5

Incompressible Solvers for Single-Phase Flow

A simulation model can be considered to consist of three main parts; the first part describes
the reservoir rock, the second part describes the mathematical laws that govern fluid behav-
ior, and the last represents wells and other drive mechanisms. We have already discussed
how to model the reservoir rock and its petrophysical properties in Chapters 2 and 3, and
shown how the resulting models are represented in MRST using a grid object, usually called
G, that describes the geometry of the reservoir, and a rock object, usually called rock, that
describes petrophysical parameters. Likewise, Chapter 4 discussed the fundamental flow
equations for single-phase flow and presented basic numerical discretizations for elliptic
Poisson-type equations and the gradient/divergence operators that appear in flow models.

This chapter discusses the additional parts you need to make a full model and implement
a simulator. We show how to represent fluid behavior in terms of fluid objects that contain
basic properties such as density, viscosity, and compressibility. We will later extend these
fluid objects to model more complex behavior by including properties like relative perme-
ability and capillary pressure that describe interaction among multiple fluid phase and the
porous rock. Likewise, we discuss necessary data structures to represent forcing terms such
as boundary conditions, (volumetric) source terms, and models of injection and production
wells. It is also convenient to introduce a state object holding the primary unknowns and
derived quantities like pressure, fluxes, and face pressures.

There are two different ways the data objects just outlined can be combined to form a
full simulator. In Section 4.4.2, we saw how to use discrete differential operators to write
the flow equations in residual form and then employ automatic differentiation to linearize
and form a linear system. Whereas this technique is elegant and will prove highly versatile
for compressible flow models later in the book, it is an overkill for incompressible single-
phase flow, since the flow equations already are linear. In this chapter, we therefore outline
how to use a classic procedural approach to implement the discretized flow equations. We
start by outlining the data structures and constructors needed to set up fluid properties
and forcing terms, and once this is done, we move on to discuss in detail how to build two-
point discretizations and assemble and solve corresponding linear systems. For pedagogical
purposes, we present a somewhat simplified version of the basic flow solvers for incom-
pressible flow that are implemented in the add-on modules incomp and diagnostics of
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144 Incompressible Solvers for Single-Phase Flow

MRST. At the end of the chapter we go through several simulation cases and give all code
lines necessary for full simulation setups with various drive mechanisms.

5.1 Basic Data Structures in a Simulation Model

The simple flow solvers we discussed in the previous chapter did not contain any fluid prop-
erties and assumed no-flow boundary conditions and point sources as the only forcing term.
In this section we outline basic data structures you can use to set up more comprehensive
single-phase simulation cases.

5.1.1 Fluid Properties

The only fluid properties we need in the basic single-phase flow equations are the viscosity
and the fluid density for incompressible models and the fluid compressibility for com-
pressible models. More complex single-phase and multiphase models require additional
fluid and rock-fluid properties. To simplify the communication of fluid properties between
flow and transport solvers, it is good practice to introduce a common API. To this end,
MRST uses so-called fluid objects that contain a predefined set of basic fluid properties
as well as function handles used to evaluate rock-fluid properties that are only relevant for
multiphase flow. This basic structure can be expanded by optional parameters and functions
to represent more advanced fluid models. The following shows how to initialize the most
basic fluid object that only requires viscosity and density as input

fluid = initSingleFluid('mu' , 1l*centi*poise, ...
'rho', 1014x*kilogram/meter~3);

After initialization, the fluid object contains pointers to functions that can be used to eval-
uate petrophysical properties of the fluid:
fluid =
properties: @(varargin)properties(opt,varargin{:})

saturation: @(x,varargin)x.s
relperm: @(s,varargin)relperm(s,opt,varargin{:})

Only the first function is relevant for single-phase flow, and returns the viscosity when
called with a single output argument, and the viscosity and the density when called with
two output arguments. The other two functions can be considered as dummy functions
that ensure that the single-phase fluid object is compatible with solvers written for more
advanced fluid models. The saturation function accepts a reservoir state as argument (see
Section 5.1.2) and returns the corresponding saturation (volume fraction of the fluid phase),
which will either be empty or set to unity, depending upon how the reservoir state has been
initialized. The relperm function accepts a fluid saturation as argument and returns the
relative permeability, i.e., the reduction in permeability due to the presence of other fluid
phases. This function should always be identical to one for single-phase models.
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5.1.2 Reservoir States

To hold the dynamic state of the reservoir, MRST uses a special data structure. We refer
to realizations of this structure as the state objects. In its basic form, the structure contains
three elements: a vector pressure with one pressure per cell in the grid, a vector f1ux with
one value per face in the grid, and a vector s that should either be empty or be a vector with
a unit entry for each cell, since we only have a single fluid. The state object is initialized by
a call to the function

T ]
| state = initResSol(G, p0, s0); |

where pO is the initial pressure and sO is an optional parameter, giving the initial saturation
(which should be identical to one for single-phase models). Contrary to what the name may
imply, this function does not initialize the fluid pressure to be in hydrostatic equilibrium. If
such a condition is needed, it must be enforced explicitly by the user. In the case of wells
in the reservoir, you should use the alternative function:

state = initState(G, W, pO, s0);

This gives a state object with an additional field wellSol, which is a vector with
one entry per well. Each element in the vector is a structure that contains two fields,
wellSol.pressure and wellSol.flux. These two fields are vectors of length equal the
number of completions in the well and contain the bottom-hole pressure and flux for each
completion.

5.1.3 Fluid Sources

The simplest way to describe flow in or out from interior points in the reservoir is to use
volumetric source terms. You can create source terms as follows

Src
Src

addSource([], cells, rates);
addSource(src, cells, rates, 'sat', sat);

Here, the input/output values are:

« src: array of MATLAB structures describing separate sources. If the first input argument
is empty, the routine will output a single structure. Otherwise, it will append the new
structure to the array of existing sources sent as input. Each source structure contains the
following fields:

« cell: cells containing explicit sources,
« rate: rates for these explicit sources,
« value: pressure or flux value for the given condition,

« sat: fluid composition of injected fluids in cells with rate>0.

« cells: indices to the cells in the grid model in which this source term should be applied.

https://doi.org/10.1017/9781108591416.008 Published online by Cambridge University Press


https://doi.org/10.1017/9781108591416.008

146 Incompressible Solvers for Single-Phase Flow

« rates: vector of volumetric flow rates, one scalar value for each cell in cells. Note
that these values are interpreted as flux rates (typically in units of [m3/day]) rather than
as flux density rates (which must be integrated over the cell volumes to obtain flux
rates).

« sat: optional parameter that specifies the composition of the fluid injected from this
source. In this n x m array of fluid compositions, # is the number of elements in cells
and m is the number of fluid phases. For m = 3, the columns are interpreted as: 1="aqua,”
2="liquid,” and 3="vapor.” This field is for the benefit of multiphase transport solvers,
and is ignored for all sinks (at which fluids flow out of the reservoir). The default value is
sat = [], which corresponds to single-phase flow. If size (sat, 1)==1, this saturation
value will be repeated for all cells specified by cells.

For convenience, rates and sat may contain a single value; this value is then used for all
faces specified in the call.

There can only be a single net source term per cell in the grid. Moreover, for incom-
pressible flow with no-flow boundary conditions, the source terms must sum to zero if the
model is to be well posed, or alternatively sum to the flux across the boundary. If not, we
would either inject more fluids than we extract, or vice versa, and hence implicitly violate
the assumption of incompressibility.

5.1.4 Boundary Conditions

As discussed in Section 4.3.1, all outer faces of a grid are assumed as no-flow boundaries
unless other conditions are specified explicitly. The basic mechanism for specifying Dirich-
let and Neumann boundary conditions is to use the function:

bc = addBC(bc, faces, type, values);
bc = addBC(bc, faces, type, values, 'sat', sat);

Here, the input values are:

« bc: array of MATLAB structures describing separate boundary conditions. If the first
input argument is empty (bc==[1), the routine will output a single structure. Otherwise,
it will append the new structure to the array of existing boundary conditions sent as input.
Each structure contains the following fields:

« face: external faces for which explicit conditions are set,

« type: cell array of strings denoting type of condition,

« value: pressure or flux value for the given condition,

« sat: composition of fluids passing through inflow faces, not used for single-phase
models.

« faces: array of external faces at which this boundary condition is applied.
« type: type of boundary condition. Supported values are 'pressure' and 'flux', ora
cell array of such strings.
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o values: vector of boundary conditions, one scalar value for each face in
faces. Interpreted as a pressure value in units [Pa] when type equals
'pressure’ and as a flux value in units [m>/s] when type is 'flux'. In the latter
case, positive values in values are interpreted as injection fluxes into the reservoir, while
negative values signify extraction fluxes, i.e., fluxes out of the reservoir.

« sat: optional parameter that specifies the composition of the fluid injected across inflow
faces. Similar setup as explained for source terms in Section 5.1.3.

There can only be a single boundary condition per face in the grid. Solvers assume that
boundary conditions are given on the boundary; conditions in the interior of the domain
yield unpredictable results. Moreover, for incompressible flow and only Neumann condi-
tions, the boundary fluxes must sum to zero if the model is to be well posed. If not, we
would either inject more fluids than we extract, or vice versa, and hence implicitly violate
the assumption of incompressibility.

For convenience, MRST also offers two additional routines for setting Dirichlet and
Neumann conditions at all outer faces in a certain direction for grids having a logical /J K
numbering:

bc
bc

pside(bc, G, side, p);
fluxside(bc, G, side, flux)

The side argument is a string that must match one out of the following six alias groups:

1 'West', 'XMin', 'Left'

2: 'East', 'XMax', 'Right'

3: 'South', 'YMin', 'Back'

4: 'North', 'YMax', 'Front'

5: 'Upper', 'ZMin', 'Top'

6: 'Lower', 'ZMax', 'Bottom'
These groups correspond to the cardinal directions mentioned as the first alternative in each
group. You should also be aware of an important difference in how fluxes are specified in
addBC and fluxside. Specifying a scalar value in addBC means that this value will be copied
to all faces the boundary condition is applied to, whereas a scalar value in fluxside sets
the cumulative flux for all faces that make up the global side to be equal the specified value.

5.1.5 Wells

Wells are similar to source terms in the sense that they describe injection or extraction of
fluids from the reservoir, but differ in the sense that they not only provide a volumetric
flow rate, but also contain a model that couples this flow rate to the difference between
the average reservoir in the grid cell and the pressure inside the wellbore. As discussed in
Section 4.3.2, this relation can be written for each perforation as

vp =J(pi — pr)s (5.1)
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where J is the well index, p; is the pressure in the perforated grid cell, and p is the
flowing pressure in the wellbore. The wellbore is assumed to be in hydrostatic equilibrium
so that p ¢ in each completion can be found from the pressure at the top of the well and the
density along the wellbore. For single-phase, incompressible flow, this hydrostatic balance
reads py = pyn + pAzy, where pyy, is the pressure at the well head and Az is the
vertical distance from this point and to the perforation. By convention, the structure used
to represent wells in MRST is called W, and consists of the following fields:

« cells: an array index to cells perforated by this well.

« type: string describing which variable is controlled (i.e., assumed to be fixed), either
'bhp' or 'rate'.

. val: the target value of the well control; pressure value for type='bhp' or rate for
type='rate'.

« r: the wellbore radius (double).

o dir: achar describing the direction of the perforation ('x', 'y' or 'z").

« WI: the well index: either the productivity index or the well injectivity index depending
on whether the well is producing or injecting.

« dZ: the height differences from the well head, which is defined as the topmost contact
(i.e., the contact with the minimum z-value counted amongst all cells perforated by this
well).

e name: string giving the name of the well.

« compi: fluid composition, only used for injectors.

« refDepth: reference depth of control mode.

« sign: defines whether the well is intended to be producer or injector.

Well structures are created by a call to the function

W = addWell(W, G, rock, celllnx);
W = addWell(W, G, rock, celllnx, 'pn', pv, ..);

Here, cel1lInx is a vector of indices to the cells perforated by the well, and 'pn' /pv denote
one or more keyword/value pairs that can be used to specify optional parameters in the well
model:

« type: string specifying well control, 'bhp' (default) means that the well is controlled
by bottom-hole pressure, whereas 'rate' means that the well is rate controlled.

« val: target for well control. Interpretation of this values depends upon type. For
'bhp' the value is assumed to be in unit Pascal, and for 'rate' the value is given in
unit [m3/sec]. Default value is 0.

« radius: wellbore radius in meters. Either a single, scalar value that applies to all per-
forations, or a vector of radii, with one value for each perforation. The default radius is
0.1 m.

o dir: well direction. A single CHAR applies to all perforations, while a CHAR array
defines the direction of the corresponding perforation.
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o innerProduct: used for consistent discretizations discussed in Chapter 6.

« WI:well index. Vector of length equal the number of perforations in the well. The default
value is -1 in all perforations, whence the well index will be computed from available
data (cell geometry, petrophysical data, etc.) in grid cells containing well completions.

« Kh: permeability times thickness. Vector of length equal the number of perforations in the
well. The default value is -1 in all perforations, whence the thickness will be computed
from the geometry of each perforated cell.

« skin: skin factor for computing effective well bore radius. Scalar value or vector with
one value per perforation. Default value: 0.0 (no skin effect).

o Comp_i: fluid composition for injection wells. Vector of saturations. Default value:
Comp_i=[1,0,0] (water injection).

« Sign: well type: production (sign=-1) or injection (sign=1). Default value: [1 (no type
specified).

« name: string giving the name of the well. Default value is 'Wn', where n is the number of
this well, i.e., n=numel (W) +1.

For convenience, MRST also provides the function

W = verticalWell(W, G, rock, I, J, K)
W = verticalWell(W, G, rock, I, K)

for specifying vertical wells in models described by Cartesian grids or grids that have some
kind of extruded structure. Here,

« I,J: gives the horizontal location of the well heel. In the first mode, both I and J are

given and then signify logically Cartesian indices so that I is the index along the first
logical direction, whereas J is the index along the second logical direction. This mode is
only supported for grids having an underlying Cartesian (logical) structure such as purely
Cartesian grids or corner-point grids.
In the second mode, only I is described and gives the cell index of the topmost cell in the
column through which the vertical well is completed. This mode is supported for logically
Cartesian grids containing a three-component field G. cartDims or for otherwise layered
grids that contain the fields G.numLayers and G.layerSize.

« K: a vector of layers in which this well should be completed. If isempty (K) is true, then
the well is assumed to be completed in all layers in this grid column and the vector is
replaced by 1:num_layers.

5.2 Incompressible Two-Point Pressure Solver

The two-point flux-approximation (TPFA) scheme introduced in Section 4.4.1 is imple-
mented as two different routines. The first routine,

‘ hT = computeTrans(G,rock) ‘
L |
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computes the half-face transmissibilities and does not depend on the fluid model, the reser-
voir state, or the driving mechanisms and is hence part of is part of MRST’s core function-
ality. The second routine

[ ]
| state = incompTPFA(state, G, hT, fluid, 'mechi’, obji, ..) \

takes the complete model description as input and assembles and solves the two-point
system. The routine is specific to incompressible flow and is thus placed in the incomp
module. Here, 'mech' specifies the drive mechanisms ('src', 'bc', and/or 'wells')
using correctly defined objects obj, as discussed in Sections 5.1.3-5.1.5.

Notice that computeTrans may fail to compute sensible transmissibilities if rock.
pernm is not given in SI units. Likewise, incompTPFA may produce strange results if the
inflow and outflow specified by the boundary conditions, source terms, and wells do not
sum to zero and hence violate the assumption of incompressibility. However, if fixed
pressure is specified in wells or on parts of the outer boundary, there will be an outflow or
inflow that will balance the net rate specified elsewhere.

The remainder of this section presents details of the inner workings of the incom-
pressible solver. By going through the essential code lines needed to compute half-
transmissibilities and solve and assemble the global system, we demonstrate how simple
it is to implement the TPFA method on general polyhedral grid. If you are not interested
in these details, you can jump directly to Section 5.4, which contains several examples
demonstrating the use of the incompressible solver for single-phase flow.

To focus on the discretization and keep the discussion simple, we will not look at the full
implementation of the two-point solver in incomp. Instead, we discuss excerpts from two
simplified functions, simpleComputeTrans and simpleIncompTPFA, located in the 1phase
directory of the mrst-book module. Together, these form a simplified single-phase solver,
which has been created for pedagogical purposes.

Assume we have a standard grid G containing cell and face centroids, e.g., as computed
by the computeGeometry function discussed in Section 3.4. Then, the essential code lines
of simpleComputeTrans are as follows: First, we define the vectors ¢; x from cell cen-
troids to face centroids; see Figure 5.1. To this end, we first need to determine the map

¢
Ti k= Ai kK

s

T =T + T,

1
s

Z Tik(pi — pr) = 4qi
k

Figure 5.1 Two-point discretization on general polyhedral cells
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from faces to cell number so that the correct cell centroid is subtracted from each face
centroid.

hf = G.cells.faces(:,1);
hf2cn = gridCellNo(G);
= G.faces.centroids(hf,:) - G.cells.centroids(hf2cn,:);

Face normals in MRST are assumed to have length equal the corresponding face areas, and
hence correspond to A; x71; ; in (4.51). To get the correct sign, we look at the neighboring
information specifying which cells share the face: if the current cell number is in the first
column, the face normal has positive sign. If not, it gets a negative sign:

sgn = 2x(hf2cn == G.faces.neighbors(hf, 1)) - 1;
N bsxfun(@times, sgn, G.faces.normals(hf,:));

The permeability tensor may be stored in different formats, as discussed in Section 2.5, and
we therefore use an utility function to extract it:

[X, i, j] = permTensor(rock, G.griddim);

Finally, we compute the half transmissibilities, C” K N/CT C. To limit memory use, this is
done in a for-loop (which is rarely used in MRST):

hT = zeros(size(hf2cn));
for k=1:size(i,?2),
hT = hT + C(:,i(k)) .* K(hf2cn, k) .* N(:,jk));
end
hT = hT./ sum(C.*C,2);

The actual code has a few additional lines that perform various safeguards and consistency
checks.

Once the half transmissibilities have been computed, they can be passed to the
simpleIncompTPFA solver. The first thing this solver needs to do is adjust the half
transmissibilities to account for fluid viscosity, since they were derived for a fluid with
unit viscosity:

mob = 1./fluid.properties(state);
hT = hT .* mob(hf2cn);

Then, we loop through all faces and compute the face transmissibility as the harmonic
average of the half-transmissibilities

T =1 ./ accumarray(hf, 1 ./ hT, [G.faces.num, 1]);

The MATLAB function accumarray constructs an array by accumulation (see
Appendix A.4). A call to a = accumarray(subs,val) will use the subscripts in subs
to create an array a based on the values val. Each element in val has a corresponding
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row in subs. The function collects all elements that correspond to identical subscripts in
subs and stores their sum in the element of a corresponding to the subscript. In our case,
G.cells.faces(:,1) gives the global face number for each half face, and hence the call
to accumarray will sum the transmissibilities of the half-faces that correspond to a given
global face and store the result in the correct place in a vector of G.faces.num elements.
The function accumarray is very powerful and is used a lot in MRST in place of nested
for-loops. In fact, we also employ this function to loop over all cells in the grid and collect
and sum the transmissibilities of the faces of each cell to define the diagonal of the TPFA
matrix:

nc = G.cells.num;

i = all(G.faces.neighbors ~= 0, 2);

nl = G.faces.neighbors(i,1);

n2 = G.faces.neighbors(i,2);

d accumarray([nl; n2], repmat(T(i), [2,1]), [nc, 11);

Now that we have computed both the diagonal and the off-diagonal elements of A, the
discretization matrix itself can be constructed by a straightforward call to MATLAB’s
sparse function:

= [n1; n2; (1:nc)'];

= [n2; n1; (1:nc)'l;

[-T(1); -T(@1); dl; clear d;
sparse(double(I), double(J), V, nc, nc);

< o H
]

Finally, we check if Dirichlet boundary conditions are imposed on the system, and if not,
we modify the first element of the system matrix to fix the pressure in the first cell to zero,
before solving the system:

A(1) = 2%A(1);
p = mldivide(A, rhs);

To solve the system, we rely on MATLAB’s default solver mldivide, which uses a com-
plex flow chart to check the structure of the matrix to see whether it is square, diagonal,
(permuted) triangular, tridiagonal, banded, or Hermitian, and then chooses a specialized
and efficient solver accordingly. By running the command spparms (’spumoni’,2) before
you call mldivide, you can tell MATLAB to output information about which linear solver
it chooses and the tests leading up the specific choice. For the type of sparse matrices
we consider here, the end result is a call to a direct solver from UMFPACK implementing
unsymmetric, sparse, multifrontal LU factorization [89, 88]. Such a direct solver is efficient
for small-to-medium-sized systems, but for larger systems it is more efficient to use sparse
iterative solvers such as a (preconditioned) multilevel method. The linear solver can be
passed as a function-pointer argument to both incompTPFA and simpleIncompTPFA,
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mrstModule add agmg
state = incompTPFA(state, G, hT, fluid, 'wells', W, 'LinSolve', @(A,b) agmg(A,b,1));

Here, we have used the aggregation-based algebraic multigrid solver AGMG [238, 15],
which integrates well with MRST and is vailable at no cost for academic research and
teaching. Section 12.3.4 discusses various specialized linear solver for compressible multi-
phase flow simulations.

Once the cell pressures have been computed, we can compute pressure values at the face
centroids using the half-face transmissibilities

fp = accumarray(G.cells.faces(:,1), p(hf2cn).*hT, [G.faces.mum,1])./ ...
accumarray(G.cells.faces(:,1), hT, [G.faces.num,1]);

and then construct fluxes across the interior faces

ni G.faces.neighbors(i,:);
flux = -accumarray(find(i), T(i).*(p@i(:,2))-p@i(:,1))), [nf, 11);

In the code excerpts given above, we did not account for gravity forces and general Dirichlet
or Neumann boundary conditions, which both will complicate the code beyond the scope
of the current presentation. The interested reader should consult the actual code to work out
these details. The standard computeTrans function can also be used for different representa-
tions of petrophysical parameters, and includes functionality to modify the discretization by
overriding the definition of cell and face centers and/or including multipliers that modify
the values of the half-transmissibilities; see e.g., Sections 2.4.3 and 2.5.5. Likewise, the
incompTPFA solver from the incomp module is implemented for a general, incompress-
ible flow model with multiple fluid phases with flow driven by a general combination of
boundary conditions, fluid sources, and well models.

We will shortly present several examples of how this solver can be used for flow
problems on structured and unstructured grids. However, before doing so, we outline
another flow solver from the diagnostics module, which will prove useful to visualize
flow patterns.

5.3 Upwind Solver for Time-of-Flight and Tracer

The diagnostics module, discussed in more detail in Chapter 13, provides various func-
tionality to probe a reservoir model to establish communication patterns between inflow
and outflow regions, timelines for fluid movement, and various measures of reservoir het-
erogeneity. At the hart of this module, lies the function

tof = computeTimeOfFlight(state, G, rock, 'mechl', objil, ..)
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which implements the upwind, finite-volume discretization introduced in Section 4.4.3 for
solving the time-of-flight equation v - VT = ¢. As you probably recall, time-of-flight is
the time it takes a neutral particle to travel from the nearest fluid source or inflow bound-
ary to each point in the reservoir. Here, the 'mech' arguments represent drive mechanisms
('src', 'be', and/or 'wells') specified in terms of specific objects obj, as discussed in
Sections 5.1.3 to 5.1.5. You can also compute the backward time-of-flight — the time it takes
to travel from any point in the reservoir to the nearest fluid sink or outflow boundary — with
the same equation if we change sign of the flow field and modify the boundary conditions
and/or source terms accordingly. In the following, we will go through the main parts of
how this discretization is implemented.

We start by identifying all volumetric sources of inflow and outflow, which may be
described as source/sink terms in src and/or as wells in W, and collect the results in a
vector q of source terms having one value per cell

[qi,qs] = deal([1);
if ~isempty(W),
gi = [qi; vertcat(W.cells)];
gs = [gs; vertcat(state.wellSol.flux)];
end
if ~isempty(src),
qi = [qi; src.celll;
gs = [gs; src.rate];
end
q = sparse(qi, 1, gs, G.cells.num, 1);

We also need to compute the accumulated inflow and outflow from boundary fluxes for each
cell. This will be done in three steps. First, we create an empty vector £f with one entry
per global face, find all faces that have Neumann conditions, and insert the corresponding
value in the correct row

ff zeros(G.faces.num, 1);
isNeu = strcmp('flux', bc.type);
ff(bc.face(isNeu)) = bc.value(isNeu);

The flux is not specified on faces with Dirichlet boundary conditions and must be extracted
from the solution computed by the pressure solver, i.e., from the state object that holds
the reservoir state. We also need to set the correct sign so that fluxes info a cell are positive
and fluxes out of a cell are negative. The sign of the flux across an outer face is correct if
neighbors(i,1)==0, but if neighbors(i,2)==0 we need to reverse the sign (we should also
check that i is not empty)

i = bc.face(stremp('pressure', be.type));
ff(i) = state.flux(i) .* (2*(G.faces.neighbors(i,1)==0) - 1);

The last step is to sum all the fluxes across outer faces and collect the result in a vector qb
that has one value per cell
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outer = ~all(double(G.faces.neighbors) > 0, 2);
gb = sparse(sum(G.faces.neighbors(outer,:), 2), 1, ff(is_outer), G.cells.num, 1);

Here, sum(G.faces.neighbors(outer,:), 2) gives an array containing the indices of each
cell attached to an outer face.

Once the contributions to inflow and outflow are collected, we can start building the
upwind flux discretization matrix A. The off-diagonal entries are defined such that Aj; =
max(v;;,0) and A;; = —min(v;;,0), where v;; is the flux computed by the TPFA scheme
discussed in the previous section.

i = ~any(G.faces.neighbors==0, 2);
out = min(state.flux(i), 0);
in = max(state.flux(i), 0);

The diagonal entry equals the outflux minus the divergence of the velocity, which can be
obtained by summing the off-diagonal rows. This will give the correct equation in all cell
except for those with a positive fluid source. Here, the net outflux equals the divergence of
the velocity and we hence end up with an undetermined equation. In these cells, we can as
a reasonable approximation' set the time-of-flight to be equal the time it takes to fill the
cell, which means that the diagonal entry should be equal the fluid rate inside the cell.

n = double(G.faces.neighbors(i,:));
inflow = accumarray([n(:, 2); n(:, 1)1, [in; -outl);
d = inflow + max(g+gb, 0);

Having obtained diagonal and all the nonzero off-diagonal elements, we can assemble the
full matrix

nc = G.cells.num;
A sparse(n(:,2), n(:,1), in, nc, nc) + sparse(n(:,1), n(:,2), -out, nc, nc);
A = -A + spdiags(d, 0, nc, nc);

We have now established the complete discretization matrix, and time-of-flight can be
computed by a simple matrix inversion

tof = A \ poreVolume(G,rock);

If there are no gravity forces and the flux has been computed by the two-point method
(or some other monotone scheme), one can show that the discretization matrix A can be
permuted to a lower-triangular form [221, 220]. In the general case, the permuted matrix
will be block triangular with irreducible diagonal blocks. Such systems can be inverted very

I Notice, however, that to get the correct values for 1D cases, it is more natural to set time-of-flight equal half the time it takes
to fill the cell.
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efficiently using a permuted back-substitution algorithm as long as the irreducible diagonal
blocks are small. MATLAB is quite good at detecting such structures, and using the simple
backslash (\) operator is therefore efficient, even for quite large models. However, for
models of real petroleum assets described on stratigraphic grids (see Section 3.3), it is often
necessary to preprocess flux fields to get rid of numerical clutter that would otherwise intro-
duce large irreducible blocks inside stagnant regions. By specifying optional parameters to
computeTime0fFlight, the function will get rid of such small cycles in the flux field and set
the time-of-flight to a prescribed upper value in all cells that have sufficiently small influx.
This tends to reduce the computational cost significantly for large models with complex
geology and/or significant compressibility effects.

The same routine can also compute stationary tracers, as discussed in Section 4.3.4.
This is done by passing an optional parameter,

tof = computeTimeOfFlight(state, G, rock, .., 'tracer',tr)

where tr is a cell-array of vectors that each gives the indices of cells that emit a unique
tracer. For incompressible flow, the discretization matrix of the tracer equation is the same
as that for time-of-flight, and all we need to do to extend the solver is to assemble the
right-hand side

mumTrRHS = numel (tr) ;
TrRHS = zeros(nc,numTrRHS) ;
for i=1:numTrRHS,
TrRHS(tr{i},i) = 2*qp(tr{i});
end

Since we have doubled the rate in any cells with a positive source when constructing the
matrix A, the rate on the right-hand side must also be doubled.

With the extra right-hand sides assembled, we can solve the combined time-of-
flight/tracer problem as a linear system with multiple right-hand sides,

T = A\ [poreVolume(G,rock) TrRHS];

which means that we essentially get the tracer for free as long as the number of tracers does
not exceed the number of right-hand columns MATLAB can handle in one solve. We will
return to a more thorough discussion of the tracer partitions Chapter 13 and show how these
can be used to delineate connectivities within the reservoir. In the rest of this chapter, we
will consider time-of-flight and streamlines as a means to study flow patterns in reservoir
models.

5.4 Simulation Examples

We have now introduced you to all the functionality from the incomp module neces-
sary to solve a single-phase flow problem, as well as the time-of-flight solver from the
diagnostics module, which can be used to compute time lines in the reservoir. In the
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following, we discuss several examples and demonstrate step by step how to set up a flow
model, solve it, and visualize and analyze the resulting flow field. Complete codes can be
found in the 1phase directory of the book module.

5.4.1 Quarter Five-Spot

As our first example, we show how to solve —V - (KV p) = ¢g with no-flow boundary con-
ditions and two source terms at diagonally opposite corners of a 2D Cartesian grid covering
a 500 x 500 m? area. This setup mimics a standard quarter five-spot well pattern, which
we encountered in Figure 4.7 on page 126 when discussing well models. The full code is
available in the script quarterFiveSpot.m. We use a rectangular grid with homogeneous
petrophysical data (K = 100 mD and ¢ = 0.2):

[nx,ny] = deal(32);
G = cartGrid([nx,ny], [500,500]) ;
= computeGeometry(G) ;
rock = makeRock(G, 100*milli*darcy, .2);

As we saw above, all we need to develop the spatial discretization is the reservoir geometry
and the petrophysical properties. This means that we can compute the half transmissibilities
without knowing any details about the fluid properties and the boundary conditions and/or
sources/sinks that will drive the global flow:

hT = simpleComputeTrans(G, rock);

The result of this computation is a vector with one value per local face of each cell in the
grid, i.e., a vector with G.cells.faces entries.

The reservoir is horizontal and gravity forces are therefore not active. We create a fluid
with properties that are typical for water:

gravity reset off
fluid = initSingleFluid('mu' , 1*centi*poise, ...
'rho', 1014*kilogram/meter~3);

To drive flow, we use a fluid source in the southwest corner and a fluid sink in the northeast
corner. The time scale of the problem is defined by the strength of the source terms.
Here, we set these terms so that a unit time corresponds to the injection of one pore
volume of fluids. By convention, all flow solvers in MRST automatically assume no-
flow conditions on all outer (and inner) boundaries if no other conditions are specified
explicitly.

pv sum(poreVolume(G,rock)) ;
src = addSource([], 1, pv);
src = addSource(src, G.cells.num, —pv);
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The data structure used to represent the fluid sources contains three elements:

cell: [2x1 double]
rate: [2x1 double]
sat: []

We recall that src.cell gives cell numbers where source terms are nonzero, and the
vector src.rate specifies the fluid rates, which by convention are positive for inflow into
the reservoir and negative for outflow from the reservoir. The last data element src.sat
specifies fluid saturations, which only has meaning for multiphase flow models and hence
is set to be empty here.

Strictly speaking, state structure need not be initialized for an incompressible model
in which none of the fluid properties depend on the reservoir state. However, to avoid
treatment of special cases, MRST requires that the structure is initialized and passed as
argument to the pressure solver. We therefore initialize it with a dummy pressure value of
zero and a unit fluid saturation (fraction of void volume filled by fluid), since we only have
a single fluid

state = initResSol(G, 0.0, 1.0);
display(state)

state =
pressure: [1024x1 doublel
flux: [2112x1 double]
s: [1024x1 double]

This completes the setup of the model. To solve for pressure, we simply pass reservoir
state, grid, half transmissibilities, fluid model, and driving forces to the flow solver, which
assembles and solves the incompressible equation.

state = simpleIncompTPFA(state, G, hT, fluid, 'src', src);
display(state)

state =
pressure: [1024x1 double]
flux: [2112x1 double]
s: [1024x1 double]
facePressure: [2112x1 double]

As explained here, simpleIncompTPFA solves for pressure as the primary variable and then
uses transmissibilities to reconstruct the face pressure and intercell fluxes. After a call to
the pressure solver, the state object is therefore expanded by a new field facePressure
that contains pressures reconstructed at the face centroids. Figure 5.2 shows the resulting
pressure distribution. To improve the visualization of the flow field, we show streamlines.
The streamlines add-on module to MRST implements Pollock’s method [253] for semi-
analytical tracing of streamlines. Here, we use this functionality to trace streamlines for-
ward and backward, starting from the midpoint of all cells along the northwest—southeast
diagonal in the grid
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plotCellData(G, state.pressure); hf=streamline(Sf);
plotGrid(G, src.cell, 'FaceColor', 'w'); hb=streamline(Sb) ;
axis equal tight; colormap(jet(128)); set([hf; hb], 'Color','k');

Figure 5.2 Solution of the quarter five-spot problem on a 32 x 32 uniform grid. The left plot shows
the pressure distribution and in the right plot we have imposed streamlines passing through centers
of the cells on the northwest—southeast diagonal.

mrstModule add streamlines;

seed = (nx:nx-1:nx*ny).';

Sf = pollock(G, state, seed, 'substeps', 1);

Sb = pollock(G, state, seed, 'substeps', 1, 'reverse', true);

The pollock routine produces a cell array of individual streamlines, which we pass onto
MATLAB?’s streamline routine for plotting, as shown to the right in Figure 5.2.

To get a better picture of how fast the fluid flows through our domain, we solve the
time-of-flight equation (4.40) subject to the condition that T = 0 at the inflow, i.e., at all
points where g > 0. For this purpose, we use the computeTime0fFlight solver discussed
in Section 5.3, which can compute time-of-flight both forward from inflow points and into
the reservoir,

toff = computeTimeOfFlight(state, G, rock, 'src', src);

and from outflow points and backwards into the reservoir

tofb = computeTimeOfFlight(state, G, rock, 'src', src, 'reverse', true);

Isocontours of time-of-flight define natural time lines in the reservoir. To emphasize this,
the left plot in Figure 5.3 shows time-of-flight plotted using only a few colors to make a
rough contouring effect. The sum of forward and backward time-of-flight gives the total
time it takes a fluid particle to pass from an inflow point to an outflow point. We can thus
use this total residence time to visualize high-flow and stagnant regions, as demonstrated
in the right plot of Figure 5.3.
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plotCellData(G, toff); plotCellData(G, toff+tofb);
plotGrid(G,src.cell, 'FaceColor', 'w'); plotGrid(G,src.cell, 'FaceColor', 'w');
axis equal tight; axis equal tight;

colormap(jet(16)); caxis([0,1]); colormap(jet(128));

Figure 5.3 Quarter five-spot problem on a 32 x 32 grid. The left plot shows time-of-flight plotted
with a few color levels to create a crude contouring effect. The right plots total travel time clearly
distinguishing high-flow and stagnant regions.

COMPUTER EXERCISES

5.4.1 Run the quarter five-spot example with the following modifications:

a. Replace the Cartesian grid by a curvilinear grid, e.g., using twister or a
random perturbation of internal nodes as shown in Figure 3.3.

b. Replace the grid by the locally refined grid from Exercise 3.2.6.

c. Replace the homogeneous permeability by a heterogeneous permeability
derived from the Carman—Kozeny relation (2.6).

d. Set the domain to be a single layer of the SPE 10 model. Hint: use

getSPE10rock() to sample the petrophysical parameters and remember
to convert to SI units.

Notice that the pollock function may not work for non-Cartesian grids.

5.4.2 Construct a grid similar to the one in Exercise 3.1.1, except that the domain is given
a 90-degree flip so that axis of the cylindrical cutouts align with the z-direction.
Modify the code presented in this section so that you can compute a five-spot setup
with one injector near each corner and a producer in the narrow middle section
between the cylindrical cutouts.

5.4.2 Boundary Conditions

To demonstrate how to specify boundary conditions, we go through essential code lines of
three different examples. In all three examples, the reservoir is 50 m thick, is located at a
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depth of approximately 500 m, and is restricted to a 1 x 1 km? area. The permeability is
uniform and anisotropic, with a diagonal (1,000, 300, 10) mD tensor, and the porosity is
uniform and equal 0.2. In the first two examples, the reservoir is represented as a 20 x 20 x 5
rectangular grid, and in the third example the reservoir is given as a corner-point grid of the
same Cartesian dimension, but with an uneven uplift and four intersecting faults (as shown
in the left plot of Figure 3.32):

[nx,ny,nz] = deal(20, 20, 5);
[Lx,Ly,Lz] = deal(1000, 1000, 50);
switch setup

case 1,

G = cartGrid([nx ny nz], [Lx Ly Lz]);
case 2,

G = cartGrid([nx ny nz], [Lx Ly Lz]);
case 3,

G = processGRDECL(makeModel3([nx ny nz], [Lx Ly Lz/5]));
G.nodes.coords(:,3) = 5%(G.nodes.coords(:,3)-min(G.nodes.coords(:,3)));
end
G.nodes.coords(:,3) = G.nodes.coords(:,3) + 500;

Setting rock and fluid parameters, computing transmissibilities, and initializing the reser-
voir state can be done as explained in the previous section, and details are not included for
brevity; you find the complete scripts in boundaryConditions.

Linear Pressure Drop

In the first example (setup=1), we specify Neumann conditions with total inflow of
5,000 m>/day on the east boundary and Dirichlet conditions with fixed pressure of 50 bar
on the west boundary:

bc = fluxside(bc, G, 'EAST', be3*meter~3/day);
bc = pside  (bc, G, 'WEST', 50%barsa);

This completes the definition of the model, and we can pass the resulting objects to the
simpleIncompTFPA solver to compute the pressure distribution shown to the right in Figure
5.4. In the absence of gravity, these boundary conditions will result in a linear pressure drop
from east to west inside the reservoir.

Hydrostatic Boundary Conditions

In the next example, we use the same model, except that we now include the effects
of gravity and assume hydrostatic equilibrium at the outer vertical boundaries of the
model. First, we initialize the reservoir state according to hydrostatic equilibrium, which
is straightforward to compute if we for simplicity assume that the overburden pressure is
caused by a column of fluids with the exact same density as in the reservoir:
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[bar]

Figure 5.4 First example of a flow driven by boundary conditions. In the left plot, faces with
Neumann conditions are marked in blue and faces with Dirichlet conditions are marked in red. The
right plot shows the resulting pressure distribution.

state = initResSol(G, G.cells.centroids(:,3)*rho*norm(gravity), 1.0);

There are at least two different ways to specify hydrostatic boundary conditions. The
simplest approach is to use the function psideh, i.e.,

bc = psideh([], G, 'EAST', fluid); bc = psideh(bc, G, 'WEST', fluid);
bc = psideh(bc, G, 'SOUTH', fluid); bc = psideh(bc, G, 'NORTH', fluid);

Alternatively, we can do it manually ourselves. To this end, we need to extract the reservoir
perimeter defined as all exterior faces are vertical, i.e., whose normal vector has no z-
component,

f = boundaryFaces(G) ;
f = f(abs(G.faces.normals(f,3))<eps);

To get the hydrostatic pressure at each face, we can either compute it directly by using the
face centroids,

fp = G.faces.centroids(f,3)*rho*norm(gravity) ;

or we use the initial equilibrium that has already been established in the reservoir by
sampling from the cells adjacent to the boundary

cif
fp

sum(G.faces.neighbors(f,:),2) ;
state.pressure(cif) ;

The latter may be useful if the initial pressure distribution has been computed by a more
elaborate procedure than what is currently implemented in psideh. In either case, the
boundary conditions can now be set by the call
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Figure 5.5 A reservoir with hydrostatic boundary condition and fluid extracted from a sink
penetrating two cells in the upper two layers of the model. The left plot shows the boundary and
the fluid sink, while the right plot shows the resulting pressure distribution.

bc = addBC(bc, f, 'pressure', fp);

To make the problem a bit more interesting, we also include a fluid sink at the midpoint of
the upper two layers in the model,

ci = round(.5*(nx*ny-nx));
ci = [ci; citnxkny];
src = addSource(src, ci, repmat(-le3+*meter~3/day,numel(ci),1));

Figure 5.5 shows the boundary conditions and source terms to the left and the resulting
pressure distribution to the right. The fluid sink causes a pressure drawdown, which has
ellipsoidal shape because of the anisotropic permeability field.

Conditions on Non-Rectangular Domain

For the reservoir shown in Figure 5.6, we cannot simply use tags for to select faces on the
east and west perimeter. The problem is that fluxside and pside define cardinal sides to
consist of all exterior faces whose normal vector point in the correct cardinal direction. This
is illustrated in the upper-left plot of Figure 5.6, where we have tried to specify boundary
conditions using the same procedure as in Figure 5.4. We can easily get rid of faces that
really lie on the north and south boundary if we use the subrange feature of fluxside and
pside to restrict the boundary conditions to a subset of the global side, as shown in the
upper-right plot of Figure 5.6

bc = fluxside([], G, 'EAST', be3+meter~3/day, 4:15, 1:5);
bc = pside  (bc, G, 'WEST', 50#barsa, 7:17, [1);
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Figure 5.6 Specifying boundary conditions along the outer perimeter of a corner-point model. The
upper-left plot shows the use of fluxside/pside (blue/red color) and to set boundary conditions on
the east and west global boundaries. In the upper-right point, the same functions have been used with
a specification of subranges in the global sides. In the lower-left plot, we have utilized user-supplied
information to correctly set the conditions only along the perimeter. The lower-right plot shows the
resulting pressure solution.

Unfortunately, fluxside/pside still picks exterior faces at the faults, classified as pointing
east/west because of their normal. Similar problems may arise in other models because of
pinched, eroded, or inactive cells.

To find the east- and west-most faces only, we need to use advanced tactics. In our case,
the natural perimeter is defined as those faces that lie on the bounding box of the model,
on which we distribute the total flux to individual faces according to the face area. For the
Neumann condition we therefore get

x = G.faces.centroids(f,1);
[xm,xM] = deal(min(x), max(x));
ff = f(x>xM-1e-5);
bc = addBC(bc, ff, 'flux', (5e3*meter~3/day) ...
* G.faces.areas(ff)/ sum(G.faces.areas(ff)));

We can specify the Dirichlet condition in a similar manner. The lower-right plot shows the
correct linear pressure drop.
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5.4.3 Consider a 2D box with a sink at the midpoint and inflow across the perimeter spec-
ified either in terms of a constant pressure or a constant flux. Are there differences
in the two solutions, and if so, can you explain why? Hint: use time-of-flight, total
travel time, and/or streamlines to investigate.

5.44 Apply the production setup from Figure 5.5, with hydrostatic boundary conditions
and fluids extracted from two cells at the midpoint of the model, to the model
depicted in Figure 5.6.

5.4.5 Compute flow for all models in data sets BedModels1 and BedModel?2 subject to
linear pressure drop in the x and then in the y-direction. These models of small-
scale heterogeneity are developed to compute representative properties in simu-
lation models on a larger scale. A linear pressure drop is the most widespread
computational setup used for flow-based upscaling. What happens if you try to
specify flux conditions?

5.4.6 Consider models from the CaseB4 data set. Use appropriate boundary conditions
to drive flow across the faults and compare flow patterns computed on the pillar and
the stair-stepped grid for the two different model resolutions. Can you explain any
differences you observe?

5.4.3 Structured versus Unstructured Stencils

We have so far only discussed hexahedral grids having structured cell numbering. The two-
point schemes can also be applied to fully unstructured and polyhedral grids. To demon-
strate this, we define a non-rectangular reservoir by scaling the grid from Figure 3.8 to
covera I x 1km? area.

load seamount;
T = triangleGrid([x(:) y(:)], delaunay(x,y));
[Tmin,Tmax] = deal (min(T.nodes.coords), max(T.nodes.coords));
T.nodes.coords = bsxfun(@times, ...

bsxfun(@minus, T.nodes.coords, Tmin), 1000./(Tmax - Tmin));
T = computeGeometry(T) ;

We assume a homogeneous and isotropic permeability of 100 mD and use the same fluid
properties as in the previous examples. Constant pressure of 50 bar is set at the outer
perimeter and fluid is drained at a constant rate of one pore volume over 50 years from
a well located at (450,500). (Script: stencilComparison.m.)

For comparison, we generate two Cartesian grids covering the same domain, one with
approximately the same number of cells as the triangular grid and a 10 x 10 refinement of
this grid to provide a reference solution,

G = computeGeometry(cartGrid([25 25], [1000 1000]));
inside = isPointInsideGrid(T, G.cells.centroids);
= removeCells(G, ~inside);

https://doi.org/10.1017/9781108591416.008 Published online by Cambridge University Press


https://doi.org/10.1017/9781108591416.008

166 Incompressible Solvers for Single-Phase Flow

The function isPointInsideGrid implements a simple algorithm for finding whether
points lie inside the circumference of a grid. First, all boundary faces are extracted and
then the corresponding nodes are sorted so that they form a closed polygon. Then, we
use MATLAB’s built-in function inpolygon to check if the points are inside this polygon.
To also construct a radial grid, we reuse the code from page 86 to set up points inside
[—1,1] x [—1,1] graded radially towards the origin

P=[1;
for r = exp([-3.5:.2:0, 0, .1]),
[x,y] = cylinder(x,25); P = [P [x(1,:); y(1,:)1];
end
P = unique([P'; 0 0], 'rows');

We scale the points and translate so that their origin coincides with the fluid sink

[Pmin,Pmax] = deal(min(P), max(P));
P = bsxfun(@mninus, bsxfun(@times, ...
bsxfun(@minus, P, Pmin), 1200./(Pmax-Pmin)), [150 100]);

We remove all points outside of the triangular grid before we use the point set to first
generate a triangular and then a Voronoi grid:

inside = isPointInsideGrid(T, P);
V = computeGeometry( pebi( triangleGrid(P(inside,:)) ));

Once we have constructed the grids, the setup of the remaining part of the model
is the same in all cases. To avoid unnecessary replication of code, we collect the
grids in a cell array and use a simple for-loop to set up and simulate each model
realization:

g=1G, T, V, Gr};

for i=1:4
rock = makeRock(g{i}, 100#milli*darcy, 0.2);
hT = simpleComputeTrans(g{i}, rock);
pv = sum(poreVolume(g{i}, rock));

tmp = (g{i}.cells.centroids - repmat([450, 500],g{i}.cells.num, [1))."2;
[~,ind] = min(sum(tmp,2));
src{i} = addSource(src{i}, ind, -.02*pv/year);

bc{i} = addBC([], boundaryFaces(g{i}), 'pressure', 50*barsa);

state{i} = incompTPFA(initResSol(g{i},0,1), ...
g{i}, hT, fluid, 'src', src{i}, 'bec', be{i}, 'MatrixOutput', true);

[tof{i},A{i}] = computeTimeOfFlight(state{i}, g{i}, rock,...
'src', src{il}, 'bc',bc{i}, 'reverse', true);
end

https://doi.org/10.1017/9781108591416.008 Published online by Cambridge University Press


https://doi.org/10.1017/9781108591416.008

5.4 Simulation Examples 167

Cartesian: 486 cells Triangular: 566 cells Radial: 445 cells Reference: 48,437 cells

® Reference
® Cartesian
® Triangular
© Radial

. . . . T )
50 100 150 200 250 300

o

Figure 5.7 Comparison of the pressure solution for three different grid types: uniform Cartesian,
triangular, and a graded radial grid. The scattered points used to generate the triangulated domain
and limit the reservoir are sampled from the seamount data set and scaled to cover a 1 x 1 km?
area. Fluids are drained from the center of the domain, assuming a constant pressure of 50 bar at the
perimeter.

Figure 5.7 shows the pressure solutions computed on the four different grids, whereas
Figure 5.8 reports the sparsity patterns of the corresponding linear systems for the three
coarse grids. As expected, the Cartesian grid gives a banded matrix consisting of five
diagonals corresponding to each cell and its four neighbors in the cardinal directions. Even
though this discretization is not able to predict the complete drawdown at the center (the
reference solution predicts a pressure slightly below 40 bar), it captures the shape of the
drawdown region quite accurately; the region appears ellipsoidal because of the non-unit
aspect ratio in the plot. In particular, we see that the points in the radial plot follow those
of the fine-scale reference closely. The spread in the points as » — 300 is not a grid
orientation effect, but the result of variations in the radial distance to the fixed pressure at
the outer boundary on all four grids.
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Figure 5.8 Sparsity patterns for the TPFA stencils on the three different grid types shown in
Figure 5.7.

The unstructured triangular grid is more refined near the well and is hence able to pre-
dict the pressure drawdown in the near-well region more accurately. However, the overall
structure of this grid is quite irregular, as you can see from the sparsity pattern of the linear
system shown in Figure 5.8, and the irregularity gives significant grid orientation effects.
You can see this from the irregular shape of the color contours in the upper part of Figure
5.7, as well as from the spread in the scatter plot. In summary, this grid is not well suited
for resolving the radial symmetry of the pressure drawdown in the near-well region. But to
be fair, the grid was not generated for this purpose either.

Except for close to the well and close to the exterior boundary, the topology of the
radial grid is structured in the sense that each cell has four neighbors, two in the radial
direction and two in the angular direction, and the cells are regular trapezoids. This should,
in principle, give a banded sparsity pattern if the cells are ordered starting at the natural
center point and moving outward, one ring at the time. To verify this claim, you can execute
the following code:

[~,q] = sort(state{3}.pressure);
spy(state{3}.A(q,9));

However, as a result of how the grid was generated by first triangulating and then forming
the dual, the cells are numbered from west to east, which explains why the sparsity pattern
is so far from being a simple banded structure. This may potentially affect the efficiency of
a linear solver, but has no impact on the accuracy of the numerical approximation, which is
good because of the grading towards the well and the symmetry inherent in the grid. Slight
differences in the radial profile compared with the Cartesian grid(s) are mainly the result of
the fact that the source term and the fixed pressure conditions are not located at the exact
same positions in the simulations.

In Figure 5.9, we also show the sparsity pattern of the linear system used to compute
the reverse time-of-flight from the well and back into the reservoir. Using the default cell
ordering, the sparsity pattern of each upwind matrix will appear as a less dense version
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Figure 5.9 Sparsity patterns for the upwind stencils used to compute time-of-flight on the three
different grid types shown in Figure 5.7. In the lower row, the matrices have been permuted to lower-
triangular form by sorting the cell pressures in ascending order.

of the pattern for the corresponding TPFA matrix. However, whereas the TPFA matrices
represent an elliptic equation in which information propagates in both directions across
cell interfaces, the upwind matrices are based on one-way connections arising from fluxes
between pairs of cells that are connected in the TPFA discretization. To reveal the true
nature of the system, we can permute the system by either sorting the cell pressures in
ascending order (potential ordering) or using the function dmperm to compute a Dulmage—
Mendelsohn decomposition. As pointed out in Section 5.3, the result is a lower triangular
matrix, from which it is simple to see the unidirectional propagation of information you
should expect for a hyperbolic equation having only positive characteristics.

COMPUTER EXERCISES

5.4.7 Compare the sparsity patterns resulting from potential ordering and use of dmperm
for both the upwind and the TPFA matrices.

5.4.8 Investigate the flow patterns in more details using forward time-of-flight, travel
time, and streamlines.

5.4.9 Replace the boundary conditions by a constant influx, or set pressure values sam-
pled from a radially symmetric pressure solution in an infinite domain.

5.4.4 Using Peaceman Well Models

Flow in and out of a wellbore takes place on a scale much smaller than a single grid cell in
typical sector and field models and is therefore commonly modeled using a semi-analytical
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model of the form (4.35). This section presents two examples to demonstrate how such
models can be included in the simulation setup using data objects and utility functions
introduced in Section 5.1.5.

Box Reservoir

We consider a reservoir consisting of a homogeneous 500 x 500 x 25 m? sand box with
an isotropic permeability of 100 mD, represented on a regular 20 x 20 x 5 Cartesian grid.
The fluid is the same as in the examples as in the earlier examples in this section. You can
find all code lines necessary to set up the model, solve the flow equations, and visualize the
results in the script firstWellExample.m. Setting up the model is quickly done once you
have gotten familiar with MRST:

[nx,ny,nz] = deal(20,20,5);

G = computeGeometry( cartGrid([nx,ny,nz], [500 500 25]) );

rock = makeRock(G, 100*milli*darcy, .2);

fluid = initSingleFluid('mu',l1*centi*poise, 'rho',1014*kilogram/meter~3);
hT computeTrans (G, rock);

The reservoir is produced by a well pattern consisting of a vertical injector and a horizontal
producer. The injector is located in the southwest corner of the model and operates at a
constant rate of 3,000 m? per day. The producer is completed in all cells along the upper
east rim and operates at a constant bottom-hole pressure of 1 bar (i.e., 10° Pascal in SI
units):

W = verticalWell([], G, rock, 1, 1, 1:nz, 'Type', 'rate', 'Comp_i', 1,...
'Val', 3e3/day(), 'Radius', .12*meter, 'name', 'I');
W = addWell(W, G, rock, nx : ny : nx*ny, 'Type', 'bhp', 'Comp i', 1, ...
'Val', 1.0e5, 'Radius', .12*meter, 'Dir', 'y', 'name', 'P');

In addition to specifying the type of control on the well ('bhp' or 'rate'), we must
specify wellbore radius and fluid composition, which is '1' for a single phase. After
initialization, the array W contains two data objects, one for each well:

Well #1: | Well #2:
cells: [5x1 double] | cells: [20x1 double]
type: ’rate’ | type: ’bhp’
val: 0.0347 | val: 100000
r: 0.1000 | r: 0.1000
dir: [56x1 char] | dir: [20x1 char]
WI: [5x1 doublel | WI: [20x1 double]
dZ: [5x1 doublel | dZ: [20x1 double]
name: ‘I’ | name: ’P’
compi: 1 | compi: 1
refDepth: 0 | refDepth: 0
sign: 1 | sign: []

This concludes the model specification, and we now have all the information we need to
initialize the reservoir state, and assemble and solve the system
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Figure 5.10 Solution of a single-phase, incompressible flow problem inside a box reservoir with a
vertical injector and a horizontal producer.

gravity reset on;
resSol = initState(G, W, 0);
state = incompTPFA(state, G, hT, fluid, 'wells', W);

Figure 5.10 shows how the inflow rate decays with the distance to the injector as expected.
We can compute the flux intensity depicted in the lower-right plot using the following
command, which first maps the vector of face fluxes to a vector with one flux per half face
and then sums the absolute value of these fluxes to get a flux intensity per cell:

cf = accumarray(getCellNoFaces(G), abs(faceFlux2cellFlux(G, state.flux)));

Shallow-Marine Reservoir

In the final example, we return to the SAIGUP model from Section 3.5.1. This model
does not represent a real reservoir, but is one out of a large number of models built to
be plausible realizations that contain the types of structural and stratigraphic features one
could encounter in models of real clastic reservoirs. Continuing from Section 3.5.1, we
simply assume that the grid and the petrophysical model has been loaded and processed.
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The script saigupWithWells.m reports all details of the setup and also explains how to
speed up the grid processing by using two C-accelerated routines for constructing a grid
from ECLIPSE input and computing areas, centroids, normals, volumes, etc.

The permeability input is an anisotropic tensor with zero vertical permeability in a
number of cells. As a result, some parts of the reservoir may be completely sealed off
from the wells. This will cause problems for the time-of-flight solver, which requires that
all cells in the model must be flooded after some finite time that can be arbitrarily large.
To avoid this potential problem, we assign a small constant times the minimum positive
vertical permeability to the cells that have zero cross-layer permeability.

is_pos = rock.perm(:, 3) > 0;
rock.perm(~is_pos, 3) = le-6min(rock.perm(is_pos, 3));

Similar safeguards are implemented in most commercial simulators.

We recover fluid from the reservoir using six producers spread throughout the middle of
the reservoir; each producer operates at a fixed bottom-hole pressure of 200 bar. Eight injec-
tors located around the perimeter provide pressure support, each operating at a prescribed
and fixed rate. The wells are described by a Peaceman model as in the previous example.
To make the code as compact as possible, all wells are vertical with location specified in
the logical ij subindex available in the corner-point format. The following code specifies
the injectors:

nz = G.cartDims(3);

I [3, 20, 3,25, 3, 30, b5, 29];

J=1[4, 3,35, 35, 70, 70,113,113];

R=1[1, 3, 3, 3, 2, 4, 2, 3]*500xmeter~3/day;

w=1[;

for i =1 : numel(D),

W = verticalWell(W, G, rock, I(i), J(i), 1l:nz, 'Type', 'rate', ...

'Val', R(i), 'Radius', .l*meter, 'Comp_i', 1, ...
'name', ['I$_{', int2str(i), '}$'1);

end

The producers are specified in the same way. Figure 5.11 shows the well positions and the
pressure distribution. We see a clear pressure buildup along the east, south, and west rims
of the model. Similarly, there is a pressure drawdown in the middle of the model around
producers P2, P3, and P4. The total injection rate is set so that one pore volume will be
injected in a little less than 40 years.

This is a single-phase simulation, but let us for a while think of our setup in terms of
injection and production of different fluids (since the fluids have identical properties, we
can think of a blue fluid being injected into a black fluid). In an ideal situation, one would
wish that the blue fluid would sweep the whole reservoir before it breaks through to the
production wells, as this would maximize the displacement of the black fluid. Even in the
simple quarter five-spot examples in Section 5.4.1 (see Figure 5.3), we saw that this was
not the case, and you cannot expect that this will happen here, either. The lower plot in
Figure 5.11 shows all cells in which the total travel time (sum of forward and backward
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Is

Figure 5.11 Incompressible, single-phase simulation of the SAIGUP model. The upper plot shows
pressure distribution, and the lower plot shows cells with total travel time of less than 50 years.

time-of-flight) is less than 50 years. By looking at such a plot, you can get a quite a
good idea of regions where there is very limited communication between the injectors and
producers (i.e., areas without colors). If this was a multiphase flow problem, these areas
would typically contain bypassed or unswept oil and be candidates for infill drilling or
other mechanisms that would improve the volumetric sweep. We will come back to a more
detailed discussion of flow patterns and volumetric connections in Section 13.5.2.

COMPUTER EXERCISES

5.4.10 Change the parameter 'Dir' from 'y' to 'z"' in the box example and rerun the case.
Can you explain why you get a different result?

5.4.11 Switch the injector in the box example to be controlled by a bottom-hole pressure
of 200 bar. Where would you place the injector to maximize production rate if you
can only perforate (complete) it in five cells?

5.4.12 Consider the SAIGUP model: can you improve the well placement and/or the
distribution of fluid rates. Hint: is it possible to utilize time-of-flight information?

5.4.13 Use the function getSPE10setup to set up an incompressible, single-phase version
of the full SPE 10 benchmark. Compute pressure, time-of-flight and tracer concen-
trations associated with each well. Hint: You may need to replace MATLAB’s stan-
dard backslash-solver by a highly-efficient iterative solver like AGMG [238, 15] to
get reasonable computational performance. Also, beware that you may run out of
memory if your computer is not sufficiently powerful.
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