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ON THE BRANCHING THEOREM 
OF THE SYMPLECTIC GROUPS'" 

BY 

C. Y. LEE 

1. Introduction. In [1], Zhelobenko introduced the concept of a Gauss decom­
position ZlDZ of a topological group and gave characterizations of irreducible 
representations of the classical groups. In this setting, vectors of representation 
spaces are polynomial solutions of a system of differential equations and the 
problem of obtaining branching theorem with respect to a subgroup G0 is to find 
all polynomial solutions that are invariant under Z n G0 and have dominant weight 
with respect to D n G0. 

Branching theorems are obtained for the classical groups in [1] and in the cases 
GL(n)=>GL(n-l), SO(2k)=> SO(2k-l) and SO(2k+l)=>SO(2k) invariants of 
Z C^GQ were explicitly constructed. However, in the proof of the case Sp(2k)^> 
Sp(2k—2)9 the principle of correspondence with GL(k+l)^>GL(k— 1) was 
employed and the problem of explicit construction of the invariants was left 
open. 

In this paper, an explicit construction of all the invariants of Z n Sp(2k—2) 
that correspond to dominant weights with respect to D n Sp{2k—2) is given for 
the case Sp(2k)^ Sp(2k-2). 

In section 4, the invariants constructed are used to obtain the branching theorem 
with respect to another subgroup G± which is isomorphic to Sp(2k—2)xSp(2). 
This case was studied by J. Lepowsky [2], [3]. 

2. Preliminaries. The symplectic group Sp(«) (where n=2k) consists of all 
complex nxn matrices that preserve the skew symmetric form 

[x, y] = xxyn+ • • • +xkyk+1-xk+1yk -xnyv 

Let Z be the subgroup of upper triangular matrices, Zl be the set of transpositions 
of elements in Z and D be the subgroup of diagonal matrices of Sp(2k). The 
following two theorems, constructed out of Zhelobenko's work, will be used. 

THEOREM 1. Every irreducible representation of Sp(2k) is induced by some 
character a of D, i.e., if Tg is a finite dimensional irreducible representation of 
Sp(2k), then Tg is defined in a class of functions on Z by right multiplication, i.e., 
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for any f(z) in the class, any geG and any z eZ, 

(2.1) Tgf(z) = *(z,g)f(z-g) 

where (z, g) and z • g are components of zg in D and Z respectively relative to the 
decomposition ZlDZ. In particular 

(2.2) Tôf(z) = 0.(0)^0-^0), for all Ô in D. 

THEOREM 2. Let 

be the general form of an element in D, then every irreducible representation of 
Sp(2k) is induced by a character ô ofD of the form ô™1 • • • ô™k where mi ( / = 1 , . . . , 
k) are integers satisfying m{>* • ->mk>0. Ifzij(i<.j9 i,j= 1, . . . , 2k) are entries of 
elements in Z, then the functions of this representation space consist of all poly­
nomials f(z) of all zi3- satisfying the differential equations 

I d d d V^-^+i 
— + Z 2 3 ^ — + * ' * + Z2,2kZ / O ) = 0, 

\dz12 dz13 ozi.2k' 
/ g g \m2-w8+l 
— + • • • + z 3 , 2 * - i i — m = o, 

WZ23 Uz2.2k-V 

(2.3) 

/ d \mk+1 

\dzk,k+J 
Due to the symplectic restriction, not all entries of zeZ are independent; 

one may choose as independent variables the entries 

Z12> 5 zl,2k 

Z23 Zl,2k-1 

Zk,k+1-

3. Branching theorem and construction of invariants. Consider the subgroup 
GQ of Sp(2k) consisting of all matrices that leave xk and xk+1 fixed. This subgroup 
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is isomorphic to Sp(2k—2). Let the irreducible representation of Sp(2k) induced 
by the character ô™1 • • • ô™k be denoted by (ml9... , mk). In [1] (see also [4]), 
it was proved that the irreducible representations of G0 appearing in the irreducible 
representation (ml9.. . , mk) of Sp(2k) are the representations (ql9. . . , qk_-ù 
corresponding to all possible patterns 

(Mi mk\ 

(3.1) lPl pA 
\ ?i ft-i / 

where p{ and qi are integers satisfying 

mx > px >: • • • > mk > pk > 0, 

Pi ^ «1 > ' ' • > Pk-1 ^ «*-l ^ i>* 

and (ql9. . . , g ^ ) denotes the irreducible representation of G0 induced by 
àl1'" & 1 . In what follows, M9 P, and g will denote the rows of (3.1). 

PROPOSITION 1. Every matrix z in the subgroup Z of Sp{ri) can be transformed to 
a matrix whose entries depend only on 

zih> zi,ic+i 
z2k> Z2,k+1 

<3-2> '. '. '. 

zk-l,k> zk-l,k+l 
zk,k+l 

by a right multiplication of an element ofZ n G0. 

Proof. For k=29 with the symplectic restriction, one may write 

f\ z12 zls zu 

1 ^ 2 3 ^ 1 3 ^23^12 

2̂ 12 

1 
Multiply z on the right by 

a o o -z1 4^ 
1 0 0 

Z o = l 1 0 
0 

it is easy to see that entries of zz0 do not depend on z14. Now suppose that the state­
ment is true for k— 1. Notice that the truncation X of z formed by elements zu 

whose indices take only the values 2, 3 , . . . , n—1 is symplectic. Write 

(l t zln\ 

' 1 — zv. 
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where t is a row vector and à is a column vector. Factorize z as 

(1 0 0 \ / l t zln\ 

{x ? ) ( ' - •;)• 
where t* is the column 

[December 

Multiplying z on the right by 

/ I » ^12» Z 1 3 J • 

Zt = 

> ~~zi.fc-iJ 0 , 0 , — zltk+29. 

£ 

one obtains 

1, 0 , 0 , . . . , z1É, z l i J t + 1 ,0 , . . . , 0 

I 0 0 \ 
zH x °;j — z-l.fc+1 

—Zl.fc 

It is clear that the second factor of zzx commutes with every matrix of the form 

( r r ) 
in Z n G0. By induction assumption, the proof is thus completed. 

COROLLARY 1. When an irreducible representation of Sp(2k) is restricted to 
GQ, the invariants ofZ n G0 can only depend on (3.2). 
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From corollary 1, polynomials corresponding to patterns (3.1) must depend 
only on (3.2). For clarity, write (3.2) as 

al9 b± 

ak-i> W-i 

Thus when restricted to these polynomials, (2.3) becomes 

(3.3) 

I d d l"""™^1 

/ d \m&+1 

To construct these polynomials, for each fixed pattern (3.1), define the following 
functions : 

(3.4) (af^bï™, («, > % • Qi-i > mù 
I dr^Vr™, (qt £ mi+1, q{_x < m}) 

, b r , - , . ( 6 . + i a i _ f l . + i è . r , + 1 - „ ) (q. < m.+i; qfi < m.} 
2rmi+lbTi-Pi(bi+iai_ai+ibi)mi+1-^ (qi < w . + i ; q(_t > m.}_ 

Ji\JVl9 r , {J) ^ nPi—mi+ii^Qi~i—vi/ 

Where ak=ak+1=bk+1=l, q0=m1 and qk=mk+1=0. Now consider the function 

(3.5) F ( M , P , 6 ) = n / , ( M , P , Ô ) 

It will be proved that (3.5) corresponds (3.1). 

THEOREM 3. The functions (3.5) constructed for each pattern (3.1) satisfy (3.3) 
and have weights (ql9qz,. . . , f t - i )=Ô w/Y/z respect to D C\ G0. Furthermore, 
they are linearly independent. 

Proof. To show that these functions satisfy (3.3), consider the first differential 
equation 

For F(M, P, Q) to satisfy this differential equation, it is sufficient that f± of 
F(M, P, Q) satisfies it. One considers the following cases. 

(i) If q1>m2, then 

( P i - ? i ) + ( w i - p i ) = m1-q1 < WjL-TWa+1, 
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hence each term of the expansion of the differential operator annihilates fv 

(ii) For q1<m2, notice that 

U ~ - + &2 ^rVha^a^f = 0, (fc = 0, 1 ,2 , . . .) 

and 
(p1-m2)+(m1-p1) < m1-m2+\, 

hence again each term of the expansion of the differential operator annihilates 
fv In a similar way, one can prove that F(M, P, Q) satisfies the rest of (3.3). 

To show that F(M9 P, Q) has weight Q= (ql9 . . . , qk^ with respect to D n G0, 
use (2.2). For 

in Z) n G0, one has 

(3.6) TÔQf(z) = « * • - . dïSWffzfà 

where /(Ô^ZÔQ) can be written as 

for some negative integers rl5 . . . , r ^ and the weights of f(z) with respect to 
Z> n G0 is (m-L+r-L,. . . , /w^-i+ffr-i). Multiplying out Ô^ZÔQ, one finds that for 
/<£—1, at and i f are changed to dj1^ and ^ ^ respectively. To obtain the weight 
of F(M, P, 0 with respect to D n <70, one first considers (5X and the following cases, 

(i) If q!>mz, then by (3.6) and substitution of dj1^ and S^bx for ^ and ex in 
(3.4) one obtains 

r± = -(Pi-qù-(™i-pù = - ^ i + t f i , 

thus the power of d1 is qx. 
(ii) If q1<m2, then ^ is 

-(p1-m2)-(m1-p1)-(m2-q1) = -mx+ql9 

again, the power of ôx is qv 
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The powers of <52, . . . , dk_± may be obtained by using (3.6) and (3.4). It turns 
out that they are q29... , qk-! respectively. 

Finally, to show linear independence of these functions, it is sufficient to con­
sider functions having the same weight with respect to D n G0. Hence it suffices 
to consider functions {Fl9.. . , Fi}=^r

Q corresponding to patterns with the 
same g. Suppose Fx in 3F'Q is a linear combination of S^^ Q. One again examines 
the following different cases. 

(i) If q1>m2, then the powers of ax and bx in the functions F3 oî^Q arep^* —q± 

and m1—pi). Since all functions of ^Q are polynomials, F{ can be a linear com­
bination of S only when every pattern corresponding to functions in S has the 
same Pi=p[t)'. 

(ii) If ^1<m2 , then the highest power of ax appearing in F{ is p[l). 
In a similar way, one can examine all cases in (3.4) and conclude that functions 

in S must correspond to F€. But then elements of S must be a scalar times Fi9 

hence & Q is a linear independent set. 

4. An application of the invariants. Let Gx be the subgroup of Spin) generated 
by G0 and all elements of Spin) leaving xl9. . . , xk_l9 xk+1,. . . , x2k invariant. 
Then G1c^.Spi2k—-2)xSpi2) and an irreducible representation of G1 is charac­
terized by integers (ql9. . . ,qje-iiq) satisfying q1>q2> ' ' ' ><7fc_i>0 a n ^ #>0. 
Let miql9... ,qk-i',q) denote the multiplicity of the representation (ql9. . , , 
%-\\ <Ù m the representation (ml9. . . , mk) of Sp(2k). To find miql9.. . , qk-x\ q)9 

it suffices [1, p. 12, Corollary] to look for independent functions in (ml9. . . , mk) 
that satisfy 

(4.1) TJiz) = f(zz0) = f(z0)9 Vz0 G Z(G,) 

and 

(4.2) T,/(z) = 6? • • • ÔS&lfiz), V<5 e D(Gi) 

Since Z dG-^pZ C\GQ and D n G±^> D n G0, these functions are constructable 

from the functions n î / i C ^ » ^ 0 -
Let Q=iql9... , <7&_i) be fixed, «^"Q be the collection of all functions Jjtfi(M9 P9 

Q) with this Q and F («^Q) be the space spanned by SP'Q\ miql9. . . 9qk-x\q) is 
then equal to the number of independent functions in VÇ^Q) that satisfy (4.1) 
and (4.2). 

Every z0 in Z(G±) can be written as z1z2 where ^ G Z(G0) and z2 is of the form 

r ; <J 
where all other entries are zero. Iff(z) is in the space spanned by the functions 
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I E / , ( A f , P , g ) , t h e n 

TZiZJ(z) = TzJ(zZl) = TzJ{z) =f(zz2). 

Under right multiplication by z29 the variables au .. . , ak_l9 bl9. . . , bk are changed 
as 

ax -> al5 &!->&! + axc 

(4.3) ; 

Hence (4.1) is equivalent to invariance under the transformation (4.3). 

LEMMA 1. A polynomial function f(al9. . . , ak_x\ bl9... , bk) is invariant under 
the transformation (4.3) ijff(al9. . . , ak_1\ bl9 . . . , bk) is of the form 

(4-4) 2 r£::.";£ia? • • • a^Xbi-aAY1 • • • (h^-a^hy-1-
s.t 

Proof. Under (4.3), bi—aibk is transformed to bi+aic—ai(bk-\-c)=bi--aibk. 
Therefore, (4.4) is invariant. 

Conversely, suppose a polynomial 

f(al9 . . . , a M ; bl9...9bj = 2 r^-^a^ • • • * £ ? # • • • ^ 
S.f 

is invariant under the transformation (4.3). By setting c=—bk9 it follows that all 
rt1'.'.'.,tk~1 f ° r which tk9^0 are zero and f(al9 ak_x\ bl9. . . 9 bk) is of the form (4.4). 

For any ô e D9 multiplying out d~xzd9 the variables al9. . . , ak_l9 bl9. . . , bk 

are changed as 

(4.5) • • ^ 
a&-i ~~** a&-i^i *k> bk_± —> bk_1ok_1ok , 

If /(^i» • • • > %-i» *u • • • > &̂) satisfies (4.1) and (4.2), then from (4.5), the 
equations 

si-\-ti=mi-qi9 (i = 1, . . . , fc-1) ) 
(4.6) 

& + # ' * + h-i)-(h+ * ' ' +%-i) = wfc~«J 
must be satisfied for each summand al1 • • • a^ipx—a-Jb^1 • • • {bk_1—ak_1b1^fk'-1. 

Using (4.5), the weight of the function IJ?/<(M, P, 0 is found to be 

/j_ y\ ^a i . . . kQk-iS&(v\+'~+Vk)—(miH l-m*)—(aH Hz&-i) 
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Thus i f / f a , . . . , %_!; bl9... 9 bk)= 2><e^g *iFi>then -P o f e a c h ^i m u s t satisfy 

(4.8) 2(p<i)+ • • • +p«))-(T O l+ • • • +mJfc)-(«1+ • • • +^_i) = « 

Suppose that Q=(ql9... , <7&_i) satisfies 

(4.9) ^ ^ m2,. . . , ^_! > m*. 

In this case, the functions in & Q are monomials. Let 38 be the subset of SPQ 
that satisfy (4.8), then 

gg = Lj«i6«i-*i. • • a^-^b^-^-'b^^ I 21 p, - I m, - J**, = <?}• 

LEMMA 2. 7/* f/ie function (4.4) satisfies (4.2) 0«d belongs to the space V(JS) 
spanned by 38 9 then every summand 

(4.10) a? • • • « f c i - a A) ' 1 • • • ( V - i - ^ - A ) * - 1 

of it also belongs to V(3S). 

Proof. If (4.4) satisfies (4.2), then every summand of it also satisfies (4.2). Since 
each summand is invariant under (4.3), it belongs to V(JFQ). V{38) is obviously 
the subspace of V{SFQ) that satisfies (4.2), thus each summand of (4.4) belongs to 
V(3§). 

Thus assuming (4.9) is satisfied to find m(ql9... , qk-x; q)9 it suffices to find the 
number of independent polynomials of the form (4.10) that are in V(38). Notice 
that the power of bk of any element in 38 does not exceed mk. 

LEMMA 3. The polynomial (4.10) is in V(3S) iff a{1+h • • • ^ + # * - ^ + " , + ' * - i is 
in 38. 

Proof. If a[1+h • • • ^+**-^ + - + **-i e Of, then 

SrK = ro,-&, (i = 1, . . . ,fc-l) 1 
(4.11) (Sl+ • • • +8^-^+ • • • +tk_1) = «-rom, 

A general term of the expansion of (4.10) is 

al "fc-1 °1 Dk-1 Dk 

By (13), [sMU-m+ji=mi-qi 0*=1, • • • > * - l ) , 2Î"1 fo+(W*)]- 2 T V < -
2 E Î * '<- 2 î VJ=? a n d d + - • - + ^ i ) - ( / i + - • '+h-i)<h+- • - + ^ _ i < ^ . 
Thus every general term is in 38. The converse is obvious. 

It is now clear that when (4.9) is satisfied m(ql9.. . , qk-x\ q) is equal to the num­
ber of non-negative integer solutions (sl9... , s^; tl9... , t^) to (4.11). The 
general case is included in the following: 
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THEOREM 4. m(ql9 . . . 9qk_x\q) is equal to the number of non-negative integer 
solutions (sl9. . . , SJ^Ù tl9. . . , tk_^ of 

Si+U^m'j-qi, 0* = 1, . . . , f c - l ) ) 
(4.12) f5 l+ • • • +5 jb_1)-(*i+ ' ' ' + h-i) = q-ml\ 

where 

m'i = m i ~ (wii+ma), 
ml = m2-(m2+m3), . . . , m ^ = mk__1-{mk_1+m'k)9 

ml = mk—mr
k 

and 

m[ = 0, 

mg = max(0, mz-q^9. . . , mk = max(0, mk-qk_1). 

Proof. The case when (4.9) is satisfied is treated previously. For the general 
case, consider a fixed Q and the subset £? of 3FQ consisting of functions that satisfy 
(10). By definition, the polynomial 

(4.13) ( « i & . - M i T 1 ' • • • ( « * - A - h-iT"' 

is a common factor for all functions in SP. (4.13) is invariant under (4.3); under 
(4.5), it is changed to 

ar*Vw,'+WI') • • • ô^-^^ô^Xa.b^ha^ • • • M r y w ( 
Write Sr={aJ>i-bxaùm* • • • K - A ~ V i f ' * ' » w h e r e 

£0/ ___ ra3>i-(m2'+<Zi)^(mi—tni')—2»i . . . fll>*-i-(m*'+ff*-i)L(»n*-i--m*-i')--l>*-i 
^ X X /C X /C X 

Replacing the set & in Lemmas 2 and 3 by 88' 9 the result follows immediately. 
Branching theorems are usually stated by means of patterns similar to (3.1). 

The following theorem gives this description for the case studied in Theorem 4. 

THEOREM 5 The irreducible representations of Gx appearing in (ml9... , mk) 
ofSp(2k) can be put in one-to-one correspondence with all patterns of integers 

( mx mk 

pi Pk-i 

where m1^.p1^.m2 • • • >p^-i^.mk, p1>q1>p2 • • • ^ / ^ i ^ f c ^ O , 

(4.15) q = m Z + 2 ( P « - * i - » 4 n ) - l K - f t + m « ) , 
1 1 
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and 2 Î X Qn'i—Pi+tn'i+d^rn'it Furthermore each pattern corresponds to (ql9. . . , 
qk-i\q)ofG1. 

Proof. In the particular case when (4.9) holds, recall that m(ql9. . . ,qk-\\q) 
is the number of monomials al1+tl • • • 4 f i+**-1*£+"'+**-1 (where sl9 . . . , sk_l9 

*i> • • • > h-i satisfy (4.11)) that belong to £S. Hence every (ql9.. . ,qk-!;q) is 
associated with partitions of the integers ra4—qt (i=l9. . . , k—\) into s{ and /,-

such that J i " 1 ^ " " 2 i _ 1 h—q-~mk an(* *H Mfc-i<tfV Let t—mi—p^ then 
Si=Pi-qu q=™k+ 2 i _ 1 (Pi-qù- 2 i _ 1 ("**-/>*) a n d (?i> • • • ̂ k-iiq) can then 
be associated with the pattern 

k-l k-1 I 

q = ^+2(A-^)~2(^*-Pi ) / ' 
i i / 

It is now clear that when (4.9) holds, all (ql9. . . ,qk-x\q) that are contained in 
(ml9 . . . , mk) can be put in one-to-one correspondence with patterns (4.16) where 

"**- 2 î _ 1 (™i-Pi)>0-
The general case can be proved analogously by considering the set £%' as defined 

in the proof of Theorem 1 and letting ^ = ^ — ^ — ^ + 1 , *»•=#*"—/\-|-/wJ+1 in 
(4.12). 
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