THE WEAK WEAK CATEGORY OF A SPACE

BY C. S. HOO(1)

- 1. Let X be a topological space. We say that cat $X \le n$ if there exists a map $\phi \colon X \to T_1(X, \ldots, X)$ such that $j\phi \simeq \Delta \colon X \to X^{n+1}$, where $T_1(X, \ldots, X)$ is the "fat wedge", j is the inclusion and Δ is the diagonal map. This is an example of a right structure system. This right structure system leads to an associated weak structure system, namely weak category in this particular case. We recall that w cat $X \le n$ if $q\Delta \simeq *$, where $q \colon X^{n+1} \to \bigwedge_{i=1}^{n+1} X$ is the projection, $\bigwedge_{j=1}^{n+1} X$ being the smashed product of (n+1) copies of X. This weak category is again a right structure system. We can iterate this process and thus consider statements of the form w^m cat $X \le n$ where $m \ge 1$. In [3], Peterson made the following statement: "The author doubts that w^m cat $X \le n$ is interesting if m > 1." The purpose of this note is to show that in fact w cat $X \le n$ if and only if w^m cat $X \le n$ for all $m \ge 1$. We shall show this more generally for all right structure systems.
- 2. We shall follow the terminology and notation of [1] and [2]. For convenience, we recall some definitions here. We work in the category \mathcal{T} of spaces with base point and having the homotopy type of countable CW complexes. All maps and homotopies shall respect base points. The maps of our category \mathcal{T} shall be homotopy classes of maps, but for simplicity we shall use the same symbol for a map and its homotopy class.

Let $\mathscr C$ be a category. By a right structure system over $\mathscr C$ we mean $\mathscr R=(R,P,T;d,j)$ where $R,P,T:\mathscr C\to\mathscr T$ are covariant functors and $d\colon R\to P, j\colon T\to P$ are natural transformations. If $X\in\mathscr C$, we say that X is $\mathscr R$ -structured if there is a map $\phi\colon RX\to TX$ such that $j(X)\phi\simeq d(X)$. We may assume that j is a natural cofibration. Let $q\colon P\to Q$ be the cofibre of j, and let $j_w\colon T_w\to P$ be the fibre of q. Then $\mathscr R_w=(R,P,T_w;d,j_w)$ is a right structure system over $\mathscr C$, and is called the associated weak structure system. If $X\in\mathscr C$ is $\mathscr R_w$ -structured, we shall say that it is weakly $\mathscr R$ -structured.

EXAMPLE. The right structure system $\mathcal{K}_n = (1, \prod_{i=1}^{n+1}, T_1; \Delta, j)$ over \mathcal{T} is the cat $\leq n$ structure system, where T_1 is the fat wedge, Δ is the diagonal and $j: T_1 \to \prod_{i=1}^{n+1}$ is the natural inclusion. The associated weak structure system in this case is the w cat $\leq n$ structure, that is the weak category structure system.

Given two right structure systems over \mathscr{C} , $\mathscr{R}_i = (R_i, P_i, T_i; d_i, j_i)$, i = 1, 2, a map $\mathscr{F} : \mathscr{R}_1 \to \mathscr{R}_2$ means a triple $\mathscr{F} = (\rho, \pi, \tau)$ of natural transformations $\rho : R_1 \to R_2$, $\pi : P_1 \to P_2$, $\tau : T_1 \to T_2$ such that $d_2 \rho = \pi d_1$, $j_2 \tau = \pi j_1$. If we have a map $(1, \pi, \tau)$:

Received by the editors September 10, 1960.

⁽¹⁾ This research was supported by NRC Grant A-3026.

- $\mathcal{R}_1 \to \mathcal{R}_2$, then if $X \in \mathcal{C}$ is \mathcal{R}_1 -structured by $\phi \colon RX \to T_1X$, clearly $\tau(X)\phi \colon RX \to T_2X$ is an \mathcal{R}_2 -structure on X. Thus if $\mathcal{R} = (R, P, T; d, j)$ is a right structure system over a category \mathcal{C} , and if $\mathcal{R}_w = (R, P, T_w; d, j_w)$ is its associated weak structure system, then we have a natural transformation $\tau \colon T \to T_w$ such that $j_w \tau = j$, and hence a map $(1, 1, \tau) \colon \mathcal{R} \to \mathcal{R}_w$. This means that if $X \in \mathcal{C}$ may be \mathcal{R} -structured, it may also be weakly \mathcal{R} -structured.
- 3. We are now ready to consider our problem. Let $\mathscr{R} = (R, P, T; d, j)$ be a right structure system over a category \mathscr{C} . We have the associated weak structure system $\mathscr{R}_w = (R, P, T_w; d, j_w)$ and a map $(1, 1, \tau) : \mathscr{R} \to \mathscr{R}_w$ where $j_w \tau = j$. We repeat this process and obtain the associated weak weak structure system $\mathscr{R}_{w^2} = (R, P, T_{w^2}; d, j_{w^2})$ and also a map $(1, 1, \tau_1) : \mathscr{R}_w \to \mathscr{R}_{w^2}$ where $j_{w^2} \tau_1 = j_w$. We shall construct a map $(1, 1, \mu) : \mathscr{R}_{w^2} \to \mathscr{R}_w$.

As above, let $q: P \to Q$ be the cofibre of j, j_w the fibre of $q, q_w: P \to Q_w$ the cofibre of j_w and j_{w^2} the fibre of q_w . We have the following diagram:

We see that $q_w j = q_w j_w \tau \simeq *$. Since q is the cofibre of j, we can find a natural transformation $s\colon Q\to Q_w$ such that $sq=q_w$. Also since $qj_w\simeq *$ and q_w is the cofibre of j_w , we can find a natural transformation $t\colon Q_w\to Q$ such that $tq_w=q$. Hence $qj_{w^2}=tq_wj_{w^2}\simeq *$ since j_{w^2} is the fibre of q_w . Finally, since j_w is the fibre of q, this means that there exists a natural transformation $\mu\colon T_{w^2}\to T_w$ such that $j_w\mu=j_{w^2}$. Hence we have a map $(1,1,\mu)\colon \mathscr{R}_{w^2}\to \mathscr{R}_w$. This, together with the map $\mathscr{R}_w\to \mathscr{R}_{w^2}$, gives us the following result.

THEOREM. Let $\mathcal{R} = (R, P, T; d, j)$ be a right structure system over a category \mathscr{C} . Let $X \in \mathscr{C}$. Then X may be \mathscr{R}_w -structured if and only if it may be \mathscr{R}_{w^2} -structured.

COROLLARY. If X is a topological space, then w cat $X \le n$ if and only if w^m cat $X \le n$ for all $m \ge 1$.

REMARK. The corollary settles Peterson's remark. The above results may be dualized to left structure systems.

REFERENCES

- 1. I. Berstein and P. J. Hilton, *Homomorphisms of homotopy structures. Topologie et géometrie differentielle*, Séminaire Ehresmann, April 1963.
- 2. C. S. Hoo, Nilpotency class of a map and Stasheff's criterion, Pac. J. Math. 28 (1969), 375-380.
- 3. F. P. Peterson, *Numerical invariants of homotopy type*, Colloq. on algebraic topology. Aarhus Universitet (1962), 79-83.

University of Alberta, Edmonton, Alberta