B: rotate by 180ı

C: rotate by 270ı

1.9 Prove that a given group member occurs only once in a given column of the
product table.
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1.10 Cayley proved that every discrete group of order n can be found in the product
table for Sn. Illustrate this result for S3 (Table 1.5 or Table 1.6). What does your
result say about the number of distinct groups of order 3?

1.11 There are only two distinct groups of order 4. One of them is the group for
rotations of a square, Problem 8. Here is the product table of the other.

E K L M

E E K L M
K K E M L
L L M E K
M M L K E

Show that fE;K;L;Mg indeed form a group. Is it an Abelian group? Is it a
cyclic group? Explain.

1.12 Find three subgroups of order 2 in the product table for the permutation group
of order 6, Table 1.6.

1.13 Class each of the following permutations as even or odd.�
1 2 3

2 3 1

� �
1 2 3 4

2 3 1 4

� �
1 2 3 4

4 3 2 1

�
.a/ .b/ .c/

1.14 In the permutation .5 3 6 1 4 2/ what number does 6 map to?

1.15 In the permutation .3 2 6 4 1 5/ what number does 5 map to?

1.16 Find a matrix representation for the “flip” of an equilateral triangle about
its aa axis.

1.17 Consider the group � D fE;A;Bg for the rotations of an equilateral triangle,
Table 1.2. Are the following matrices a homomorphic representation of �?
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�
1
� �

�1
� �

�1
�

E A B

1.18 A diagonal matrix is a matrix that has zero elements except on its diagonal.
Show that the product of two diagonal matrices is a diagonal matrix.

1.19 Find matrix representations for the 4-fold rotations of a square as described in
Problem 8.

1.20 Which of the following matrices has an inverse?�
1 0

0 �1

� �
1 �1

1 �1

� �
1 3 2

3 0 �1

2 �2 1

�

.a/ .b/ .c/

1.21 Consider the matrices A and B .

A D

�
3 2 �3

�2 3 2

1 0 4

�

B D

�
5 2 �3

1 3 1

�2 0 5

�

Find AC B , A � B , the product AB , and the product BA.

1.22 Consider the matrices A and B .

A D

�
�1 5 4

�3 3 4

2 0 �3

�

B D

�
2 �2 �1

5 1 4

�3 0 2

�

Find AC B , A � B , the product AB , and the product BA.

1.23 Consider these two matrices and show that the determinant of their product is
equal to the product of their determinants. This is a general result true for the
product of any two square matrices.

�
2 �1 2

2 0 3

3 �1 �1

� �
1 2 �2

0 3 �1

2 1 �2

�
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1.24 For n � n matrices A and B , show that eAB D QB QA.

1.25 For the matrix A, find A�, QA, and A�.

A D

�
1 5 2

3 0 �1

4 �2 1

�

1.26 For the matrix A, find A�, QA, and A�.

A D

�
1 3C i 2i

3 0 �1C 2i

4 � 3i �2 1 � i

�
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