ALTITUDES OF A GENERAL n-SIMPLEX *

SAHIB RAM MANDAN

(Received 19 April 1961)

Abstract

The purpose of this paper is to prove that the altitudes of an n-simplex (a simplex in an n-space) S form an associated set of $n+1$ lines (see Baker, [4] for $n=4$) such that any ($n-2$)-space meeting n of them meets the ($n+1$)th too. As an immediate consequence 2 quadrics are associated with S, one touching its primes at the respective feet of its altitudes and the other touching $n(n+1)$ primes, n parallel to each of its altitudes and 2 through each of its ($n-2$)-spaces. Certain special cases are also mentioned.

1. Introduction

1.1. The associated character of the altitudes of an n-simplex S was anticipated much earlier as confirmed by Professor H. S. M. Coxeter in a private letter dated 19.3 .1959 wherein he says: 'I am sure the altitudes of a simplex are $n+1$ associated lines. In hyperbolic or elliptic space, they would join corresponding vertices of two absolute polar simplexes, and the Euclidean case would follow by a limiting process.'

Again the ($n-2$)-spaces normal to the plane faces of S at their respective orthocentres were observed (Mandan [28]) to meet its altitudes, each parallel to $\binom{n}{3}$ of them, as a further indication.

For $n=4$, it is already an established fact (Mandan [16]). For $n=3$, the altitudes of a tetrahedron form a hyperbolic group (Court [8]) or 4 generators of one system of a quadric satisfying the desired conditions of an associated set. For $n=2$, the altitudes of a triangle are well known to concur and thus satisfy in a sense the necessary condition to form an associated set.
1.2. In what follows we shall make use of the following known ideas and propositions proved previously for an n-space.
(a) A line and hyperplane or a prime are perpendicular or normal to each other, if their traces in the prime at infinity, p say, are pole and polar for the ($n-2$)-sphere at infinity or the absolute polarity (Mandan [13], [22], [25]), (p) say.

[^0](b) The joins of the corresponding vertices of a pair of polar reciprocal simplexes S, S^{\prime} for a quadric Q form in general an associated set of $n+1$ lines such that $\infty^{n-3}(n-2)$-spaces can be drawn through each point of each line to meet them and therefore $\infty^{n-2}(n-2)$-spaces exist in all meeting them (Beatty [6]; Coxeter and Todd [12]; see also Baker [5] for the dual proposition). In analogy with Gergonne's theorem (Court [10]) in a plane, we may name it too after Gergonne in all spaces when Q is inscribed to S (cf. Baker [3], p. 53, Ex. 14). Several special cases of degeneration also arise in accordance with certain special relationship which may exist between several elements of S or S^{\prime} in regard to Q (Mandan [17]).
(c) If through the vertices i of an n-simplex $S n+1$ lines a_{i} be drawn such that $\infty^{n-3}(n-2)$-spaces pass through every i meeting them, a_{i} form an associated set (Mandan [29]).

2. Proof of the proposition

The ($n-1$)-simplex (j^{\prime}) formed of the n traces j^{\prime} of the n altitudes a_{j} of an n-simplex S through its n vertices j, in p, is seen to be the polar reciprocal w.r.t. (p) of the one ($T_{i j}$) formed of the n traces $T_{i j}$ in p of its n edges $i j$ through its $(n+1)$ th vertex i (§ 1.2a). Therefore the n joins $j^{\prime} T_{i j}$ form in general an associated set of n lines in p such that $\infty^{n-3}(n-3)$ spaces (t^{\prime}) can be drawn to meet them ($§ 1.2 \mathrm{~b}$). The $\infty^{n-3}(n-2)$-spaces (t) joining $\left(t^{\prime}\right)$ to i then meet the said n joins such that the primes determined by (t) and a join $j^{\prime} T_{i j}$ contain the altitude $a_{i=j j^{\prime}}$ of S which therefore meets (t). Consequently all altitudes of S meet (t) and through each vertex of S $\infty^{n-3}(n-2)$-spaces like (t) can be drawn to meet them. Hence (§ 1.2 c) we have

Theorem 1. The altitudes of a simplex form in general an associated set as defined above.

3. Associated quadrics

3.1. An immediate consequence of the preceding proposition and the third Brianchon's theorem (Mandan [29]) is the following

Theorem 2. If, through the $n(n-2)$-spaces in a prime (i) of an n-simplex, n hyperplanes be drawn parallel to its corresponding altitude; or if, through the common ($n-2$)-space of a pair of its primes $(i),(j)$, the pair of hyperplanes be drawn perpendicular to (i), (j; then the $n(n+1)$ such hyperplanes touch a quadric.

Corollary 1. It, through the 3 edges in a face of a tetrahedron, 3 planes be drawn parallel to its corresponding altitude; or if, through the common
edge of a pair of its faces $(i),(j)$ the pair of planes be drawn perpendicular to (i), (j); then the 12 such planes touch a quadric (cf. Baker [3], p. 54, Ex. 15; Court [9]).

Corollary 2. If, through the pair of vertices of a side of a triangle, the pair of lines be drawn parallel to its corresponding altitude; or if through the common vertex of a pair of its sides (i), (j) the pair of lines be drawn perpendicular to (i), (j); then the 6 such lines touch a conic (cf. Baker [2], p. 25, Ex. 2; Court [9]).
3.2. In analogy with the orthic triangle of a triangle and the orthic tetrahedron of a tetrahedron (Court [7]), we may define the orthic simplex of a simplex as one formed of the feet of its altitudes. As a limit of the second Brianchon's theorem (Mandan [29]) or from the converse of the Gergonne's theorem ($\S 1.2 \mathrm{~b}$) we may deduce

Theorem 3. There exists a quadric Q inscribed to a simplex S and circumscribed to its orthic simplex S^{\prime} such that S, S^{\prime} are polar reciprocals of each other for Q.

Definition. Q may be called the orthic quadric of the simplex S.

4. Isodynamic simplex

4.1. It may happen that the n joins $j^{\prime} T_{i j}$ of $\S 2$ concur at a point P (Mandan [17]) and then the join $i P$ is obviously the common transversal of the altitudes of the simplex S, in which case they are said to form a semi-associated set (Mandan [29]).
4.2. If the tangential simplex of a simplex formed of the tangent primes of its circumhypersphere at its vertices be its anticevian for a point L (Mandan [21]) or perspective to it from L, it is said to be isodynamic with L as its Lemoine point; and the join of L to its circumcentre, called its Brocard diameter, meets its altitudes (Mandan [23]).
4.3. Again a pair of tetrahedra in any r-space $(r>3)$ are said to be projective, if the 4 joins of their vertices in a certain one-to-one correspondence are met by a line such that their 4 arguesian points common to the 4 pairs of their corresponding planes are collinear in their arguesian line (Mandan [18]).

Thus follows
Theorem 4. The altitudes of a semi-isodynamic n-simplex S form a semi-associated set such that each of its tetrahedra is projective to the corresponding one of its orthic n-simplex S^{\prime} from its Brocard diameter giving rise to $\binom{n+1}{3}$ arguesian points lying by fours on its $\binom{n+1}{4}$ arguesian lines,
$n-2$ through each point and lying by fives in its ($\left.\begin{array}{c}n+1 \\ 5\end{array}\right)$ 'arguesian planes', $n-3$ through each line and lying by sixes in its $\binom{n+1}{6}$ 'arguesian solids', \cdots and so on.

5. Special cases

5.1. If the altitudes of a simplex S happen to be doubly semi-associated, they concur at its orthocentre H making S orthocentric or orthogonal (Mandan [15], [28]) and the orthic axes of its triangles and the orthic planes of its tetrahedra all lie in its orthic prime h (Mandan [24]). H, h are then pole and polar for S as well as for its orthic quadric Q (§3.2). Hence Q is the polar quadric of h for S (Mandan [31]). H may be then said to be its Gergonne point w.r.t. Q in analogy with such a point associated with a triangle T w.r.t. a conic inscribed to T (Court [11]; Mandan [21]), and S be called isogonic w.r.t. Q with H as its Fermat point (Mandan [23], [26]).

Thus we have the following
Theorem 5. An orthogonal simplex S is isogonic w.r.t. its orthic quadric Q with its Gergonne point w.r.t. $Q(=$ its Fermat point) at its orthocentre H. Q is the polar quadric of its orthic prime h w.r.t. S. The orthic simplex S^{\prime} of S forms its 'cevian simplex' for H, being inscribed to S and perspective to S from H. The vertices of S or S^{\prime} and H form a 'self-conjugate' set of points for Q such that the join of any two points contains the pole of the hyperplane determined by the rest of them (cf. Baker [3]; Mandan [17]).
5.2. An edge $i j$ of an n-simplex S is said to be conjugate to its opposite $(n-2)$-space ($i j$) for a quadric Q, if the polar line of ($i j$) for Q meets $i j$ such that the 2 joins of its vertices i, j to the corresponding ones of its polar reciprocal n-simplex S^{\prime} for Q meet at F_{2} (say); S may be said to be bi-isogonic w.r.t. Q with F_{2} as its bi-Fermat point when Q is inscribed to S and therefore circumscribed to S^{\prime} (Mandan [17], [30]).

Again the pair of altitudes of S from its vertices i, j meet at its $b i$ orthocentre making it bi-orthocentric (Mandan [14], [16], [28]) with ij as its special edge, if and only if if is perpendicular to (ij) or the trace $T(i j)$ in p of ($i j$) lies in the polar ($n-2$)-space of $T_{i j}$ for $(p)(\S 2)$ in which case $i j$ may be said to be conjugate to (ij) for (p). Thus follows

Theorem 6. An n-simplex S is bi-orthocentric, if and only if its special edge is conjugate to its opposite ($n-2$)-space for its orthic quadric Q or for the absolute polarity (p), so that S becomes bi-isogonic w.r.t. Q with bi-Fermat point at its bi-orthocentre.
5.3. If r altitudes of an \boldsymbol{n}-simplex S from its r vertices concur at its r-orthocentre H_{r}, S is said to be r-orthocentric and denoted as S_{r} with its
$(r-1)$-space s_{r-1} of its said r vertices called special such that its special r-altitude perpendicular to s_{r-1} and its opposite ($n-r$)-space passes through H_{r}. If q other altitudes of S_{r} also concur at H_{q}, it is denoted as $S_{q \cdot r}$; it is semi-orthocentric with H_{a}, H_{r} as the pair of its semi-orthocentres when $q=n-r+1$, and uni-orthocentric of order one with H_{q}, H_{r} as its unisemiorthocentres when $q=n-r$, in which case its $(n+1)$ th altitude concurs with its special r - and ($n-r$)-altitudes at its uni-orthocentre. If $q<n-r$ and the rest of the $n-q-r+1$ altitudes of $S_{q . r}$ also concur at $H_{n-q \rightarrow+1}$, it is said to become demi-orthocentric of order one with $H_{a}, H_{n-a-r+1}, H_{r}$ as its 3 demi-orthocentres such that its special $q-, r-,(n-q-r+1)$-altitudes concur at its di-orthocentre. Similarly we may define a uni-orthocentric simplex $S_{q . r \cdots(n-q-r \cdots)}$ and demi-orthocentric $S_{q \cdot r \cdots(n-q-\cdots \cdots+1)}$ of any higher order and these are said to be proper, if they possess a uni-orthocentre and a di-orthocentre respectively (Mandan [14], [15], [19]).

In the same style we may develope semi-, uni-, demi-isogonic simplexes of various types and orders w.r.t. a quadric Q inscribed to them respectively (cf. Mandan [30]), as we have defined a bi-isogonic one (§ 5.2). Thus follows

Theorem 7. A semi-, uni-or demi-orthocentric simplex becomes respectively semi-, uni- or demi-isogonic w.r.t. its orthic quadric with semi-, uni- and unisemi-; or, di- and demi-Fermat points at its semi-, uni- and unisemi-, or, di- and demi-orthocentres.
5.4. (a) From the propositions of incidence alone Baker [1], p. 39, Ex. 7) has established that when $n=2 r$, a definite $(r-1)$-space can be drawn to meet $r+1$ lines of general position, each in one point, and when $n=2 r-1$, a definite $(r-1)$-space through a point to meet r lines.
(b) A q-space \bar{q} and an r-space $\bar{r}(q \geqq r)$ in an n-space are said to be conjugate for a quadric Q, if the polar of \bar{q} for Q meets \bar{r} in a point, and for an ($n-2$)-quadric Q^{\prime} if their traces in the hyperplane of Q^{\prime} are conjugate (cf. § 5.2) for Q^{\prime} (cf. Mandan [17]).

Now we may prove the following
Theorem 8. If an ($r-1$)-space x of $a(2 r-1)$-simplex be conjugate to its opposite $(r-1)$-space y, or an opposite r-space z, for its orthic quadric, x is conjugate to y for the absolute polarity too. Its r altitudes from its vertices in x lie in a hyperplane and so do its other r altitudes. Its vertex A (say) common to z, x lies in both the hyperplanes, so that the definite $(r-2)$-space meeting the first r altitudes passes through A.

Theorem 9. If an r-space x of a (2r)-simplex be conjugate to its opposite $(r-1)$-space y, or an opposite r-space z, for its orthic quadric, x is conjugate to y for the absolute polarity too. Its $r+1$ altitudes from its vertices in x in the former case lie in a hyperplane and its other r altitudes in a ($2 r-2$)-space,
and in the later case the definite $(r-1)$-space meeting its $r+1$ altitudes from its vertices in z or x contains its vertex common to z, x.
5.5. Two sets of $r+2$ points P_{i}, P_{i}^{\prime}, each spanning an $(r+1)$-space which has no solid common with that spanned by the other, are said to be projective (cf. §4.3) from an ($r-1$)-space which meets the $r+2$ joins $P_{i} P_{i}^{\prime}$ such that their $r+2$ arguesian points common to their corresponding r spaces are collinear in their arguesian line (Mandan [20], [27]). We may then prove (cf. Mandan, [17])

Theorem 10. If r consecutive edges of an $(r+2)$ gon formed of $r+2$ vertices of an n-simplex be conjugate to their respectively opposite $(r-1)$ spaces for its orthic quadric Q, its $r+2$ altitudes from these vertices are met by an ($n-r-1$)-space through the polar ($n-r-2$)-space for Q of their $(r+1)$ space. Hence if $n=2 r$, their $(r+1)$-simplex is projective to the corresponding one of its orthic n-simplex from the $(r-1)$-space meeting its said $r+2$ altitudes such that the $r+2$ points common to the $r+2$ pairs of the corresponding r spaces of the two $(r+1)$-simplexes are collinear.

Thanks are due to Prof. B. R. Seth for his generous, kind and constant encouragement in my pure mathematical pursuits.

References

[1], [2], [3], [4]. Baker, H. F., Principles of geometry, Vols. 1, 2, 3, 4 (Cambridge, 1922, 1922, 1923, 1925).
[5] Baker, H. F., Polarities for the nodes of a Segre's cubic primal in space of four dimensions, Proc. Camb. Phil. Soc. 32 (1836), 507-520.
[6] Beatty, S., Advanced problem 4079, Amer. Math. Monthly 50 (1943), 264.
[7] Court, N. A., Modern pure solid geometry (New York, 1935).
[8] Court, N. A., The tetrahedron and its altitudes, Scripta Math. 14 (1948), 85-97.
[9] Court, N. A., Pascal's theorem in space, Duke Math. J. 20 (1953), 417-420.
[10] Court, N. A., Sur les tetraèdres circonscrits par les arêtes à une quadrique, Mathesis 63 (1954), 12-18.
[11] Court, N. A., Sur la transformation isotomique, Mathesis 66 (1957), 291-297.
[12] Coxeter, H. S. M., and Todd, J. A., Solution of advanced problem 4079, Amer. Math. Monthly 51 (1944), 599-600.
[13] Mandan, S. R., An S-configuration in Euclidean and elliptic n-space, Canad. J. Math. 10 (1958), 489-501.
[14] Mandan, S. R., Altitudes of a simplex in four dimensional space, Bull. Calcutta Math. Soc. 1968, Supplement, 8-20.
[15] Mandan, S. R., Semi-orthocentric and orthogonal simplexes in 4-space, ibid., 21-29.
[16] Mandan, S. R., Altitudes of a general simplex in 4-space, ibid., 34-41.
[17] Mandan, S. R., Polarity for a quadric in n-space, Istanbul Univ. Fen. Fac. Mec. Ser. A 24 (1959), 21-40.
[18] Mandan, S. R., Projective tetrahedra in a 4-space, J. Sci. Engrg. Res. 3 (1959), 169-174.
[19] Mandan, S. R., Uni- and demi-orthocentric simplexes, J. Indian Math. Soc. (N.S.) 23 (1959), 169-184.
[20] Mandan, S. R., Desargues' theorem in n-space, J. Australian Math. Soc. 1 (1959/60) 311-318.
[21] Mandan, S. R., Cevian simplexes, Proc. Amer. Math. Soc. 11 (1960), $837-845$.
[22] Mandan, S. R., A sphere-locus in an n-space, J. Sci. Engrg. Res. 4 (1960), 357-361.
[23] Mandan, S. R., Isodynamic and isogonic simplexes, Ann. Mat. pura e appl. (4) 53 (1961), 45-55.
[24] Mandan, S. R., Orthic axes of the triangles of a simplex, J. Indian Math. Soc. (N.S.) 26 (1962), 13-24.
[25] Mandan, S. R., Director hypersphere, Math. Student 30 (1962), 13-17.
[26] Mandan, S. R., Orthogonal hyperspheres, Acta Math. Acad. Sci. Hungar. 13 (1962), 25-34.
[27] Mandan, S. R., Projective n-simplexes in [2n-2], ibid., 12 (1961), 315-319.
[28] Mandan, S. R., Altitudes of a simplex in n-space, J. Australian Math. Soc. 2 (1961/62), 403-424.
[29] Mandan, S. R., Pascal's theorem in n-space, J. Australian Math. Soc. 5 (1965), 401 - 408.
[30] Mandan, S. R., Semi-, Uni- and demi-isogonic and -Fermat simplexes, J. Sci. Engrg. Res. 5 (1961), $91-110$.
[31] Mandan, S. R., Polarity for a simplex.
Indian Institute of Technology
Kharagpur

[^0]: * The editor expresses his regret for the long delay in publication of this paper.

