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Abstract. In this paper, we have shown that the quantum isometry group of
C∗

r (�), denoted by �(�, S) as in Goswami and Mandal, Rev. Math. Phys. 29(3)
(2017), 1750008, with respect to a symmetric generating set S does not depend on
the generating set S. Moreover, we have proved that the result is no longer true if the
group � is replaced by � × � × · · · × �︸ ︷︷ ︸

n copies

∀ n > 1.

1. Introduction. Quantum groups are very important mathematical entities
which appear in several areas of mathematics and physics, often as some kind of
generalised symmetry objects. Beginning from the pioneering work by Drinfeld,
Jimbo, Manin, Woronowicz and others nearly three decades ago ([14, 18, 24] and
references therein) there is now a vast literature on quantum groups both from
algebraic and analytic (operator algebraic) viewpoints. Generalising group actions
on spaces, notions of (co)actions of quantum groups on possibly non-commutative
spaces have been formulated and studied by many mathematicians. In this context,
S. Wang [23] introduced the definition of quantum automorphism groups of certain
mathematical structures (typically finite sets, matrix algebras, etc.) and such quantum
groups have been studied in depth since then. Later on, a number of mathematicians
including Banica, Bichon and others ([1, 9] and references therein) developed a theory
of quantum automorphism groups of finite metric spaces and finite graphs. With
a more geometric setup in 2009, Goswami [15] defined and proved existence of an
analogue of the group of isometries of a Riemannian manifold, in the framework of
the so-called compact quantum groups à la Woronowicz. In fact, he considered the
more general setting of non-commutative manifold, given by spectral triples defined
by Connes [12] and under some mild regularity conditions, he proved the existence
of a universal compact quantum group (termed the quantum isometry group) acting
on the C∗-algebra underlying the non-commutative manifold such that the action also
commutes with a natural analogue of Laplacian of the spectral triple. Furthermore,
Goswami and Bhowmick formulated in [7] the notion of a quantum group analogue
of the group of orientation preserving isometries and its existence as the universal
object in a suitable category was proved. After that, several authors studied quantum
isometry groups of different spectral triples in recent years.

In literature, we have an interesting as well as important spectral triple on C∗
r (�)

[11], coming from the word length of a finitely generated discrete group � corresponding
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to a symmetric generating set, say S. There have been several papers already on
computations and study of the quantum isometry groups of such spectral triples,
e.g., [3, 5, 8, 13, 16, 17, 21, 22] and references therein. We denote it by �(�, S) as in
[16]. It is already known that in general �(�, S1) and �(�, S2) are not isomorphic for
different choices of S1 and S2. Indeed, they are drastically different for certain choices
of generating sets. We give an example here. If we choose n such that g.c.d(n, 4) = 1,
then the group �n × �4 is isomorphic to �4n. Consider the generating sets S1 =
{(1̄, 0̄), (0̄, 1̄), (−1̄, 0̄), (0̄,−1̄)} and S2 = {(1̄, 1̄), (−1̄,−1̄)}, respectively for �n × �4.
The underlying C∗-algebra of �(�n × �4, S1) is non-commutative by Theorem 4.10 of
[16]. On the other hand, �(�n × �4, S2) is the doubling of C∗(�n × �4) corresponding
to the automorphism given by a �→ a−1 ∀ a ∈ �n × �4 from [8]. Hence, its underlying
C∗-algebra is commutative. They are non-isomorphic even in the vector space level. In
this context, it is quite natural to find out the groups whose quantum isometry group
does not depend on the generating set. Our main goal of this paper is to provide one
such example.

The paper is organized as follows. In Section 2, we recall some definitions and
necessary facts regarding to compact quantum groups, quantum isometry groups and
the doubling procedure of a compact quantum group. Section 3 contains the main
results of this paper. In Theorem 3.1, we have proved that the quantum isometry group
of C∗

r (�) remains unchanged if we change the generating sets. Theorem 3.11 tells us
that this is no longer true if � is replaced by � × � × · · · × �︸ ︷︷ ︸

n copies

for n > 1.

2. Preliminaries. First of all, we fix some notational convention. The algebraic
tensor product and spatial (minimal) C∗-tensor product are denoted by ⊗ and ⊗̂,

respectively throughout the paper. We will use the leg-numbering notation. Let H be
a complex Hilbert space, K(H) the C∗-algebra of compact operators on it, and Q a
unital C∗-algebra. The multiplier algebra M(K(H)⊗̂Q) has two natural embeddings
into M(K(H)⊗̂Q⊗̂Q), one obtained by extending the map x �→ x ⊗ 1 and the second
one is obtained by composing this map with the flip on the last two factors. We
will write ω12 and ω13 for the images of an element ω ∈ M(K(H)⊗̂Q) under these
two maps, respectively. We will denote by H⊗̄Q the Hilbert C∗-module obtained by
completing H ⊗ Q with respect to the norm induced by the Q valued inner product
〈〈ξ ⊗ q, ξ ′ ⊗ q′〉〉 := 〈ξ, ξ ′〉q∗q′, where ξ, ξ ′ ∈ H and q, q′ ∈ Q.

2.1. Compact quantum groups. In this subsection, we recall some standard
definitions related to compact quantum groups. We recommend [19, 24] for more
details.

DEFINITION 2.1. A compact quantum group (CQG in short) is a pair (Q,�), where
Q is a unital C∗-algebra and � : Q → Q⊗̂Q is a unital ∗-homomorphism (called the
comultiplication or coproduct), such that

(1) (� ⊗ id)� = (id ⊗ �)� as homomorphism Q → Q⊗̂Q⊗̂Q (coassociativity).
(2) The spaces �(Q)(1 ⊗ Q) = Span{�(b)(1 ⊗ a)|a, b ∈ Q} and �(Q)(Q ⊗ 1) =

Span{�(b)(a ⊗ 1)|a, b ∈ Q} are dense in Q⊗̂Q.

Sometimes, we may denote the CQG (Q,�) simply as Q, if � is clear from the
context.
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DEFINITION 2.2. A CQG morphism from (Q1,�1) to another (Q2,�2) is a unital
C∗-homomorphism π : Q1 �→ Q2 such that (π ⊗ π )�1 = �2π .

DEFINITION 2.3. We say that a CQG (Q,�) acts on a unital C∗-algebra B if there
is a unital C∗-homomorphism (called action) α : B → B⊗̂Q satisfying the following:

(1) (α ⊗ id)α = (id ⊗ �)α.
(2) Linear span of α(B)(1 ⊗ Q) is norm-dense in B⊗̂Q.

DEFINITION 2.4. Let (Q,�) be a CQG. A unitary representation of Q on a Hilbert
space H is a �-linear map U from H to the Hilbert module H⊗̄Q such that

(1) 〈〈U(ξ ), U(η)〉〉 = 〈ξ, η〉1Q, where ξ, η ∈ H.
(2) (U ⊗ id)U = (id ⊗ �)U .
(3) Span {U(H)(1 ⊗ Q)} is dense in H⊗̄Q.

Given such a unitary representation, we have a unitary element Ũ belonging
to M(K(H)⊗̂Q) given by Ũ(ξ ⊗ b) = U(ξ )b, (ξ ∈ H, b ∈ Q) satisfying (id ⊗
�)(Ũ) = Ũ12Ũ13. The linear span of matrix elements of finite dimensional unitary
representations forms a dense Hopf ∗-algebra Q0 of (Q,�), on which an antipode κ

and co-unit ε are defined.

2.2. Quantum isometry groups. In [15] Goswami introduced the notion of
quantum isometry group of a spectral triple satisfying certain regularity conditions.
We refer to [3, 7, 15] for the original formulation of quantum isometry groups
and its various avatars including the quantum isometry group for orthogonal
filtrations.

DEFINITION 2.5. Let (A∞,H,D) be a spectral triple of compact type (à la Connes).
Consider the category Q(D) ≡ Q(A∞,H,D) whose objects are (Q,�, U), where
(Q,�) is a CQG having a unitary representation U on the Hilbert space H satisfying
the following:

(1) Ũ commutes with (D ⊗ 1Q).
(2) (id ⊗ φ) ◦ adŨ (a) ∈ (A∞)′′ for all a ∈ A∞ and φ is any state on Q, where adŨ (x) :=

Ũ(x ⊗ 1)Ũ∗ for x ∈ B(H).
A morphism between two such objects (Q,�, U) and (Q′,�′, U ′) is a CQG morphism
ψ : Q → Q′ such that U ′ = (id ⊗ ψ)U . If a universal (initial) object exists in Q(D),

then we denote it by ˜QISO+(A∞,H,D) and the corresponding largest Woronowicz
subalgebra for which adŨ0

is faithful, where U0 is the unitary representation of
˜QISO+(A∞,H,D), is called the quantum group of orientation preserving isometries

and denoted by QISO+(A∞,H,D).

Let us state Theorem 2.23 of [7] which gives a sufficient condition for the existence
of QISO+(A∞,H,D).

THEOREM 2.6. Let (A∞,H,D) be a spectral triple of compact type. Assume
that D has one-dimensional kernel spanned by a vector ξ ∈ H, which is cyclic and
separating for A∞ and each eigenvector of D belongs to A∞ξ . Then, QISO+(A∞,H,D)
exists.
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Here, we briefly discuss a specific case of interest for us. For more details, see
Section 2.2 of [16]. Let � be a finitely generated discrete group with a symmetric
generating set S not containing the identitity of � (symmetric means g ∈ S if and
only if g−1 ∈ S) and let l be the corresponding word length function. We define an
operator D� by D�(δg) = l(g)δg, where δg denotes the vector in l2(�) which takes value
1 at the point g and 0 at all other points. Observe that {δg}g∈� forms an orthonormal
basis of l2(�). Let τ be the canonical trace on the reduced group C∗-algebra given
by τ (

∑
g∈� cgλg) = ce, where e is the identity element of the group �. Connes first

considered this spectral triple (��, l2(�), D�) in [11]. It is easy to check that (��,
l2(�), D�) is a spectral triple using Lemma 1.1 of [20]. Moreover, QISO+(��, l2(�), D�)
exists by Theorem 2.6, taking ξ = δe as the cyclic separating vector for ��. It is
denoted by �(�, S). Note that its action α on C∗

r (�) is determined by (see Section 2
of [8])

α(λγ ) =
∑
γ ′∈S

λγ ′ ⊗ qγ,γ ′ ,

where the matrix [qγ,γ ′ ]γ,γ ′∈S ∈ Mcard(S)(�(�, S)). From now on, we will call this matrix
the“fundamental unitary" of �(�, S).

2.3. Doubling of a CQG. We briefly recall the doubling procedure of a compact
quantum group from [13], [21]. Let (Q,�) be a CQG with a CQG-automorphism θ such
that θ2 = id. The doubling of this CQG, say (Dθ (Q), �̃), is given by Dθ (Q) := Q ⊕ Q
(direct sum as a C∗-algebra), and the coproduct is defined by the following, where we
have denoted the injections of Q onto the first and second coordinate in Dθ (Q) by ξ

and η, respectively, i.e., ξ (a) = (a, 0), η(a) = (0, a), (a ∈ Q).

�̃ ◦ ξ = (ξ ⊗ ξ + η ⊗ [η ◦ θ ]) ◦ �,

�̃ ◦ η = (ξ ⊗ η + η ⊗ [ξ ◦ θ ]) ◦ �.

3. Main results. Before going to the main theorem, we make one convention.
Inverse of any element x ∈ � is denoted by −x. We will also follow the same convention
for � × � × · · · × �︸ ︷︷ ︸

n copies

, where n > 1.

THEOREM 3.1. For any symmetric generating set S, the quantum isometry group
�(�, S) is isomorphic to Dθ (C∗(�)) with respect to the automorphism θ given by θ (x) =
−x ∀ x ∈ �.

Proof. Let us assume that S is any generating set for �, i.e., S =
{a1,−a1, . . . , ak,−ak}. Without loss of generality, we can assume that ai > 0 ∀ i
and a1 < a2 < . . . < ak. We would like to mention here that the largest number ak

and the smallest number −ak of the generating set S will play a crucial role in
the proof. For each i = 1, . . . , k − 1, there exists positive integers ci, di such that
ciai = diak ∀ i = 1, . . . , k − 1. Moreover, ci > di as ai < ak∀ i = 1, . . . , k − 1. Now
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the action α of �(�, S) on C∗
r (�) is defined as

α(λa1 ) = λa1 ⊗ A11 + λ−a1 ⊗ A12 + λa2 ⊗ A13 + λ−a2 ⊗ A14 + · · · +
λak ⊗ A1(2k−1) + λ−ak ⊗ A1(2k),

α(λ−a1 ) = λa1 ⊗ A∗
12 + λ−a1 ⊗ A∗

11 + λa2 ⊗ A∗
14 + λ−a2 ⊗ A∗

13 + · · · +
λak ⊗ A∗

1(2k) + λ−ak ⊗ A∗
1(2k−1),

α(λa2 ) = λa1 ⊗ A21 + λ−a1 ⊗ A22 + λa2 ⊗ A23 + λ−a2 ⊗ A24 + · · · +
λak ⊗ A2(2k−1) + λ−ak ⊗ A2(2k),

α(λ−a2 ) = λa1 ⊗ A∗
22 + λ−a1 ⊗ A∗

21 + λa2 ⊗ A∗
24 + λ−a2 ⊗ A∗

23 + · · · +
λak ⊗ A∗

2(2k) + λ−ak ⊗ A∗
2(2k−1),

...
...

...
...

...
...

α(λak ) = λa1 ⊗ Ak1 + λ−a1 ⊗ Ak2 + λa2 ⊗ Ak3 + λ−a2 ⊗ Ak4 + · · · +
λak ⊗ Ak(2k−1) + λ−ak ⊗ Ak(2k),

α(λ−ak ) = λa1 ⊗ A∗
k2 + λ−a1 ⊗ A∗

k1 + λa2 ⊗ A∗
k4 + λ−a2 ⊗ A∗

k3 + · · · +
λak ⊗ A∗

k(2k) + λ−ak ⊗ A∗
k(2k−1).

The fundamental unitary is of the following form:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 A14 · · · A1(2k−1) A1(2k)

A∗
12 A∗

11 A∗
14 A∗

13 · · · A∗
1(2k) A∗

1(2k−1)
A21 A22 A23 A24 · · · A2(2k−1) A2(2k)

A∗
22 A∗

21 A∗
24 A∗

23 · · · A∗
2(2k) A∗

2(2k−1)
...

...
Ak1 Ak2 Ak3 Ak4 · · · Ak(2k−1) Ak(2k)

A∗
k2 A∗

k1 A∗
k4 A∗

k3 · · · A∗
k(2k) A∗

k(2k−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the antipode κ is defined by κ(Ai(2j−1)) = A∗
j(2i−1), κ(Ai(2j)) = A∗

j(2i),

κ(A∗
i(2j−1)) = Aj(2i−1), κ(A∗

i(2j)) = Aj(2i) ∀ i, j = 1, 2, . . . , k using the unitarity condition
of U . Our aim is to show that it is of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 0 0 · · · 0 0
A∗

12 A∗
11 0 0 · · · 0 0

0 0 A23 A24 · · · 0 0
0 0 A∗

24 A∗
23 · · · 0 0

...
...

0 0 0 0 · · · Ak(2k−1) Ak(2k)

0 0 0 0 · · · A∗
k(2k) A∗

k(2k−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)
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i.e., only the diagonal (2 × 2) block survives and others are zero. First, we will show
that it is of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 A14 · · · 0 0
A∗

12 A∗
11 A∗

14 A∗
13 · · · 0 0

A21 A22 A23 A24 · · · 0 0
A∗

22 A∗
21 A∗

24 A∗
23 · · · 0 0

...
...

0 0 0 0 · · · Ak(2k−1) Ak(2k)

0 0 0 0 · · · A∗
k(2k) A∗

k(2k−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e., Ai(2k−1) = 0, Ai(2k) = 0 ∀ i = 1, . . . , k − 1. Using the antipode Ak(2j−1) = Ak(2j) =
0 ∀ j = 1, . . . , k − 1. We break the proof into a number of lemmas. �

LEMMA 3.2. Aci
i(2k−1) = Aci

i(2k) = 0 ∀ i = 1, . . . , k − 1.

Proof. Consider the term α(λciai ) = α(λdiak ) for all i = 1, . . . , k − 1. Comparing
the coefficients of λciak and λci(−ak) on both sides of the relation α(λciai ) = α(λdiak ), we
obtain Aci

i(2k−1) = Aci
i(2k) = 0 as the right hand side of the equation does not contain any

terms with coefficients λciak and λci(−ak) as well. �
Our goal is to show that Ai(2k−1) and Ai(2k) are normal ∀ i = 1, . . . , k − 1. Then,

by Lemma 3.2, one can conclude Ai(2k−1) = Ai(2k) = 0.

LEMMA 3.3. If ap + aq = al + am for some p, q, l, m ∈ �, then Ak(2p−1)Ak(2q−1) =
Ak(2l−1)Ak(2m−1).

Proof. Using the relation α(λap+aq ) = α(λal+am ), comparing the coefficient
of λ2ak on both sides, we have Ap(2k−1)Aq(2k−1) = Al(2k−1)Am(2k−1). Applying the
antipode we obtain A∗

k(2q−1)A
∗
k(2p−1) = A∗

k(2m−1)A
∗
k(2l−1). This implies Ak(2p−1)Ak(2q−1)

= Ak(2l−1)Ak(2m−1). �
We state three auxiliary lemmas (Lemmas 3.4–3.6) whose proof will follow by

exactly the same arguments used in Lemma 3.3. We omit the proofs.

LEMMA 3.4. If ap + aq = −al + am, then Ak(2p−1)Ak(2q−1) = Ak(2l)Ak(2m−1).

LEMMA 3.5. If ap − aq = −al + am, then Ak(2p−1)Ak(2q) = Ak(2l)Ak(2m−1).

LEMMA 3.6. If ap − aq = −al − am, then Ak(2p−1)Ak(2q) = Ak(2l)Ak(2m).

LEMMA 3.7. Ak(2i−1)Ak(2i) = Ak(2i)Ak(2i−1) = 0 ∀ i = 1, . . . , k.

Proof. Comparing the coefficients of λ2ak and λ−2ak on both sides from the relation
α(λai ).α(λ−ai ) = λe ⊗ 1 one can get Ai(2k−1)A∗

i(2k) = Ai(2k)A∗
i(2k−1) = 0. Applying the

antipode, we have A∗
k(2i)A

∗
k(2i−1) = 0 which implies Ak(2i−1)Ak(2i) = 0. Similarly, we can

get Ak(2i)Ak(2i−1) = 0 from the relation α(λ−ai ).α(λai ) = λe ⊗ 1. �
LEMMA 3.8. AkiAkj = 0 ∀ i, j with i �= j.

Proof. We will show that Ak(2j)Ak1 = Ak(2j−1)Ak1 = 0 for all j = 2, . . . , k. By Lemma
3.7, we have Ak2Ak1 = 0. Then, AkiAk1 = 0 for all i with i �= 1 will be proved. Other
relations will follow by repeating the same line of arguments. For some fixed j �= 1, we
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are defining the sets

T (1,j)
1 = {(l, m)| l, m ∈ {1, . . . , k} such that a1 + aj = al − am},

T (1,j)
2 = {(g, t)| g, t ∈ {2, . . . , j − 1, j + 1, . . . , k} with g < t such that a1 + aj = ag + at},

T (1,j)
3 = {s| s ∈ {1, . . . , k} such that a1 + aj = 2as}.

The sets T (1,j)
1 , T (1,j)

2 , T (1,j)
3 may be empty depending on the choice of the generating

set S. Observe that the sets T (1,j)
1 , T (1,j)

2 are not necessarily singleton but finite. T (1,j)
3 is

always singleton if it is non-empty. Now from the condition α(λak ).α(λ−ak ) = λe ⊗ 1
comparing the coefficient of λa1+aj on both sides, one can deduce

Ak1A∗
k(2j) + Ak(2j−1)A∗

k2 +
∑

(g,t)∈T (1,j)
2

[Ak(2g−1)A∗
k(2t) + Ak(2t−1)A∗

k(2g)]

+
∑

(l,m)∈T (1,j)
1

[Ak(2l−1)A∗
k(2m−1) + Ak(2m)A∗

k(2l)] + Ak(2s−1)A∗
k(2s) = 0. (2)

Multiplying Ak(2j) and A∗
k1 on the left hand side and right hand side, respectively of the

equation (2), we get

Ak(2j)Ak1A∗
k(2j)A

∗
k1 + Ak(2j)Ak(2j−1)A∗

k2A∗
k1 +

∑
(g,t)∈T (1,j)

2

Ak(2j)Ak(2g−1)A∗
k(2t)A

∗
k1

+
∑

(g,t)∈T (1,j)
2

Ak(2j)Ak(2t−1)A∗
k(2g)A

∗
k1 +

∑
(l,m)∈T (1,j)

1

Ak(2j)Ak(2l−1)A∗
k(2m−1)A

∗
k1

+
∑

(l,m)∈T (1,j)
1

Ak(2j)Ak(2m)A∗
k(2l)A

∗
k1 + Ak(2j)Ak(2s−1)A∗

k(2s)A
∗
k1 = 0. (3)

Now the relation a1 + aj = aj + a1 gives us a1 − aj = −aj + a1. By Lemma 3.5, we
have Ak1Ak(2j) = Ak(2j)Ak1. Similarly, Ak(2j)Ak(2g−1) = Ak1Ak(2t) as a1 − at = −aj + ag

from the assumed condition a1 + aj = ag + at. Moreover, by Lemmas 3.4–3.6, we get

Ak(2j)Ak(2t−1) = Ak1Ak(2g), Ak(2j)Ak(2l−1) = Ak1Ak(2m−1),

Ak(2j)Ak(2s−1) = Ak1Ak(2s), Ak(2j)Ak(2m) = Ak1Ak(2l),

as −aj + at = a1 − ag,−aj + al = a1 + am,−aj + as = a1 − as and −aj − am = a1 −
al, respectively. Using these relations and Lemma 3.7, the equation (3) reduces to

Ak(2j)Ak1(Ak(2j)Ak1)∗ +
∑

g

Ak(2j)Ak(2g−1)(Ak(2j)Ak(2g−1))∗ +
∑

t

Ak(2j)Ak(2t−1)(Ak(2j)Ak(2t−1))∗ +
∑

l

Ak(2j)Ak(2l−1)(Ak(2j)Ak(2l−1))∗

+
∑

m

Ak(2j)Ak(2m)(Ak(2j)Ak(2m))∗ + Ak(2j)Ak(2s−1)(Ak(2j)Ak(2s−1))∗ = 0. (4)
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This shows that Ak(2j)Ak1 = 0 as the left hand side of the equation (4) is the sum of
some positive elements of a C∗-algebra. Using the relation α(λak ).α(λ−ak ) = λe ⊗ 1
comparing the coefficient of λa1−aj on both sides, we get Ak(2j−1)Ak1 = 0 as well. �

LEMMA 3.9. Ai(2k) and Ai(2k−1) are normal ∀ i = 1, . . . , k.

Proof. By the unitarity condition of U, we have

∑
i

Ak(2i−1)A∗
k(2i−1) +

∑
i

Ak(2i)A∗
k(2i) = 1,

∑
i

A∗
k(2i−1)Ak(2i−1) +

∑
i

A∗
k(2i)Ak(2i) = 1.

Thus, A2
k(2i−1)A

∗
k(2i−1) = Ak(2i−1) and A∗

k(2i−1)A
2
k(2i−1) = Ak(2i−1) by using Lemma

3.8. Hence, Ak(2i−1)A∗
k(2i−1) = A∗

k(2i−1)A
2
k(2i−1)A

∗
k(2i−1) = A∗

k(2i−1)Ak(2i−1). Applying the
antipode, we get that Ai(2k−1) is normal. Similarly, it can be shown that Ai(2k) is
normal. �

By Lemmas 3.2 and 3.9, we have Ai(2k) = Ai(2k−1) = 0 ∀ i = 1, . . . , k − 1. Repeating
the same arguments using from Lemma 3.2–3.9, we can conclude that the fundamental
unitary finally reduces to the form as in (1), i.e.,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 0 0 · · · 0 0
A∗

12 A∗
11 0 0 · · · 0 0

0 0 A23 A24 · · · 0 0
0 0 A∗

24 A∗
23 · · · 0 0

...
...

0 0 0 0 · · · Ak(2k−1) Ak(2k)

0 0 0 0 · · · A∗
k(2k) A∗

k(2k−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that Ai(2i−1)Ai(2i) = Ai(2i)Ai(2i−1) = 0 ∀ i = 1, . . . , k and all the entries of the
fundamental unitary are normal. Moreover, for each i, Ai(2i−1)A∗

i(2i−1) and Ai(2i)A∗
i(2i)

are projections. We also have A2
i(2i−1)A

∗
i(2i−1) = Ai(2i−1) and A2

i(2i)A
∗
i(2i) = Ai(2i). For every

ai and aj, there exists positive integers p(i, j) and q(i, j) depending on i, j such that
p(i, j)ai = q(i, j)aj. Using this condition, one can easily get Ap(i,j)

i(2i) = Aq(i,j)
j(2j) and Ap(i,j)

i(2i−1) =
Aq(i,j)

j(2j−1) ∀ i, j = 1, . . . , k. This gives us Ai(2i−1)A
q(i,j)
j(2j) (Aq(i,j)

j(2j) )∗ = 0 as Ai(2i−1)Ai(2i) = 0.
Thus, Ai(2i−1)Aj(2j)A∗

j(2j) = 0 by using that Aj(2j)A∗
j(2j) is a projection and Aj(2j) is normal.

Finally, we get that Ai(2i−1)Aj(2j) = 0 as A2
j(2j)A

∗
j(2j) = Aj(2j) and Aj(2j) is normal. Similarly,

one can deduce that Ai(2i)Aj(2j−1) = 0 ∀ i, j = 1, . . . , k.
We can define the map from �(�, S) to Dθ (C∗(�)) by

Ai(2i−1) �→ (λai , 0),

Ai(2i) �→ (0, λ−ai ) = (0, λθ(ai)),

∀ i = 1, . . . , k. Clearly, this gives an isomorphism between the two CQG’s.
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REMARK 3.10. From now on, the quantum isometry group �(�, S) can be written
simply as �(�).

Now we are going to show that the quantum isometry group of � × � × · · · × �︸ ︷︷ ︸
n copies

for n > 1 depends on the generating set. We present the case n = 2 for
simplicity of the exposition. The proof for any n can be adapted similarly
from the proof of Theorem 3.11. Let S′ = {(1, 0), (0, 1), (−1, 0), (0,−1)} and S′′ =
{(1, 0), (0, 1), (−1, 0), (0,−1), (2, 0), (−2, 0)} be the two different generating sets for
� × �.

THEOREM 3.11. �(� × �, S′) and �(� × �, S′′) are not isomorphic to each other.

Proof. First of all, note that by Proposition 2.29 and Theorem 4.1 of [16] we
get that �(� × �, S′) ∼= C((� × �) � (�2

2 � S2)). We will show that �(� × �, S′′) is
different from C((� × �) � (�2

2 � S2)). Let us assume that a = (1, 0), b = (0, 1) and
c = (2, 0). The action α of �(� × �, S′′) on C∗

r (� × �) is given by

α(λa) = λa ⊗ A + λ−a ⊗ B + λb ⊗ C + λ−b ⊗ D + λc ⊗ E + λ−c ⊗ F,

α(λ−a) = λa ⊗ B∗ + λ−a ⊗ A∗ + λb ⊗ D∗ + λ−b ⊗ C∗ + λc ⊗ F∗ + λ−c ⊗ E∗,

α(λb) = λa ⊗ G + λ−a ⊗ H + λb ⊗ I + λ−b ⊗ J + λc ⊗ K + λ−c ⊗ L,

α(λ−b) = λa ⊗ H∗ + λ−a ⊗ G∗ + λb ⊗ J∗ + λ−b ⊗ I∗ + λc ⊗ L∗ + λ−c ⊗ K∗,

α(λc) = λa ⊗ M + λ−a ⊗ N + λb ⊗ O + λ−b ⊗ P + λc ⊗ Q + λ−c ⊗ R,

α(λ−c) = λa ⊗ N∗ + λ−a ⊗ M∗ + λb ⊗ P∗ + λ−b ⊗ O∗ + λc ⊗ R∗ + λ−c ⊗ Q∗.

The fundamental unitary is of the following form:
⎛
⎜⎜⎜⎜⎜⎜⎝

A B C D E F
B∗ A∗ D∗ C∗ F∗ E∗

G H I J K L
H∗ G∗ J∗ I∗ L∗ K∗

M N O P Q R
N∗ M∗ P∗ O∗ R∗ Q∗

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Note that the product of any two different elements of each row of the fundamental
unitary is zero by the arguments similar to those in the proof of Lemma 3.8. Hence,
all the entries of matrix (5) are normal following the line of arguments of Lemma 3.9.
Using the relation α(λ2a) = α(λc), comparing the coefficients of λb and λ−b on both
sides, we have O = P = 0. Applying the antipode and involution, we get K = L = 0.
Similarly, comparing the coefficients of λ2b, λ−2b, λ2c and λ−2c from the same condition,
we have C2 = D2 = E2 = F2 = 0 as well. This gives us C = D = E = F = 0 as they
are normal. Using the antipode and the involution, we obtain G = H = M = N = 0.
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Thus, the fundamental unitary is of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎝

A B 0 0 0 0
B∗ A∗ 0 0 0 0
0 0 I J 0 0
0 0 J∗ I∗ 0 0
0 0 0 0 Q R
0 0 0 0 R∗ Q∗

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Observe that A2 = Q, B2 = R, comparing the coefficients of λc and λ−c from the
condition α(λ2a) = α(λc). Moreover, AR = BQ = 0 as AB = QR = 0. The underlying
C∗-algebra of �(� × �, S′′) is generated by the elements A, B, I and J. We also
get that AI = IA, AJ = JA, BI = IB and BJ = JB comparing the coefficients of
λa+b, λ−a+b, λa−b and λ−a−b on both sides from the relation α(λa+b) = α(λb+a). Clearly,
the CQG �(� × �, S′′) is identified with �(�)⊗̂�(�). Note that the underlying
C∗-algebra of �(�)⊗̂�(�) is isomorphic to [C∗(�) ⊕ C∗(�)]⊗̂[C∗(�) ⊕ C∗(�)]. The
isomorphism is defined as follows:

A �→ (λ1, 0) ⊗ 1,

B �→ (0, λ−1) ⊗ 1,

I �→ 1 ⊗ (λ1, 0),

J �→ 1 ⊗ (0, λ−1),

where {1,−1} is the standard minimal generating set for �. Thus, �(� × �, S′′) ∼=
C((� × �) � �2

2) as �(�) is isomorphic to C(� � �2). It is clearly not isomorphic with
C((� × �) � (�2

2 � S2)), hence we are done. �
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