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Local Dimensions of Measures of Finite
Type II: Measures Without Full Support and
With Non-regular Probabilities

Kathryn E. Hare, Kevin G. Hare, andMichael Ka Shing Ng

Abstract. Consider a ûnite sequence of linear contractions S j(x) = ρx+d j and probabilities p j > 0
with∑ p j = 1. We are interested in the self-similar measure µ = ∑ p jµ ○ S−1j , of ûnite type. In this
paperwe study themulti-fractal analysis of suchmeasures, extending the theory tomeasures arising
from non-regular probabilities and whose support is not necessarily an interval.

Under some mild technical assumptions, we prove that there exists a subset of supp µ of full µ
and Hausdorò measure, called the truly essential class, for which the set of (upper or lower) local
dimensions is a closed interval. Within the truly essential class we show that there exists a point
with local dimension exactly equal to the dimension of the support. We give an example where the
set of local dimensions is a two element set, with all the elements of the truly essential class giving
the same local dimension. We give general criteria for these measures to be absolutely continuous
with respect to the associatedHausdoròmeasure of their support, and we show that the dimension
of the support can be computed using only information about the essential class.

To conclude, we present a detailed study of three examples. First, we show that the set of local
dimensions of the biased Bernoulli convolution with contraction ratio the inverse of a simple Pisot
number always admits an isolated point. We give a precise description of the essential class of a
generalized Cantor set of ûnite type, and show that the k-th convolution of the associated Cantor
measure has local dimension at x ∈ (0, 1) tending to 1 as k tends to inûnity. Lastly, we show that
within amaximal loop class that is not truly essential, the set of upper local dimensions need not be
an interval. _is is in contrast to the case for ûnite typemeasures with regular probabilities and full
interval support.

1 Introduction

In this paperwe continue the investigations, begun in [10], of themultifractal analysis
of equicontractive self-similar measures of ûnite type. For self-similar measures aris-
ing from an IFS that satisûes the open set condition the multifractal analysis is well
understood. In particular, the set of attainable local dimensions is a closed interval
whose endpoints can be computed with the Legendre transform.
For measures that do not satisfy the open set condition, the multifractal analysis

is more complicated and the set of local dimensions need not be an interval. _is
phenomenon was discovered ûrst for the 3-fold convolution of the classical Cantor
measure in [13] and was further explored in [2, 8, 15, 20], for example. In [17], Ngai
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andWang introduced the notion of ûnite type, a property stronger than theweak sep-
aration condition (WSC), but satisûed bymany interesting self-similar measures that
fail the open set condition. Examples include Bernoulli convolutions with contrac-
tion factor the inverse of a Pisot number and self-similar Cantor-like measures with
ratio the inverse of an integer.
Building on earlierwork, such as [9, 12, 14, 19], Feng undertook a study of equicon-

tractive, self-similar measures of ûnite type in [3–5], with his main focus being Bern-
oulli convolutions. Motivated by this research, in [10] (and [11]) a general theory was
developed for the local dimensions of self-similarmeasures of ûnite type assuming the
associated self-similar set was an interval and the underlying probabilities {p j}

m
j=0

generating the measure µ were regular, meaning p0 = pm = min p j . _ere it was
shown that the set of local dimensions at points in the “essential class” (a set of full
Lebesguemeasure in the support of µ and o�en the interior of its support)was a closed
interval and that the set of local dimensions at periodic points was dense in this in-
terval. Formulaswere given for the local dimensions. _ese formulae are particularly
simple at periodic points.

In this paper we reûne the techniques of [10] so that we do not require any as-
sumptions on the probabilities and we relax the requirement that the support of µ
(the self-similar set) is an interval. _ese assumptions were very signiûcant to the
approach taken in much of the earlier work, and complications arise when these as-
sumptions do not hold. In Section 3, we introduce the notion of the “truly essential
class”. Our main theoretical result is that under amild technical assumption, (that is
required only when the support is not an interval) the set of local dimensions at the
points in the truly essential class is a closed interval and the set of local dimensions at
the periodic points is dense in that interval. We show that the truly essential class is
the relative interior of the essential class, andwe prove that it has full µ andHausdorò
s-measure, where s is theHausdorò dimension of the self-similar set.

We prove that there is always a point at which the local dimension of µ coincides
with theHausdorò dimension of supp µ and give an example of ameasurewhere this
occurs at all the truly essential points (but not at all points of the support). A suõcient
condition is given for a ûnite typemeasure to be absolutely continuouswith respect to
the associatedHausdoròmeasure, and an example is given that satisûes this condition
when s = 1, even though the self-similar set is not an interval. We also give a formula
for calculating the Hausdorò dimension of the support from just the knowledge of
the essential class.

_e proofs of these facts rely upon formulas that we develop in Section 2 for cal-
culating local dimensions. _ese formulas are relatively simple for periodic points,
although necessarily more complicated than under the assumptions of regular prob-
abilities and full support.

Related results were given by Feng in [5]. _ere, Feng constructed a (typically,
countably inûnite) familyof closed intervals, I j ,withdisjoint interiors,where⋃ I j isof
fullmeasure andon eachof these closed intervals the setof attainable localdimensions
of the restrictedmeasure µ j ∶= µ∣I j was a closed interval. From his construction one
can see that ⋃ I j ∩ K is our essential class and ⋃ int(I j) ∩ K is contained in our truly
essential class. Note, however, that the local dimension of the restricted measure µ j
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at an end point of I j is not necessarily the same as the local dimension of µ at this
point, even when it is a truly essential point. _e techniques of this paper enable us
to compute the local dimensions of these boundary points, without assuming regular
probabilities or that K is an interval, as required in [10].

In [4], Feng had shown that the set of local dimensions of the uniform Bernoulli
convolutions with contraction factor the inverse of a simple Pisot number (meaning
the minimal polynomial is xn − ∑

n−1
j=0 x

j) is always a closed interval. As one appli-
cation of our main result, in Section 4 we prove, in contrast, that biased Bernoulli
convolutionswith these contraction factors always admit an isolated point in their set
of local dimensions.

In Section 5 we present a detailed study of the local dimensions of ûnite type
Cantor-like measures, extending the work done in [2, 10, 20]. In those papers, it was
shown, for example, that if p0 < p j for j /= 0,m, then the local dimension at 0 is iso-
lated. Here we give further conditions that ensure there is an isolated point. But we
also give examples where themeasure has no isolated points, and we give a family of
examples that have exactly two distinct local dimensions. We also show that the local
dimensions of the rescaled k-fold convolutions of a Cantor-likemeasure converge to
1 at points in (0, 1). Previously, in [1], it was shown that these local dimensions were
bounded.

In Section 6, we illustrate, by means of a detailed example, the complications and
diòerences that can arise when studying the local dimensions outside of the truly es-
sential class and in Section 7 investigate the connection between ûnite type and Pisot
contractions.
Feng and Lau [7] studied yet more general IFS that only satisfy the WSC and

showed that in this case there is also an open set U such that the set of attainable
local dimensions of the restricted measure, µ∣U , is a closed interval. We note that in
the examples given in that paper, the set U is much smaller than our truly essential
class.

2 Notation and Preliminary Results

We begin by introducing the deûnition of ûnite type as well as basic notation and
terminology that will be used throughout the paper.

2.1 Finite Type

Consider the iterated function system (IFS) consisting of the contractions S j ∶R→ R,
j = 0, . . . ,m, deûned by

S j(x) = ρx + d j ,

where 0 < ρ < 1, 0 = d0 < d1 < d2 < ⋅ ⋅ ⋅ < dm and m ≥ 1 is an integer. _e unique,
non-empty, compact set K satisfying

K =
m
⋃
j=0

S j(K)
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is known as the associated self-similar set. By rescaling the d j if needed,we can assume
that the convex hull of K is [0, 1]. We will not assume that K = [0, 1] or even that it
has non-empty interior.

It was shown in [17, _m. 1.2] that if s = dimH K and Hs denotes the Hausdorò
s-measure restricted to K, then 0 < Hs(K) < ∞. Upon normalizing we can assume
Hs(K) = 1. Further, we note that 0 < s ≤ 1. We remark that in the special case that
K = [0, 1], then s = 1 and Hs is the normalized Lebesguemeasure.

Suppose probabilities p j > 0, j = 0, . . . ,m satisfy ∑m
j=0 p j = 1. _roughout this

paper, our interest will be in the self-similar measure µ associated with the family of
contractions {S j} given above, which satisûes the identity

(2.1) µ =
m

∑
j=0

p jµ ○ S−1
j .

_ese non-atomic probability measures have support K.
We put A = {0, . . . ,m}. Given an n-tuple σ = ( j1 , . . . , jn) ∈ An , we write Sσ for

the composition S j1 ○ ⋅ ⋅ ⋅ ○ S jn and let pσ = p j1 ⋅ ⋅ ⋅ p jn .

Deûnition 2.1 _e iterated function system (IFS),

{S j(x) = ρx + d j ∶ j = 0, . . . ,m},

is said to be of ûnite type if there is a ûnite set F ⊆ R such that for each positive integer
n and any two sets of indices σ = ( j1 , . . . , jn), σ ′ = ( j′1 , . . . , j

′
n) ∈ A

n , either

ρ−n ∣Sσ(0) − Sσ ′(0)∣ > c or ρ−n(Sσ(0) − Sσ ′(0)) ∈ F ,

where c = (1 − ρ)−1(max d j −min d j) is the diameter of K.
If the IFS is of ûnite type and µ is an associated self-similarmeasure satisfying (2.1),

we also say that µ is of ûnite type.

Here we have given the general deûnition of ûnite type for an equicontractive IFS
in R. _is simpliûes to c = 1 in the case where the convex hull of K is [0, 1]. It is
worth noting here that the deûnition of ûnite type is independent of the choice of
probabilities.
Finite type is a property that is stronger than the weak separation condition, but

weaker than the open set condition [18]. Examples include (uniform or biased) Ber-
noulli convolutions with contraction factor the reciprocal of a Pisot number and
Cantor-likemeasures associatedwithCantor setswith contraction factors reciprocals
of integers. See Sections 4 and 5 where these are studied in detail.

2.2 Characteristic Vectors and the Essential Class

_e structure ofmeasures of ûnite type is explained in detail in [3–5] and [10];wewill
give a brief overview here.
For each integer n, let h1 , . . . , hsn be the collection of elements of the set {Sσ(0),

Sσ(1) ∶ σ ∈ An}, listed in increasing order. Put

Fn = {[h j , h j+1] ∶ 1 ≤ j ≤ sn − 1 and (h j , h j+1) ∩ K /= ∅} .
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Elements of Fn are called net intervals of level n. By deûnition, a net interval contains
net subintervals of every lower level. For each ∆ ∈ Fn , n ≥ 1, there is a unique element
∆̂ ∈ Fn−1 that contains ∆, called the parent (of child ∆). We will deûne the le�-most
child of parent ∆̂ = [a, b] ∈ Fn−1 to be the child ∆ = [a, b′] ∈ Fn . We will similarly
deûne the right-most child. It is worth noting that it is possible for a child to be both
the le� and the right-most child. It is furtherworth observing that becausewe are not
assuming the self-similar set is the interval [0, 1], it is possible for a parent to have no
le�-most child or no right-most child.

Given ∆ = [a, b] ∈ Fn , we denote the normalized length of ∆ by

ℓn(∆) = ρ−n
(b − a).

By the neighbour set of ∆ wemean the ordered k-tuple

Vn(∆) = (a1 , . . . , ak),

where
{a1 , . . . , ak} = { ρ−n

(a − Sσ(0)) ∶ σ ∈ An , ∆ ⊆ Sσ([0, 1])} .
Given ∆1 , . . . , ∆m , (listed in order from le� to right) all the net intervals of level n
which have the same parent and normalized length as ∆, let rn(∆) be the integer r
with ∆r = ∆. _e characteristic vector of ∆ is the triple

Cn(∆) = (ℓn(∆),Vn(∆), rn(∆)).

O�en we suppress rn(∆) giving the reduced characteristic vector (ℓn(∆),Vn(∆)).
If themeasure is of ûnite type, there will be only ûnitely many distinct character-

istic vectors. We denote the set of such vectors by Ω,

Ω = {Cn(∆) ∶ n ∈ N, ∆ ∈ Fn}.

By an admissible path, η, of length L(η) = L, we will mean an ordered L-tuple,
η = (γ j)

L
j=1 , where γ j ∈ Ω for all j and the characteristic vector, γ j , is the parent of

γ j+1. Each ∆ ∈ Fn can be uniquely identiûed by an admissible path of length n + 1,
say (C0(∆0), . . . ,Cn(∆n)), where ∆ = ∆n , ∆0 = [0, 1], ∆ j ∈ F j , and ∆ j = ∆̂ j+1 for all
j. _is is called the symbolic representation of ∆; we will frequently identify ∆ with its
symbolic representation.

Similarly, the symbolic representation for x ∈ K will mean the sequence

[x] = (C0(∆0),C1(∆1), . . . )

of characteristic vectors where x ∈ ∆n for all n and ∆ j ∈ F j is the parent of ∆ j+1. _e
notation [x ∣N] will mean the admissible path consisting of the ûrst N characteristic
vectors of [x]. We will o�en write ∆n(x) for the net interval in Fn containing x ∈ K;
its symbolic representation is [x ∣ n].

If x is an endpoint of ∆n(x) for some n (and then for all larger integers) we call
x a boundary point. We remark that if x is a boundary point, then there can be two
diòerent symbolic representations for x, one approaching x from the le�, i.e., by tak-
ing right-most descendents at all levels beyond level n, and the other approaching x
from the right, by taking le�-most descendents. If x is not a boundary point, then the
symbolic representation is unique.

It is worth emphasizing that [x ∣N] is deûned as the truncation of [x] as opposed
to deûning it as a sequence (C0(∆0),C1(∆1), . . . ,CN(∆N)) with x ∈ ∆ i . To see this
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distinction, recall that it is possible for ∆N = [h i , h i+1] to have no right-most children.
Let x = h i+1 be the right-most endpoint of ∆N . _en x is also the le�-most endpoint
of the adjacent net interval, ∆′N = [h i+1 , h i+2]. As ∆N has no right-most child, we do
not have a net interval of depth N+1with x ∈ ∆N+1 ⊆ ∆N . As K has no isolated points
and x ∈ K, for all M ≥ N wemust have net intervals x ∈ ∆M ⊆ ∆′N . In such a case, the
boundary point x has a unique symbolic representation.
A non-empty subset Ω′ ⊆ Ω is called a loop class if whenever α, β ∈ Ω′, then there

are characteristic vectors γ j , j = 1, . . . , n, such that α = γ1, β = γn and (γ1 , . . . , γn) is
an admissible path with all γ j ∈ Ω′. A loop class Ω′ ⊆ Ω is called an essential class if,
in addition, whenever α ∈ Ω′ and β ∈ Ω is a child of α, β ∈ Ω′. Of course, an essential
class is amaximal loop class.

In [5, Lemma 6.4], Feng proved the important fact that there is always precisely
one essential class, which we will denote by Ω0. If [x] = (γ0 , γ1 , γ2 , . . . ) with γ j ∈ Ω0
for all large j, we will say that x is an essential point (or is in the essential class) and
similarly speak of a net interval being essential. A path (γ j)

L
j=1 is in the essential class

if all γ j ∈ Ω0. We similarly speak of a point, net interval, or path as being in a given
loop class. _e ûnite type property ensures that every element in the support of µ is
contained in amaximal loop class.

We remark that the essential class is dense in the support of µ. _is is because
the uniqueness of the essential class ensures that every net interval contains a net
subinterval in the essential class. In Proposition 3.6 we will show that the essential
class has full µ measure and full Hausdorò s-measure in K, where s is the Hausdorò
dimension of K.

2.3 Transition Matrices

A very important concept in the multifractal analysis of measures of ûnite type are
the so-called transition matrices. _ese are deûned as follows: Let ∆ = [a, b] be a
net interval of level n with parent ∆̂ = [c, d] . Assume Vn(∆) = (a1 , . . . , aN) and
Vn−1(∆̂) = (c1 , . . . , cM). _e primitive transition matrix, T(Cn−1(∆̂), Cn(∆)), is a
M × N matrix whose jk entry is given by

Tjk ∶= (T(Cn−1(∆̂),Cn(∆))) jk = pℓ

if ℓ ∈ A and there exists σ ∈ An−1 with Sσ(0) = c − ρn−1c j and Sσ ℓ(0) = a − ρnak ,
and Tjk = 0 otherwise. We note that in [10] the transition matrices are normalized
so that the minimal non-zero entry is 1. _at is, we used p−1

∗ T instead of T , where
p∗ = min p j .

We observe that each column of a primitive transition matrix has at least one non-
zero entry. _e same is true for each row if suppµ = [0, 1], but not necessarily other-
wise; see Example 3.10.

Given an admissible path η = (γ1 , . . . , γn), we write

T(η) = T(γ1 , . . . , γn) = T(γ1 , γ2) ⋅ ⋅ ⋅T(γn−1 , γn)

and refer to such a product as a transition matrix. We will say the transition matrix
T(γ1 , . . . , γn) is essential if all γ j are essential characteristic vectors.
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By the norm of amatrix T wemean

∥T∥ =∑
jk

∣Tjk ∣.

Amatrix is called positive if all its entries are strictly positive. An admissible path η is
called positive if T(η) is a positive matrix. Here is an elementary lemma that shows
the usefulness of positivity.

_e notation sp(T) means the spectral radius of thematrix T ,

sp(T) = lim
n→∞

∥Tn
∥
1/n .

Lemma 2.2 Assume A, B,C are transition matrices and B is positive.
(i) _ere are constants a, b > 0, depending on the matrices A and B respectively, so

that ∥AC∥ ≥ a∥C∥ and ∥ABC∥ ≥ b∥A∥∥C∥.
(ii) If each row of A has a non-zero entry, then there is a constant c, depending on

matrix C, such that ∥AC∥ ≥ c∥A∥.
(iii) _ere is a constant C1 = C1(B) such that if AB is a squarematrix, then

sp(AB) ≤ ∥AB∥ ≤ C1 sp(AB).

(iv) Suppose B is a squarematrix. _ere is a constant C2 = C2(B) such that

sp(Bn
) ≤ ∥Bn

∥ ≤ C2 sp(Bn
) for all n.

Proof Parts (i) and (ii) follow by simplywriting the expressions for ∥AC∥ and ∥ABC∥
in terms of the entries of A, B,C, and noting that a transitionmatrix has non-negative
entries and each column has a non-zero entry.

Parts (iii) and (iv) follow as in [10, Lemma 3.15].

2.4 Basic Facts about Local Dimensions of Measures of Finite Type

Deûnition 2.3 Given a probability measure µ, by the upper local dimension of µ at
x ∈ suppµ wemean the number

dimlocµ(x) = lim sup
r→0+

log µ([x − r, x + r])
log r

.

Replacing the lim sup by lim inf gives the lower local dimension, denoted dimlocµ(x).
If the limit exists, we call the number the local dimension of µ at x and denote this by
dimloc µ(x).

It is easy to see that

dimloc µ(x) = lim
n→∞

log µ([x − ρn , x + ρn])

n log ρ
for x ∈ suppµ,

and similarly for the upper and lower local dimensions.

Notation _roughout the paper,whenwewrite Fn ∼ Gn wemean there are positive
constants c1 , c2 such that

c1Fn ≤ Gn ≤ c2Fn for all n.
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To calculate local dimensions, it will be helpful to know µ(∆) for net intervals ∆.

Proposition 2.4 Let ∆n = [a, b] ∈ Fn , with Vn(∆n) = (a1 , . . . , aN). _en

µ(∆n) =
N

∑
i=1

µ[a i , a i + ℓn(∆n)] ∑
σ∈An

ρ−n(a−Sσ(0))=a i

pσ .

Furthermore, if [∆n] = (γ0 , γ1 , . . . , γn) and

Pn(∆n) =
N

∑
i=1

∑
σ∈An ∶ρ−n(a−Sσ(0))=a i

pσ ,

then

µ(∆n) ∼ Pn(∆n) = ∥T(γ0 , γ1 , . . . , γn)∥

= pn
∗∥T

∗
(γ0 , γ1 , . . . , γn)∥

where p∗ = min p j .

Proof _is follows in a similar fashion to Lemma 3.2, Corollary 3.4, and the discus-
sion prior to Corollary 3.10 of [10], noting that

µ([a i , a i + ℓn(∆)]) ≥ µ(S−1
σ ([a, b])) > 0.

_e analogue of Proposition 2.4 was very useful in [10], as it was the key idea in
proving the following formula.

Corollary 2.5 ([10, Cor. 3.10]) Suppose µ is a self-similar measure satisfying identity
(2.1), that has support [0, 1], and is of ûnite type and has probabilities satisfying p0 =
pm = min p j . If x ∈ supp µ, then

dimloc µ(x) =
log p0
log ρ

+ lim
n→∞

log ∥T∗([x ∣ n])∥
n log ρ

= lim
n→∞

log ∥T([x ∣ n])∥
n log ρ

and similarly for the upper and lower local dimensions.

_is corollary need not be true, however, if the assumptions of suppµ = [0, 1] and
regular probabilities, i.e., p0 = pm = min p j , are not all satisûed. Instead, we proceed
as follows.

Terminology Assume {h j} = {Sσ(0), Sσ(1) ∶ σ ∈ An} with h j < h j+1 and suppose
∆n = [h i , h i+1] is a net interval of level n. Let ∆−n be the empty set if (h i−1 , h i) ∩ K is
empty and otherwise, let ∆−n = [h i−1 , h i]. Similarly, deûne ∆+n to be the net interval
immediately to the right of ∆n (or the empty set),with the understanding that if ∆n is
the le� or right-most net interval in Fn , then ∆−n (resp. ∆+n) is the empty set. We refer
to ∆−n(x), ∆n(x), ∆+n(x) as adjacent net intervals (even if some are the empty set).

If x belongs to the interior of ∆n(x), we put

Mn(x) = µ(∆n(x)) + µ(∆+n(x)) + µ(∆−n(x)).
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If x is a boundary point of ∆n(x) = [h i , h i+1], we put

(2.2) Mn(x) = µ(∆n(x)) + µ(∆′n(x)),

where ∆′n(x) = ∆−n(x) if x = h i and ∆′n(x) = ∆+n(x) if x = h i+1. We will refer to
∆′n(x) as the other net interval containing x, even if it is empty and so formally not a
net interval.

_eorem 2.6 Let µ be a self-similar measure of ûnite type and let x ∈ K. _en

dimloc µ(x) = lim
n→∞

logMn(x)
n log ρ

,

provided the limit exists. _e lower and upper local dimensions of µ at x can be expressed
similarly in terms of lim inf and lim sup.

Proof Assume, ûrst, that

dimloc µ(x) = lim
n→∞

log µ[x − ρn , x + ρn]

n log ρ
= D

exists.
By the ûnite type assumption, there are constants 0 < c < C such that cρn <

ℓ(∆n) < Cρn for all ∆n ∈ Fn . Pick j and k such that ρ j < c and 2C < ρ−k .
If x is a boundary point, then for suõciently large n, x is an endpoint of ∆n(x)

and
[x − ρn+ j , x + ρn+ j

] ⊆ ∆n(x) ∪ ∆′n(x) ⊆ [x − ρn−k , x + ρn−k
],

where the notation is as in (2.2). If x is not a boundary point, then

[x − ρn+ j , x + ρn+ j
] ⊆ ∆−n(x) ∪ ∆n(x) ∪ ∆+n(x) ⊆ [x − ρn−k , x + ρn−k

].

In either case,

µ[x − ρn+ j , x + ρn+ j
] ≤ Mn(x) ≤ µ[x − ρn−k , x + ρn−k

].

_is in turn implies that

(
n + j
n

)(
log µ[x − ρn+ j , x + ρn+ j]

(n + j) log ρ
) ≥

logMn(x)
n log ρ

≥ (
n − k
n

)(
log µ[x − ρn−k , x + ρn−k]

(n − k) log ρ
) .

_e limit of the le�-hand side and the right-hand side both go to D, hence the limit
of themiddle expression exists and is equal to D.

It follows similarly that if limn→∞ logMn(x)/n log ρ exists, then also

dimloc µ(x) = lim
n→∞

log µ[x − ρn , x + ρn]

n log ρ
= lim

n→∞
logMn(x)

n log ρ
.

_e arguments for the lower and upper local dimensions are similar.
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2.5 Periodic Points

Recall that in [10], x ∈ K is called a periodic point if x has symbolic representation

[x] = (γ0 , . . . , γJ , θ− , θ− , . . . ),

where θ is an admissible cycle (a non-trivial path with the same ûrst and last letter)
and θ− is the path with the last letter of θ deleted. We refer to θ as a period of x.
Boundary points are necessarily periodic and there are only countablymany periodic
points. Note that a periodic point is essential if and only if it has a period that is a path
in the essential class.

If there is a choice of θ for which T(θ) is a positive matrix, we call x a positive,
periodic point.

Of course, a period for a periodic point x is not unique. For example, if θ =

(θ1 , . . . , θL , θ1) is a period, then so is (θ− , θ) and so is (θ2 , . . . , θL , θ1 , θ2). How-
ever, these diòerent choices for the period give the same symbolic representation for
x. But if x is a boundary point, then x may have two diòerent symbolic representa-
tions, one forwhich [x ∣N] = ∆N(x) and the other having [x ∣N] = ∆′N(x), and these
two representations arise from (fundamentally) diòerent periods.

We note that the transition matrices associated with the two periods associated
with the same symbolic representation for x will have the same normalized (for their
length) spectral radius. _is need not be the case for periods associatedwith diòerent
symbolic representations.

Here is the analogue of [10, Proposition 4.14] when there is no assumption of reg-
ularity.

Proposition 2.7 If x is a periodic point with period θ, then the local dimension exists
and is given by

dimloc µ(x) =
log sp(T(θ))
L(θ−) log ρ

,

where if x is a boundary point of a net interval with two diòerent symbolic representa-
tions given by periods θ and ϕ, then θ is chosen to satisfy

log sp(T(θ))
L(θ−)

≥
log sp(T(ϕ))

L(ϕ−)
.

Proof First, suppose x is a boundary periodic pointwith two diòerent symbolic rep-
resentations given by periods θ , ϕ. _ere is no loss of generality in assuming the two
periods have the same lengths L = L(θ−) and pre-period path of length J. Assume
sp(T(θ)) ≥ sp(T(ϕ)). Given large n, let m = [(n − J)/L], so x has symbolic repre-
sentations

(γ0 , γ1 , . . . , γJ−1 , θ− , . . . , θ−
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

, θ1 , . . . , θ t),

(γ0 , γ′1 , . . . , γ
′
J−1 , ϕ

− , . . . , ϕ−
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

, ϕ1 , . . . , ϕt)
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for suitable t ≤ L. From Proposition 2.4,

µ(∆n(x)) ∼ ∥T(γ0 , . . . , γJ−1 , θ− , . . . , θ−
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

, θ1 , . . . , θ t)∥ ,

µ(∆′n(x)) ∼ ∥T(γ0 , . . . , γ′J−1 , ϕ
− , . . . , ϕ−

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m

, ϕ1 , . . . , ϕt)∥ .

Lemma 2.2 implies that there are positive constants c j , independent of n, such that

∥(T(θ))m+1∥ ≤ ∥T(θ− , . . . , θ−
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

, θ1 , . . . , θ t)∥∥T(θ t , . . . , θL , θ1)∥

≤ c1∥T(γ0 , . . . , γJ , θ− , . . . , θ−
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

, θ1 , . . . , θ t)∥ ≤ c2∥(T(θ))m∥ ,

and consequently,

c3∥(T(θ))m+1∥ ≤ µ(∆n(x)) ≤ c4∥(T(θ))m∥ .

Similarly,
c′3∥(T(ϕ))m+1∥ ≤ µ(∆′n(x)) ≤ c

′
4∥(T(ϕ))m∥ ,

If sp(T(θ)) > sp(T(ϕ)), then for large enough m, ∥(T(θ))m∥ > ∥(T(ϕ))m∥, and
hence

c3∥(T(θ))m+1∥ ≤ µ(∆n(x)) + µ(∆′n(x)) = Mn(x) ≤ 2c4∥(T(θ))m∥ .

Since ∥(T(θ))m∥1/m → sp(T(θ)),_eorem 2.6 gives

dimloc µ(x) = lim
n

logMn(x)
n log ρ

= lim
m

log ∥T(θ)m∥

mL log ρ
=

log sp(T(θ))
L log ρ

.

If, instead, sp(T(θ)) = sp(T(ϕ)), then for each n,

C1 max (∥(T(θ))m+1∥ , ∥(T(ϕ))m+1∥) ≤ Mn(x)

≤ C2 max(∥(T(θ))m∥ , ∥(T(ϕ))m∥) .

As both
log ∥(T(θ))m∥

mL log ρ
,
log ∥T(ϕ))m∥

mL log ρ
Ð→m→∞

log sp(T(θ))
L log ρ

,

the result again follows.
If x is a boundary periodic point with only one symbolic representation, then

∆′n(x) is empty for large n and the arguments are similar, but easier.
Now, assume x is periodic, but not a boundary point, say

[x] = (γ0 , . . . , γJ , θ− , θ− , . . . ),

where θ = (θ1 , . . . , θL). Let n = J + 1 +mL + t for 1 ≤ t ≤ L. _en

(γ0 , . . . , γJ , θ− , . . . , θ−
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

)
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is a common ancestor to all of ∆n(x), ∆±n(x), at most L levels back. _us, if ∆′n(x)
denotes any of ∆n(x) or ∆±n(x), an application of Lemma 2.2 implies that

µ(∆′n(x)) ≤ CL∥T(γ0 , . . . , γJ , θ− , . . . , θ−
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

)∥ ≤ C′L∥T(θ)m
∥,

where CL ,C′L are constants depending only on L. But, also,

∥(T(θ))m+1∥ ≤ cL∥(T(θ))mT(θ1 , . . . , θ t)∥ ≤ c′Lµ(∆n(x)) ≤ c′′L∥T((θ))m∥ ,

and consequently,

µ(∆±n(x)) ≤ C
′
L∥(T(θ))m∥ ≤ C′′L ∥(T(θ))m+1∥ ≤ C′′′L µ(∆n(x)).

_erefore, Mn(x) is comparable to µ(∆n(x)) and hence to ∥T((θ))m∥ (with con-
stants of comparability independent of n). _e argument is completed as before.

3 Local Dimensions at Truly Essential Points

In this section we will obtain our main theoretical results on the structure of local
dimensions, analogues of those found in [10, Section 5]. Because local dimensions
may depend on adjacent net intervals, ∆−n(x) and ∆

+
n(x), rather than only on ∆n(x),

we introduce a subset of the essential class that we call the truly essential class. We
will see that this subset has full µ andHausdorò s-measure for s = dimH K. Our main
results state that under a weak technical assumption the local dimensions at periodic
points are dense in the set of (upper and lower) local dimensions at truly essential
points and that the set of local dimensions at truly essential points is a closed interval.
Furthermore, we prove that there is always a truly essential point at which the local
dimension agrees with the Hausdorò dimension of the self-similar set, and we give
criteria forwhen themeasure µ is absolutely continuouswith respect to theHausdorò
measure.

3.1 Truly Essential Points

Deûnition 3.1 Suppose K is the self-similar set associatedwith an IFS of ûnite type.
(i) We will say that x ∈ K is a boundary essential point if x is a boundary point of

∆n(x) ∈ Fn for some n, and both ∆n(x) and the other n-th level net interval
containing x, ∆′n(x), are essential (where if ∆′n(x) is empty we understand it to
be essential).

(ii) We will say that x ∈ K is an interior essential point if x is not a boundary point
and there exists an essential net interval with x in its interior.

(iii) We call x a truly essential point if it is either an interior essential point or a bound-
ary essential point.

Obviously, truly essential points are essential and if x is in the interior of some
essential net interval, then it is truly essential. In particular, any essential point that
is not truly essential must be a boundary point. Hence, there can be only countably
many of these and they are periodic.
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Any point in the relative interior of the essential class (with respect to the space
K) is either contained in the interior of some essential interval, or is a boundary es-
sential point. Hence the relative interior of the essential class is equal to the set of
truly essential points. If the essential class is a (relatively) open set, then the essential
class coincides with the truly essential class. _is is the situation, for example, with
the Bernoulli convolutions and Cantor-like measures discussed in Sections 4 and 5.
Another IFSwhere the set of essential points is equal to the set of truly essential points
is given in Example 3.10.

However, as the example below demonstrates, these two sets need not be equal.

Example 3.2 Consider the maps S i(x) = x/4 + d i/8 with d i = i for i = 0, . . . , 3,
d4 = 5, and d5 = 6. _e reduced transition diagram has 4 reduced characteristic
vectors (RCV). _e reduced characteristic vectors are
● RCV 1: (1, (0)),
● RCV 2: (1/2, (0)),
● RCV 3: (1/2, (0, 1/2)),
● RCV 4: (1/2, (1/2)).

_e transition maps are
● RCV 1→ [2a, 3a, 3b, 3c, 4a, 2b, 3d , 4b],
● RCV 2→ [2, 3a, 3b, 3c],
● RCV 3→ [3a, 3b, 3c, 3d],
● RCV 4→ [4a, 2, 3, 4b].
By this we mean, for example, that the reduced characteristic vector 1 has 8 chil-

dren. Listed in order from le� to right, they are the reduced characteristic vectors
2, 3, 3, 3, 4, 2, 3, 4 etc. By 3a we mean the ûrst occurrence of the child of type 3, 3b
the second, etc. If there is only one child of that type, we do not need to distinguish
them, but diòerent children of the same type can have diòerent transition matrices,
so must be identiûed. It is easy to see from the transition maps that the essential class
is {3a, 3b, 3c, 3d}. See Figure 1 for the transition diagram.

Now consider the boundary periodic point x having symbolic representation
(1, 4a, 4a, 4a, . . . ), with 4a being the le�-most child of 4. _is also has symbolic
representation (1, 3c, 3d , 3d , . . . ), 3d being the right-most child of 3. One of these
symbolic representations is in the essential class, whereas the other is not. As such,
this point is an essential point, but it is not a truly essential point.

_e signiûcance of an interior essential point x is that ∆−n(x), ∆n(x) and ∆+n(x)
have a common essential ancestor for some n. Conversely, if ∆−n(x), ∆n(x) and∆+n(x)
have a common essential ancestor for some n, then x belongs to the relative interior
of the essential class and thus is truly essential.
A periodic point x that is an interior essential point admits a period θ with the

property that if [x] = (γ, θ− , θ− , . . . ) and θ1 is the ûrst letter of θ , then the net interval
(with symbolic representation) (γ, θ) is in the interior of the net interval (γ, θ1). We
will call such a period θ truly essential. Equivalently, θ is truly essential if and only if
θ is a path that does not consist solely of right-most descendents or solely of le�-most
descendents.
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Essential Class

1

2

3

4

Figure 1: Transition diagram for Example 3.2

It was shown [10, Proposition 4.5] that under the assumption that the self-similar
set was an interval, the essential class had full Lebesguemeasure. In fact, this is true
for the truly essential class, with Lebesguemeasure replaced by either the self-similar
measure µ or the (normalized) Hausdorò s-measure, where s = dimH K, as the next
Proposition shows. To prove this, we ûrst need some preliminary lemmas.

Lemma 3.3 _ere exists an integer J such that for each net interval ∆ ∈ Fn there
exists a σ ∈ AJ+n with Sσ([0, 1]) ⊆ ∆.

Proof Consider a net interval ∆ ∈ Fn . As there is some x ∈ K in the interior of ∆,
there is an index t and σ ∈ An+t such that Sσ([0, 1]) ⊆ ∆. Since Sσ(0) is not isolated
in K, theremust be a level n + T net interval ∆0 ⊆ ∆, with le� end Sσ(0). Choose the
index T minimal with this property.
Assume ∆ has symbolic representation (γ0 , γ1 , . . . , γn) and ∆0 has representation

(γ0 , γ1 , . . . , γn , . . . , γn+T). Let ∆′ = (γ0 , χ1 , . . . , χm−1 , γn) ∈ Fm be any other net inter-
valwith symbolic representation endingwith the same characteristic vector γn . Itwill
also have a descendent, ∆′0, with representation ending with the path (γn , . . . , γn+T).
Since 0 is in the neighbour set of ∆0, the same is true for ∆′0 and thus its le� endpoint
is an image of 0 under Sτ for some τ ∈ Am+T . As the pairs (∆, ∆′) and (∆0 , ∆′0) have
the same ûnite type structure (up to normalization), it follows that Sτ([0, 1]) ⊆ ∆′.
Hence, ∆′ has the same minimal index T , in other words, T depends only upon the
ûnal characteristic vector associated with ∆.
As there are only ûnitelymany characteristic vectors, we can take J to be themax-

imum of these indices T taken over all the characteristic vectors.

Lemma 3.4 _ere exists a positive constant c such that for all ∆ ∈ Fn and all n we
have cρsn ≤ Hs(∆ ∩ K) ≤ ρsn .
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Proof Fix an n-th level net interval ∆ ∈ Fn . By construction, there exists some
σ ∈ An such that ∆ ⊆ Sσ([0, 1]). _en ∆ ∩ K ⊆ Sσ(K) and hence Hs(∆ ∩ K) ≤

ρnsHs(K) = ρns .
Choose J as in the previous lemma. _en there exists some τ ∈ An+J such that

Sτ([0, 1]) ⊆ ∆. Hence, Sτ(K) ⊆ ∆ ∩ K and therefore ρ(J+n)sHs(K) ≤ Hs(∆ ∩ K).
Taking c = ρ Js > 0, we are done.

Corollary 3.5 We have dimH(∆ ∩ K) = s for all net intervals ∆.

Proof _is is immediate, since 0 < Hs(∆ ∩ K) <∞.

Proposition 3.6 Suppose µ is a self-similar measure of ûnite type, with support K of
Hausdorò dimension s. _e set of points in K that are not truly essential is a subset of a
closed set having zero µ and Hs-measure.

Proof As we already observed, every net interval contains a descendent net subin-
terval that is essential. _is essential net interval contains some x ∈ K in its interior
and hence contains a further subinterval that is in its interior. For the purposes of
this proof, we will call this an interior essential net interval. _e ûnite type prop-
erty ensureswe can always ûnd an interior essential net subintervalwithin a bounded
number of generations, say at most J.

We claim that there exists some λ > 0 such that the proportion of the measure of
this net subinterval to the measure of the original interval is ≥ λ. _is is because all
J’th level descendent net subintervals have comparable measure to the original net
interval. For measure Hs , this property is shown in Lemma 3.4, and for themeasure
µ it follows from the deûnition.

We now exhibit a Cantor-like construction. We beginwith [0, 1]. Consider the ûrst
level atwhich there is anet interval that is interior essential. Remove the interiors of all
the net intervals of this level that are interior essential. _e resulting closed subset of
[0, 1] is a ûnite union of closed intervals, say C1,whosemeasures, either Hs or µ, total
at most 1− λ. We repeat the process of removing the interiors of the interior essential
net intervals at the next level atwhich there are interior essential, net intervals in each
of the intervals of C1. _e resulting closed subset now has measure at most (1 − λ)2.
A�er repeating this procedure k times, one can see that the non-interior essential

points are contained in a ûniteunion of closed intervals, denotedCk ,whose totalmea-
sure is at most (1− λ)k . It follows that the non-interior essential points are contained
in the closed set ⋂∞k=1 Ck , and this set has both µ and Hs-measure 0.

Remark 3.7 Observe that we have actually proved that the complement of the in-
terior of the essential class (in K) has µ and Hs-measure zero.

Another consequence of Lemma 3.4 is to obtain a new formula for the Hausdorò
dimension of self-similar set of ûnite type. In [17] a formulawas givenwhich required
knowing the complete transition graph. In fact, it suõces to know the transition graph
of the essential characteristic vectors. For the purpose of this proof we introduce
the following notation. Let γ1 , . . . , γr be a complete list of the reduced characteristic
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vectors. Deûne a r× r matrix I by (I) jk = the number of children of γ j that are of type
γk . We call I the incidencematrix of the essential class.

Proposition 3.8 Let K be a self-similar set of ûnite type and let I be the incidence
matrix of the essential class. _en

s = dimH K =
log(sp(I))

∣ log ρ∣
.

Example 3.9 Consider the example S j(x) = x/3+ b j with b j ∈ {0, 2/87, 2/3}. _is
IFS has 2280 reduced characteristic vectors, hence to compute the dimension using
the full set of reduced characteristic vectorswould require ûnding the eigenvalues of a
2280×2280matrix. But there are only 2 essential vectors, and the incidencematrix of
the essential class is equal to [ 2 1

1 2 ].Using the proposition above one can easily deduce
that the dimension of the self-similar set is 1, although the set is not the full interval
[0, 1].

Proof of Proposition 3.8. Choose ∆0 an essential net interval of level n0 with the
property that all essential characteristic vectors are descendents of ∆0 at level N + n0.
It can be seen from the proof of [5, Lemma 6.4] that such a net interval exists. For
n ≥ N , let

En = {∆ ∈ Fn+n0 ∶ ∆ ⊆ ∆0}.

From Lemma 3.4 we have (for ∣En ∣ denoting the cardinality of En),

cρsn
∣En ∣ ≤ ∑

∆∈En

Hs
(∆ ∩ K) ≤ Cρsn

∣En ∣

for positive constants c,C. Since the sets ∆ ∈ En have disjoint interiors,

0 < Hs
(∆0 ∩ K) = ∑

∆∈En

Hs
(∆ ∩ K) <∞,

thus there are positive constants A, B such that

A ≤ ρsn
∣En ∣ ≤ B for all n.

Consequently,
1
n log ∣En ∣

∣ log ρ∣
+

logA
n log ρ

≥ s ≥
1
n log ∣En ∣

∣ log ρ∣
+

logB
n log ρ

.

Without loss of generality we can assume ∆0 has symbolic representationwith last
letter γ1. _en ∣En ∣ is the sum of the entries of row 1 of In , so

∣En ∣ = ∥[1, 0, . . . , 0]In∥ = ∥[1, 0, . . . , 0]IN In−N
∥.

But [1, 0, . . . , 0]IN is a vector with all non-zero entries, since ∆0 has all the essential
characteristic vectors as descendents at level N + n0. Hence, ∣En ∣ ∼ ∥In−N∥ and since

1
n log ∥In−N∥

∣ log ρ∣
→

log(sp(I))
∣ log ρ∣

,

we deduce that this is the value of s.
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3.2 Positive Row Property

_roughout the remainder of this section, we will assume, without loss of generality,
that ∆ ⫋ ∆̂ whenever the net interval ∆ is a child of ∆̂. To see that this assumption is
without loss of generality, we note that as µ is of ûnite type, there will be an integer N
such that all net intervalswill have at least two descendents N levels deeper. Consider
the new IFS with contractions S i1 ○ ⋅ ⋅ ⋅ ○ S iN and probabilities p i1 . . . p iN . _is IFS
gives rise to the same self-similar measure µ. Moreover, the set of net intervals of
level kN of the original construction are precisely the level k net intervals in the new
construction. _is new construction has the desired property.

In the theorems of this subsectionwewill also assume that the self-similarmeasure
of ûnite type has the property that each essential primitive transition matrix has a
non-zero entry in each row. _is is the weak technical condition referred to in the
introduction andwe call it the positive row property. _e property holds automatically
when the self-similar set K = [0, 1] (see [10, Sec. 3.2]), such as for (even non-regular)
Bernoulli convolutions and Cantor-like measures. _is stronger assumption is not
necessary, though, as we see in Example 7.1.

_e positive row property can fail to hold when K /= [0, 1] and can even fail when
there is a positive essential transition matrix, as the example below demonstrates.

Example 3.10 Consider the self-similar measure associated with the IFS

{S j(x) = x/3 + d j ∶ d j = 0, 4/9, 5/9, 2/3}

and uniformprobabilities. _ismeasure is of ûnite type. Its support is a proper subset
of [0, 1], since (1/3, 4/9)∩K is empty. However, if I = [2/3, 1], then I ⊆ ⋃3

j=0 S j(I), and
this implies that [2/3, 1] ⊆ K. _us, K has positive Lebesgue measure. _e reduced
characteristic vectors are
● RCV 1: (1, (0)),
● RCV 2: (1/3, (0)),
● RCV 3: (1/3, (0, 1/3)),
● RCV 4: (1/3, (0, 1/3, 2/3)),
● RCV 5: (1/3, (1/3, 2/3)),
● RCV 6: (1/3, (2/3)).

_e transition maps are
● RCV 1→ [1, X , 2, 3, 4, 5, 6],
● RCV 2→ [1],
● RCV 3→ [2, 3, 4],
● RCV 4→ [4, 4, 4],
● RCV 5→ [4, 4, 4],
● RCV 6→ [4, 5, 6].

_e ‘X’ denotes that between the child of type 1 and the child of type 2, in the
parent 1, there is an interval [h j , h j+1] that is not a net interval, as (h j , h j+1)∩K = ∅.

_e transition diagram is shown in Figure 2. _ere are three (non-reduced) essen-
tial characteristic vectors denoted 4a, 4b, 4c and one reduced characteristic vector 4.
_e primitive transitionmatrices for the essential class are given below. For x = a, b, c,
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Essential Class

1

2 3

4

5

6

Figure 2: Transition diagram for Example 3.10

thematrix T(4, 4x) is any of T(4a, 4x), T(4b, 4x), or T(4c, 4x), as these threema-
trices coincide. Note that T(4, 4a) has a row of zeroes, while the essential transition
matrix (T(4c, 4b)T(4b, 4b)T(4b, 4c))2 is positive. Hence, this example does not
satisfy the positive row property, although there is a positive essential transition ma-
trix

T(4, 4a) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
4

1
4

1
4

0 0 0
0 0 1

4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, T(4, 4b) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
4

1
4 0

0 0 1
4

0 1
4 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, T(4, 4c) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
4 0 0
0 1

4
1
4

1
4 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

If x is an essential point, but not a truly essential point, then x cannot be in the
interior of an essential interval. _is means x will be on the boundary of both an
essential net interval, ∆n(x), and a non-essential net interval, ∆′n(x), for all n suõ-
ciently large. It is easy to see from the transition maps that there are no such points.
Hence, the truly essential set coincides with the essential set.

3.3 Main Results

We begin by establishing the existence of special paths that we call truly essential.

Lemma 3.11 Suppose µ is a self-similar measure of ûnite type satisfying the positive
row property. Given any two essential characteristic vectors, γ1 , γ2, there is a positive
essential path η = (η1 , . . . , ηk), that does not consist of solely le�-most descendents, or
solely right-most descendents, and having η1 = γ1 and ηk = γ2.
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Proof In [10,Proposition 4.12] itwas shown that there is an admissible essential path
η0 that begins and ends at γ1 and is positive. Since anynet interval contains an element
of K in its interior, theremust be an essential path, η′ , beginning with γ1 and ending
at, say χ, which does not consist of solely le�-most or solely right-most descendents.
Now take any essential path η′′ from χ to γ2. Put η = η0η′η′′. _is is a positive path,
since the product (in either order) of any positivematrix by amatrix with a non-zero
entry in each row and column is again positive.

We will call a path η = (η1 , . . . , , ηs), as described in the lemma above, a truly
essential positive path. If ∆ = (γ0 , . . . , γN , η1 , . . . , ηs), then the two adjacent intervals
of ∆ are both descendents of the essential interval (γ0 , . . . , γN , η1). Consequently any
x whose symbolic representation begins (γ0 , . . . , γN , η) is truly essential. Further, if
x is a periodic point with period θηϕ for some θ and ϕ, then x is an interior essential
point.

Notation For the remainder of this section, F will denote a ûxed, ûnite set of truly
essential, positive paths with the property that given any two essential characteristic
vectors, there is a path in F joining them in either order.

_eorem 3.12 Suppose µ is a self-similar measure of ûnite type satisfying the positive
row property. _en the set of local dimensions of µ at interior essential, positive, periodic
points is dense in the set of all lower local dimensions of µ at truly essential points. A
similar statement holds for the (upper) local dimensions.

Proof We will ûrst assume that dimloc µ(x) exists. _e arguments for upper and
lower local dimensions are similar.

Step 1: To begin, we will show that if x is a boundary essential (necessarily periodic)
point, then its local dimension can be approximated by that of a truly essential, posi-
tive, periodic point.
First, suppose x has two diòerent symbolic representations, say,

(γ0 , γ1 , . . . , γJ , θ− , θ− , . . . ) and (γ0 , γ′1 , . . . , γ
′
J′ , ϕ

− , ϕ− , . . . ).

_ere is no loss of generality in assuming that the two periods have the same lengths
L = L(θ−) and pre-period path of length J. Without loss of generality assume that
sp(T(θ)) ≥ sp(T(ϕ)), so Proposition 2.7 gives

dimloc µ(x) =
log sp(T(θ))
L(θ−) log ρ

.

Let η ∈ F be a truly essential, positive path chosen so that θ−ηθ is well deûned. Con-
sider the periodic point

[yn] = (γ0 , . . . , γJ ,ψ−n ,ψ
−
n , . . . ),

where
ψn = (θ− , . . . , θ−

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

η, θ1),
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θ1 being the ûrst letter of θ. As noted above, this construction produces an interior
essential point and therefore

dimloc µ(yn) =
log sp(T(ψn))

L(ψ−n) log ρ
.

As η is a positive path, Lemma 2.2 implies that

sp(T(ψn)) ≤ ∥T(ψn)∥ ≤ c1∥(T(θ))n
∥ ≤ c2 sp(T(θn

)),
sp(T(ψn)) ≥ c3∥T(ψn)∥ ≥ c4 sp(T(θ))n ,

where the constants are positive and independent of n. It follows that

dimloc µ(yn) =
logCn sp(T(θ))n

(nL(θ−) + L(η)) log ρ
,

where the constants, Cn , are bounded above and bounded below from zero. Hence,

dimloc µ(yn) =
logCn

(nL(θ−) + L(η)) log ρ
+

log sp(T(θ))
(L(θ−) + 1

n L(η)) log ρ

=
logCn

(nL(θ−) + L(η)) log ρ
+ dimloc µ(x)

L(θ−)
L(θ−) + 1

n L(η)
→ dimloc µ(x) as n →∞.

_e case where x has a unique representation is similar. _is completes Step 1.

Step 2: Now, suppose x is an interior essential point with ∆N(x) and its two adjacent
N-th level intervals having common essential ancestor at level J. If the symbolic rep-
resentation for x begins with the path (γ0 , . . . , γJ), then for any n > N , all three of
∆n(x), ∆+n(x), ∆

−
n(x) have symbolic representation also beginningwith (γ0 , . . . , γJ).

Without loss of generality assume that

max{ µ(∆n(x)), µ(∆+n(x)), µ(∆
−
n(x))} = µ(∆+n(x))

along a subsequence not renamed. (_e other cases are similar.) Of course, then we
have

µ(∆+n(x)) ≤ Mn(x) ≤ 3µ(∆+n(x)).
Suppose

∆+n(x) = (γ0 , . . . , γJ , χ
(n)
J+1 , . . . , χ

(n)
n )

and let η be a path in F joining χ(n)n to γJ . We remark here that the χ(n)J+1 , . . . , χ
(n)
n will

depend on n, as ∆+n may not be a descendent of ∆+n−1. Put

θn = (γJ , χ
(n)
J+1 , . . . , χ

(n)
n−1 , η)

and denote by yn the interior essential, positive, periodic point with symbolic repre-
sentation

[yn] = (γ0 , . . . , γJ−1 , θ−n , θ
−
n , . . . ).

Of course,

dimloc µ(yn) =
log sp(T(θn))

L(θn) log ρ
.
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Lemma 2.2 implies that there is a constant c1 > 0, independent of n, such that

c1∥T(θn)∥ ≤ sp(T(θn)) ≤ ∥T(θn)∥.

As L(θn) = n − J + L(η), it follows by similar reasoning that

(3.1) dimloc µ(yn) =
Cn

n log ρ
+

log ∥T(θn)∥

n log ρ
Ð→ lim

n

log ∥T(θn)∥

n log ρ
.

Yet another application of Lemma 2.2 shows that

Mn(x) ≤ 3µ(∆+n(x)) ≤ c1∥T(γ0 , . . . , γJ , χ
(n)
J+1 , . . . , χ

(n)
n )∥

≤ c2∥T(γJ , χ
(n)
J+1 , . . . , χ

(n)
n , η)∥ ≤ c3∥T(θn)∥,

where the constants are independent of n, and similarly,

Mn(x) ≥ µ(∆+n(x)) ≥ c∥T(θn)∥.

_us, Mn(x) ∼ ∥T(θn)∥ and hence it follows from (3.1) that

dimloc µ(x) = lim
n

log ∥Mn(x)∥
n log ρ

= lim
n

log ∥T(θn)∥

n log ρ
= lim

n
dimloc µ(yn)

_eorem 3.13 Suppose µ is a self-similar measure of ûnite type satisfying the positive
row property. Assume that (xn) are interior essential, positive, periodic points. _ere is
an interior essential point x such that

dimlocµ(x) = lim sup
n

dimloc µ(xn),

dimlocµ(x) = lim inf
n

dimloc µ(xn).

Proof _is is similar to the proof of [10, _eorem 5.5] with some technical com-
plications that we highlight here. To begin, suppose xn has truly essential, positive
period θn where, without loss of generality,

∣
log sp(T(θ2n))

L(θ−2n)
− lim sup

k

log sp(T(θk))

L(θ−k )
∣ <

1
n
,

∣
log sp(T(θ2n+1))

L(θ−2n+1)
− lim inf

k

log sp(T(θk))

L(θ−k )
∣ <

1
n
,

all even labelled paths θ−2n have the same ûrst letter and the same last letter, and sim-
ilarly for the odd labelled paths.
Choose truly essential, positive paths ηe and ηo from the ûnite set F so that ηo joins

the last letter of an odd path to the ûrst letter of even path and ηe does the opposite.
Let Ln = 2L(θ−n+1)+L(ηo)+L(ηe). ChooseCn such that for all ℓ ≤ Ln and j > ℓwe

have µ(∆ j) ≥ Cnµ(∆ j−ℓ) when ∆ j−ℓ ∈ F j−ℓ is the ancestor of ∆ j ∈ F j . Now choose
kn ≥ 2 suõciently large so that in addition to the requirements of kn in the proof of
[10,_m. 5.5], we also have

3 + logCn

kn
Ð→ 0.
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Suppose x ∈ K has symbolic representation

[x] = (γ0 , . . . , γJ , θ−1 , . . . , θ
−
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1

, ηo , θ−2 , . . . , θ
−
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k2

, ηe , . . . ) .

We remark that as ηe and ηo are truly essential paths, the point x is interior essential.
Suppose

[x ∣ j] = (γ0 , . . . , γJ , θ−1 , . . . , θ
−
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1

, ηo , . . . , θ−n , . . . , θ
−
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kn

, η′ , (θ−n+1 , θ
−
n+1)) ,

where η′ is either ηoor ηe , as appropriate, and the notation (θ−n+1 , θ
−
n+1) means any

subpath of the path θ−n+1 , θ
−
n+1. As η′ is truly essential, ∆ j(x) and its two adjacent

intervals have common ancestor

[x ∣ j − ℓ] = (γ0 , . . . , γJ , θ−1 , . . . , θ
−
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1

, ηo , . . . , θ−n , . . . , θ
−
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kn

)

for some ℓ ≤ 2L(θ−n+1) + L(η′). If, instead,

[x ∣ j] = (γ0 , . . . , γJ , θ−1 , . . . , θ
−
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1

, ηo , . . . , θ−n , . . . , θ
−
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kn

, η′ , θ−n+1 , . . . , θ
−
n+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pn

, (θ−n+1 , η
′′
))

with 2 ≤ pn ≤ kn+1 (where wemay include a subset of η′′ = ηe or ηo if pn = kn+1 − 1),
then ∆ j(x) and its two adjacent intervals have common ancestor

[x ∣ j − ℓ] = (γ0 , . . . , γJ , θ−1 , . . . , θ
−
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1

, ηo , . . . , η′ , θ−n+1 , . . . , θ
−
n+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pn−1

) ,

where ℓ ≤ 2L(θ−n+1) + L(η′′).
In either case, for all such j, there is some ℓ ≤ Ln such that ∆ j−ℓ(x) is a common

ancestor of ∆ j(x) and its two adjacent intervals. Since

Cnµ(∆ j−ℓ(x)) ≤ µ(∆ j(x)) ≤ M j(x)

≤ µ(∆+j (x) ∪ ∆ j(x) ∪ ∆−j (x))

≤ 3µ(∆ j−ℓ(x)) for all l ≤ Ln ,

it will be suõcient to study the behaviour of the subsequences

∥T(γ0 , . . . , γJ , θ−1 , . . . , θ
−
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1

, ηo , . . . , η′ , θ−n+1 , . . . , θ
−
n+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pn

)∥

for pn ≤ kn+1, and this we do in the samemanner as in [10].

It was shown in [10, _m. 5.7] that the set of local dimensions at essential points
was a closed interval. Here we prove the same conclusion for the set of local dimen-
sions at truly essential points.

_eorem 3.14 Suppose µ is a self-similar measure of ûnite type satisfying the positive
row property. Let y, z be interior essential, positive, periodic points. _en the set of
local dimensions of µ at truly essential points contains the closed intervalwith endpoints
dimloc µ(y) and dimloc µ(z).
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Proof Let y and z have truly essential, positive periods ϕ and θ, respectively, with
T(ϕ) = A and T(θ) = B. Let η1 , η2 be truly essential, positive paths joining the last
letter of ϕ to the ûrst letter of θ and vice versa. Given 0 < t < 1, choose subsequences
mk , nk →∞ such that

L(θ−)mk

L(θ−)mk + L(ϕ−)nk
Ð→ t.

Put

T(ψk) = BmkT(η1)AnkT(η2)

and consider a truly essential, positive, periodic point xk with period ψk . Using
Lemma 2.2 we deduce that

sp(BmkT(η1)AnkT(η2)) ∼ sp(B)mk sp(A)nk .

Coupled with Proposition 2.7, this implies

lim
k
dimloc µ(xk) = lim

k

log sp(B)mk + log sp(A)nk

(L(θ−)mk + L(ϕ−)nk) log ρ
= t dimloc µ(z) + (1 − t)dimloc µ(y).

Now appeal to the previous theorem to complete the proof.

_e three theorems combine to yield the following important corollary.

Corollary 3.15 Let µ be a self-similar measure of ûnite type satisfying the positive
row property. Let I = inf{dimloc µ(x) ∶ x interior essential, positive, periodic} and
S = sup{dimloc µ(x) ∶ x interior essential, positive, periodic}. _en

{dimloc µ(x) ∶ x interior essential} = {dimloc µ(x) ∶ x truly essential} = [I, S].

A similar statement holds for the lower and upper local dimensions.

It isworth commenting here that this need not be the case for the set of upper local
dimensions of amaximal loop class (outside of the truly essential class). An example
is given in Section 6.

Remark 3.16 In Example 3.2, the local dimension of the boundary point x with
symbolic representations (1, 4a, 4a, 4a, . . . ) and (1, 3c, 3d , 3d , . . . ) is

∣log(max sp(T(4a, 4a)), sp(T(3d , 3d)))∣
log 4

.

Regardless of the choice of probabilities, this local dimension is always contained
within the interval that is the set of local dimensions of truly essential points. Itwould
be interesting to know if therewere any examples of self-similarmeasures of ûnite type
and essential points x where dimloc µ(x) is not contained in the set of local dimen-
sions of the truly essential points.
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3.4 Local Dimension and the Dimension of the Support

In this section we show that, assuming the positive row property, the essential class
must contain a point x such that dimloc µ(x) = dimH(K).

Lemma 3.17 Let µ be a self-similar measure of ûnite type, with s = dimH K. Let E
denote the set of truly essential points and put

G1 = {x ∈ E ∣ dimlocµ(x) > s},
G2 = {x ∈ E ∣ dimlocµ(x) < s}.

_en µ(G1) = 0 = Hs(G2).

Proof We recall that there are only countably many boundary essential points, and
every non-atomicmeasure assigns mass zero to a countable set. Hence the statement
will be true if and only if it is true for E= the set of interior essential points.

Let x ∈ G1, say with dimlocµ(x) = s(1 + ε) for some ε > 0. _en there will exist
inûnitely many n such that

log µ(∆n(x))
n log ρ

> s( 1 +
ε
2
) .

By Lemma 3.4, we have

lim
n

logHs(∆n(x))
n log ρ

= s.

_is implies that there are inûnitely many n such that

log µ(∆n(x))
log ρ

> ( 1 +
ε
3
)
logHs(∆n(x))

log ρ
,

and therefore
µ(∆n(x)) ≤ Hs(∆n(x))Hs(∆n(x))

ε/3
.

Since Hs(∆n) → 0 as n → ∞, it follows that for all 0 < a < 1 there exists an n such
that

µ(∆n(x)) ≤ aHs(∆n(x)) .
In a similar way, if x ∈ G2 and b > 1, then there exists an n such that

µ(∆n(x)) ≥ bHs(∆n(x)) .

Deûne

Ea1,n = ⋃{∆ ∈ Fn ∶ µ(∆) ≤ aHs
(∆)} , Ea1 = ⋃

n
Ea1,n ,

Eb2,n = ⋃{∆ ∈ Fn ∶ µ(∆) ≥ bHs
(∆)} , Eb2 = ⋃

n
Eb2,n .

_e comments above show that G1 ⊆ Ea1 for all 0 < a < 1 andG2 ⊆ Eb2 for all b > 1. Put

Fa1,1 = E
a
1,1 , F

a
1,n = E

a
1,n ∖

n−1
⋃
k=1
Fa1,k ,

and similarly deûne Fb2,n . _en Ea1 is the disjoint union of the sets Fa1,n and similarly
for Eb2 . Further, we observe that each set Fa1,n is a union of intervals, ∆, with disjoint
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interiors and the property that µ(∆) ≤ aHs(∆). Hence σ-additivity and the continu-
ity of Hs imply

µ(G1) ≤ µ(Ea1 ) ≤ ∑
n
µ(Fa1,n) ≤ a∑

n
Hs

(Fa1,n)

= aHs
(Ea1 ) ≤ aH

s
(K) ≤ a.

As 0 < a < 1 is arbitrary, we have that µ(G1) = 0.
Similarly ,

Hs
(G2) ≤ Hs

(Eb2 ) ≤
1
b
µ(Eb2 ) ≤

1
b
µ(K) ≤

1
b
,

and as b > 1 is arbitrary, we have that Hs(G2) = 0.

_eorem 3.18 Let µ be a self-similar measure of ûnite type satisfying the positive row
property. _en there exists a truly essential element x with dimloc µ(x) = dimH K.

Proof In fact, we will show a stronger result, that there exists an interior essential
point x such that dimloc µ(x) = dimH K.

Let E be the set of interior essential points. According to Corollary 3.15, the set of
local dimensions at the interior essential points is an interval. So it suõces to show
that the supremum of this interval is at least dimH K, and the inûmum is at most
dimH K.
Assume, for a contradiction, that the inûmum is strictly greater than dimH K. _is

implies for all x ∈ E,

dimH K < dimlocµ(x) ≤ dimlocµ(x),

and hence E ⊆ G1. _is fact, combined with Proposition 3.6 and Lemma 3.17, gives
1 = µ(E) ≤ µ(G1) = 0, a contradiction.

Similarly, if the supremum of the local dimensions of E was strictly less than
dimH K , then E ⊆ G2, and hence 1 = Hs(E) ≤ Hs(G2) = 0, a contradiction.

It would be interesting to know if the set of such points has full µ measure. Notice
that Lemma 3.17 implies that this is true if µ is absolutely continuous with respect to
Hs . Our next result gives conditions under which this latter statement is true.

Proposition 3.19 Suppose µ is a self-similar measure of ûnite type, with dimH K = s.
Assume that the norm of any product of n essential, primitive transition matrices is
bounded above by Cρsn(1−εn), where supn nεn <∞ and C > 0 is a constant. _en µ is
absolutely continuous with respect to Hs .

Proof By [16, p. 35], µ ≪ Hs if and only if D(x) <∞ for µ almost all x , where

D(x) = lim inf
r→0

µ(B(x , r))
Hs(B(x , r))

.

Appealing to Proposition 3.6, we see that it suõces to prove D(x) <∞ for all interior
essential points x. Standard arguments show it will be suõcient to prove

lim inf
n→∞

µ(∆n(x) ∪ ∆+n(x) ∪ ∆
−
n(x))

Hs(∆n(x) ∪ ∆+n(x) ∪ ∆−n(x))
<∞.
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For x an interior essential point, choose J such that for all n suõciently large,
∆J+n(x), ∆+J+n(x) and ∆

−
J+n(x) have a common essential ancestor at level J. _us,

for ∆′n+J(x) denoting any of ∆n+J(x) or its two adjacent net intervals

µ(∆′n+J(x)) ∼ ∥T(γ0 , . . . , γJ , γ′J+1 , . . . , γ
′
n+J)∥

∼ ∥T(γJ , γ′J+1 . . . , γ
′
n+J)∥ ≤ Cρsn(1−εn)

for a constant C not dependent on n. Here the last inequality comes from the hypoth-
esis of the proposition. Since Lemma 3.4 implies Hs(∆n) ∼ ρns for any n-th level net
interval,

lim inf
n→∞

µ(∆n(x) ∪ ∆+n(x) ∪ ∆
−
n(x))

Hs(∆n(x) ∪ ∆+n(x) ∪ ∆−n(x))
≤ lim inf

n→∞
C

ρsn(1−εn)

ρns <∞,

as sup nεn <∞.

Remark 3.20 We note that this proposition did not require the assumption of the
positive row property. Moreover, similar arguments show that Hs ∣supp µ is absolutely
continuouswith respect to µ if the normof any product of n essential, primitive tran-
sition matrices is bounded below by Cρsn(1+εn), where supn nεn < ∞ and C > 0 is a
constant.

In the next example, the self-similar measure is mutually absolutely continuous to
Lebesguemeasure restricted to supp µ, and the local dimension is identical at all the
truly essential points.

Example 3.21 Consider the example S j(x) = x/4+b j/12where b j ∈ {0, 1, 2, 7, 8, 9},
and associate with these the probabilities p0 = p1 = p4 = p5 = 1/8, p2 = p3 = 1/4. _is
measure does not have full interval support, although the support is still of dimension
one. To see this, we observe that K = [0, 5/12] ∪ [7/12, 1]. _ere is one reduced
characteristic vector within the essential class. _e four transition matrices from this
vector to itself are:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
8 0 0
0 0 1

4
1
8

1
4 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
8

1
8 0

0 0 0
1
8

1
8

1
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
4

1
8

1
8

0 0 0
0 1

8
1
8

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1
4

1
8

1
4 0 0
0 0 1

8

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

We notice that all column sums of all of these matrices are exactly the same at 1/4.
Hence the norm of any n-fold product of these matrices is comparable to 4−n . _is
gives that the local dimension at all truly essential points is 1, and the measure µ is
mutually absolutely continuouswith respect to Lebesguemeasure on its support. It is
worth observing that this is true, despite this example not satisfying the positive row
property. Note that the points outside the essential class do not necessarily have local
dimension 1. For instance, dimloc µ(0) = log 8/ log 4 = 3/2.

Another illustration of this is seen in Example 5.11, where this phenomena occurs
for a Cantor-likemeasure when Hs is the normalized Lebesguemeasure.
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4 Biased Bernoulli Convolutions with Simple Pisot Contractions

In this section we will assume that µ is a Bernoulli convolution generated by the IFS

{S0(x) = ρx , S1(x) = ρx + (1 − ρ)}

and probabilities p, 1− p, where ρ is the inverse of a simple Pisot number (one whose
minimal polynomial is of the form xk−xk−1−⋅ ⋅ ⋅−x−1) and 0 < p < 1. _e self-similar
set is [0, 1], hence the positive row property holds for all these Bernoulli convolutions.
Feng in [4] showed that if p = 1/2, then µ has no isolated point in its multifrac-

tal spectrum. In contrast, we will show here that if p /= 1/2, there is always an iso-
lated point, either dimloc µ(0) or dimloc µ(1), depending onwhether p is less than or
greater than 1/2.

In [4, Sect. 5], Feng determined the characteristic vectors, transition graph, and
primitive transition matrices for the case p = 1/2. Using this information, it is not
diõcult to determine the primitive transition matrices for the general case. In what
follows, we use Feng’s notation to label the characteristic vectors as a, b, d, c i , c1, e j ,
f j , g , where i = 1, . . . , k and j = 1, . . . , k − 1. Here, all but a, b, d are in the essential
class.

Lemma 4.1 _e primitive transition matrices for the vectors in the essential class are
given by:

T(c j−1 , c j) = [
p 0
0 1−p ] for 2 ≤ j ≤ k, T(ck , g) = [

p
1−p ],

T(ck , c1) = [
p 0

1−p p ], T(ck , c1) = [
1−p p
0 1−p ],

T(g , f1) = T( f j , f j+1) = [p], T( f j , c1) = [ 1−p p ] for j ≤ k − 2,
T(g , e1) = T( f j , e1) = [1 − p], T(e j , f1) = [p] for j ≤ k − 1,
T(g , c1) = T(e j , c1) = [ 1−p p ], T(e j , e j+1) = [1 − p] for j ≤ k − 2.

Proof We leave this as an exercise for the reader, as it follows in a straightforward
manner from the information gathered in [4]. _e main points to observe are that
if the i-th neighbour of a parent coincides with the j-th neighbour of a child, then
Ti j = p,while if theydiòer by (common) normalized distance 1−ρ, thenTi j = 1−p. We
also remind the reader that for simple Pisot numbers, ρ−1 , with minimal polynomial
of degree k, 1 − ρ = ρ − ρk+1.

We illustrate this with T(c j−1 , c j). From [4] it can be seen that the (normalized)
neighbours of c j are 0 and 1 − ρk− j+1 , and c j is the only child of the parent c j−1. If we
renormalize so they can be compared, we see that the two 0 neighbours coincide and
the non-0 neighbours diòer by 1− ρ. _us, T is diagonal with the entries being p and
1 − p, respectively.

Notation Given amatrix T , denote by ∥T∥min the pseudo-norm

∥T∥min = min
j
∑
i
∣Ti j ∣,
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where the sum is over all the rows of the matrix. _at is, ∥T∥min is the minimal col-
umn sum of T . Obviously, ∥T∥ ≥ ∥T∥min. A useful property is that ∥T1T2∥min ≥

∥T1∥min∥T2∥min.

Lemma 4.2 _ere exists an integer N such that if x ∈ (0, 1), then

[x] = (γ1 , . . . , γM , η1 , η2 , . . . ),

where γ1 , . . . , γM are characteristic vectors, η j are essential paths of length at most N
whose ûrst letter, denoted η j,1, equals c1, c1 or f1 , and

∥T(η j , η j+1 , η j+2,1)∥min ≥ min ( pL−1
(1 − p), (1 − p)L−1p) ,

where L = L(η j , η j+1).

Proof One can see from the transition maps given in [4, Sec 5.1] that the sym-
bolic representation for any x ∈ (0, 1) begins either as [x] = (a, c1 , . . . ) or [x] =

(a, ∗, ∗, . . . , ∗, y, . . . ), where ∗ denotes (all) b′s or d′s and y is either c1 , e1 or f1. In
the casewhen y = e1 the pathmust continue as (e1 , . . . , e j−1 , z)where z = c1 or f1 and
j ≤ k−2, or as (e1 , . . . , ek−1 , f1). Whichever is the case, one can see that each essential
x must eventually admit either a (ûrst) c1 or f1. _is will be the ûrst letter of η1. Now
deûne η j to beginwith the j-th occurrence of either c1 (or c1 in Feng’s notation) or f1.
We need to check that with this construction the η j are paths of bounded length (in-
dependent of x) and have the required property on the pseudo-normof the transition
matrices.
First, suppose a path η j begins with c1. _en it must continue as (c1 , . . . , ck). If ck

is followed by c1 (or c1), thenwe stop and take (c1 , . . . , ck) as η j having length k. Oth-
erwise, ck is followed by g, and if that is followed by c1 or f1, then η j = (c1 , . . . , ck , g)
has length k+1. _e only other possibility is that g is followed by e1, but in that case, as
we saw above, the pathwill continue as (e2 , . . . , , e j)with j ≤ k − 1, before continuing
with either c1 or f1 (necessarily with f1 if j = k − 1). Such a path η j has length at most
k + 1 + k − 1 = 2k.

To summarize, the paths η j that beginwith c1 , togetherwith the ûrst letter of η j+1 ,
are of the form (c1 , . . . , ck) with next letter either c1 or c1, (c1 , . . . , ck , g) with next
letter either c1 or f1, or (c1 , . . . , ck , g , e1 , . . . , e j) with j ≤ k − 1 and next letter either c1
or f1 (necessarily f1 if j = k − 1).

_e arguments are similar for the paths that beginwith f1, with these paths having
length at most 2k − 2.

Now we verify the claimed pseudo-norm property. For this we apply the previous
lemma to analyze the product of the appropriate transition matrices. Of course, any
primitive transition matrix has pseudo-norm at least min(p, 1 − p).
For paths ηJ that begin with c1, we will see that even

∥T(ηJ , ηJ+1,1)∥min ≥ min ( pL−1
(1 − p), (1 − p)L−1p) for L = L(ηJ),

and this will certainly imply the claim. To prove this, we consider the diòerent paths
individually.
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Case 1: (ηJ , ηJ+1 ,1 ) = (c1 , . . . , ck , y) with y1 = ηJ+1,1 = c1 or c1: If y = c1, then

T(ηJ , ηJ+1,1) = T(c1 , . . . , ck)T(ck , c1) = [
pk 0

(1 − p)k (1 − p)k−1p
]

and hence has pseudo-norm with the required lower bound. _e argument when the
ûrst letter of ηJ+1 = c1 is similar.

Case 2: (ηJ , ηJ+1 ,1 ) = (c1 , . . . , ck , g , y) with y = c1 or f1: If y = c1, then an easy
calculation shows

T(ηJ , ηJ+1,1) = T(c1 , . . . , ck)T(ck , g)T(g , c1) = [
pk(1 − p) pk+1

(1 − p)k+1 p(1 − p)k] .

If y = f1, then

T(ηJ , ηJ+1,1) = [
pk+1

(1 − p)k p
] .

_e cases (ηJ , ηJ+1 ,1 ) = (c1 , . . . , ck , g , e1 , . . . , e j , y) for y = c1 or f1 , or

(ηJ , ηJ+1 ,1 ) = ( f1 , . . . , f j , e1 , . . . , e i , f1)

are similar.
_e only cases in which we must consider two consecutive paths, ηJηJ+1 , are

when ηJ = ( f1 , . . . , f j) and either the next letter is c1 or the path continues as
( f1 , . . . , f j , e1 , . . . , e i) with i , j ≥ 1 and the next letter is c1. But in that case, the next
path, ηJ+1 , is one of the paths beginningwith c1 discussed above, andwe already know
that then

∥T(ηJ+1 , ηJ+2,1)∥min ≥ min(pL−1
(1 − p), (1 − p)L−1p) for L = L(ηJ+1).

Combining this bound with the fact that ∥T(ηJ , ηJ+1,1)∥min ≥ min(pL , (1 − p)L) for
L = L(ηJ) completes the proof.

_eorem 4.3 Suppose µ is a Bernoulli convolution with contraction factor ρ the in-
verse of a simple Pisot number andwith probabilities p /= 1− p. _en there is an isolated
point in the set of local dimensions of µ at either 0 or 1, depending on which of p or 1− p
is smaller.

Proof Without loss of generality assume p < 1/2. Standard arguments show that
dimloc µ(0) = log p/ log ρ.
Consider any x ∈ (0, 1). As the set of local dimensions of boundary essential

points is contained in the set of local dimensions of interior essential points, we can
assume without loss of generality that x is an interior essential point. Write [x] =

(γ1 , . . . , γM , η1 , η2 , . . . ) with the notation as in the previous lemma. We have the for-
mula

dimloc µ(x) = lim
J

log ∥T(η1 , η2 , . . . , η2J , η2J+1,1)∥

∑
2J
i=1 L(η i) log ρ

should the local dimension of µ at x exist.
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Set L i = L(η2i−1 , η2i). _en

∥T(η1 , η2 , . . . , η2J , η2J+1,1)∥ ≥
J
∏
i=1

∥T(η2i−1 , η2i , η2i+1,1)∥min

≥ p∑i(L i−1)
(1 − p)J .

Hence,

log ∥T(η1 , η2 , . . . , η2J , η2J+1,1)∥ = (∑
i

L i − J) log p + J log(1 − p),

so that
log ∥T(η1 , η2 , . . . , η2J , η2J+1,1)∥

∑
J
i=1 L i

≥ log p +
J(log(1 − p) − log p)

∑
J
i=1 L i

.

But L i ≤ 2N (where N is as in the lemma), hence for any J,

log ∥T(η1 , η2 , . . . , η2J , η2J+1,1)∥

∑
2J
i=1 L(η i) log ρ

≤
log p
log ρ

+
log(1 − p) − log p

2N log ρ
<

log p
log ρ

= dimloc µ(0),

and therefore dimloc µ(x) is bounded away from dimloc µ(0).

5 Cantor-like Measures of Finite Type

_e focus of this section will be the Cantor-like self-similar sets andmeasures gener-
ated by the IFS

(5.1) {S j(x) =
1
d
x +

j
md

(d − 1) ∶ j = 0, . . . ,m}

for integers d ≥ 2 and probabilities p j > 0, j = 0, . . . ,m. _e self-similar set is the
m-fold sum of the Cantor setwith contraction factor 1/d , rescaled to [0, 1], and is the
full interval when m ≥ d − 1. We will assume this to be the case, for otherwise the IFS
satisûes theopen set condition and iswellunderstood. _is classofmeasures includes,
for example, the m-fold convolution of the uniform Cantor measure associated with
the Cantor set generated by S0(x) = 1

d x, S1(x) = 1
d x +

d−1
d . As K = [0, 1] when

m ≥ d − 1, we see that all of these examples satisfy the positive row property.
_ese measures were studied by diòerent methods in [2, 20] where it was shown,

for example, that {dimloc µ(x) ∶ x ∈ (0, 1)}was a closed interval. In [10, Sect. 7] itwas
shown that the essential class for any of these Cantor-likemeasures is (0, 1), hence all
x ∈ (0, 1) are truly essential. Consequently, the fact that {dimloc µ(x) ∶ x ∈ (0, 1)} is
a closed interval can also be deduced from Corollary 3.15.

In this section we will establish more reûned information about the local dimen-
sions of thesemeasures. In particular,we give a new proof of the fact that dimloc µ(0)
(or dimloc µ(1)) is an isolated point if p0 (resp., pm) is theminimal probability, aswas
shown by other methods in [2, 20]. We give an example to show that there need not
be an isolated point if this is not the case, aswell as examples of Cantor-likemeasures
whose set of local dimensions consists of (precisely) two points.
For this detailed analysis it is helpful to completely determine the ûnite type struc-

ture of thesemeasures. _ere are two cases to consider, m ≡ 0mod(d − 1) and m /= 0
mod(d − 1).
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Proposition 5.1 Assume µ is the self-similar Cantor-likemeasure of ûnite type gener-
ated by the IFS (5.1), with m = k(d − 1) for integer k.
(i) _e essential class has one reduced characteristic vector, E,with normalized length

1/k and neighbour set ( j/k ∶ j = 0, . . . , k − 1). _e reduced characteristic vector E
has d children, identical to itself, labelled as E(i), i = 1, . . . , d.

(ii) _ere are m − k + 2 net intervals at level one with reduced characteristic vector E.
_ese are the intervals [ k−1

kd ,
k
kd ], . . . , [1 −

k
kd , 1 −

k−1
kd ].

(iii) _e primitive transition matrix T(E , E(i)) is given by the following formula: For
x , y = 0, . . . , k − 1,

(T(E , E(i)))x ,y =
⎧⎪⎪
⎨
⎪⎪⎩

pdx−y+i−1 if 0 ≤ dx − y + i − 1 ≤ m,
0 otherwise.

Example 5.2 Consider the IFS as in (5.1)with d = 4 andm = 9, k = 3. _e essential
class consists of the one reduced characteristic vector (1/3, (0, 1/3, 2/3)). _ere are
four transition matrices from E to E. _ey are

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p0 0 0
p4 p3 p2
p8 p7 p6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p1 p0 0
p5 p4 p3
p9 p8 p7

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p2 p1 p0
p6 p5 p4
0 p9 p8

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p3 p2 p1
p7 p6 p5
0 0 p9

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Proof of Proposition 5.1. As noted in the proof of [10, Proposition 7.1],

{Sσ(0) ∶ σ ∈ An
} = {

(d − 1) j
mdn ∶ 0 ≤ j ≤ (dn

− 1)k} ,

{Sσ(1) ∶ σ ∈ An
} = {

(d − 1)( j + k)
mdn ∶ 0 ≤ j ≤ (dn

− 1)k} .

First, consider the level n net intervals that lie in [1/dn , 1− 1/dn]. _ese have the form

∆( j) = [
(d − 1) j
dnm

,
(d − 1)( j + 1)

dnm
] = [

j
dnk

,
j + 1
dnk

]

for j = k, . . . , k(dn − 1) − 1. _ey have normalized length (d − 1)/m = 1/k and
normalized neighbours as claimed in Proposition 5.1(i). _ese net intervals have d
children,

[
(d − 1)(d j + i)

dn+1m
,
(d − 1)(d j + i + 1)

dn+1m
] for i = 0, . . . , d − 1,

all of the same type again.
At level 1, the net intervals have the form [

j−1
dk ,

j
dk ]. If j < k − 1, then there are only

j neighbours, because j − 1− i < 0 if i ≥ j. If j > m, there are < k neighbours, because
( j − 1)/dk is not an iterate of 0. All other net intervals are type E. _is proves (ii).

Now consider the x neighbour of E( j) at level n, for 0 ≤ x ≤ k − 1, namely

Sσx (0) =
(d − 1)( j − x)

dnm
,
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and the y neighbour of its i-th child, E(i), for 0 ≤ y ≤ k − 1,

Sσy(0) =
(d − 1)(d j + i − 1 − y)

dn+1m
.

For any 0 ≤ w ≤ m, it follows that

Sσxw(0) =
(d − 1)(d( j − x) +w)

dn+1m
.

Hence, whenever 0 ≤ dx − y + i − 1 = w ≤ m, we have Sσxw(0) = Sσy(0), and this
proves (iii).

Example 5.3 Suppose m = k(d − 1) is even. _en 1/2 = Sσ(0) for some σ ∈ A and
therefore 1/2 is a le� endpoint of a net interval of level one, and hence is a bound-
ary essential point. _erea�er, 1/2 is the le� endpoint of the le�-most child of the
parent net interval, and thus 1/2 has symbolic representation (E(m/2) , E(1) , E(1) , . . . ).
Similarly, 1/2 is also the right-most endpoint of the right-most child of the net inter-
val immediately to the le� of this net interval. Consequently, 1/2 also has symbolic
representation (E(m/2)−1 , E(d) , E(d) , . . . ).

When k = 2 (m = 2(d − 1)), for example, then T(E(1) , E(1)) = [
p0 0
pd pd−1

] and
T(E(d) , E(d)) = [

pd−1 pd−2
0 pm ], so that we have

dimloc µ(1/2) = ∣log(max(p0 , pd−1 , pm))∣ / log d .

Proposition 5.4 Assume µ is the self-similar Cantor-like measure of ûnite type gen-
erated by the IFS (5.1), with m = k(d − 1) + r, 1 ≤ r ≤ d − 2.
(i) _e essential class consists of two reduced characteristic vectors, E with normalized

length r/m and neighbour set ( j(d − 1)/m ∶ j = 0, . . . , k), and F with normalized
length (d − 1 − r)/m and neighbour set ((r + j(d − 1))/m ∶ j = 0, . . . , k − 1).

(ii) At level one the essential net intervals are alternately E and F, beginning with the
interval [ 1

d −
r

md ,
1
d ] of type E and ending with [1− 1

d , 1− ( 1
d −

r
md )] also of type

E. _ere are m − k + 1 net intervals with characteristic vector E and m − k with
characteristic vector F.

(iii) Type E has 2r + 1 children labelled ( from le� to right) E(1), F(2) , . . . , E(2r+1).
Type F has 2(d − r) − 1 children labelled F(1) , E(2) , . . . , F2(d−r)−1.

(iv) _e non-zero entries of the primitive transition matrices are as follows:
● For i = 0, . . . , r and 0 ≤ x , y ≤ k, (T(E , E(2i+1)))x y = pdx−y+i if 0 ≤ dx − y +

i ≤ m.
● For i = 1, . . . , r and 0 ≤ x ≤ k, 0 ≤ y ≤ k − 1, (T(E , F(2i)))x y = pdx−y+i−1 if
0 ≤ dx − y + i − 1 ≤ m.

● For i = 0, . . . , d − r − 1 and 0 ≤ x , y ≤ k − 1, (T(F , F(2i+1)))x y = pdx+r−y+i if
0 ≤ dx + r − y + i ≤ m.

● For i = 1, . . . , d−r−1 and 0 ≤ x ≤ k−1, 0 ≤ y ≤ k, (T(F , E(2i)))x y = pdx+r−y+i
if 0 ≤ dx + r − y + i ≤ m.
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Proof _e proof is similar to the previous case, but with two characteristic vectors
arising because the iterates of 0 and 1 do not coincide. Indeed,

{Sσ(1) ∶ σ ∈ An
} = {

(d − 1)( j + k) + r
mdn ∶ 0 ≤ j ≤ (dn

− 1)k} .

_e net intervals whose le� endpoint is an iterate of 0 give one characteristic vector
and those whose le� endpoint is an iterate of 1 is the second. We leave the details for
the reader.

Example 5.5 Suppose k = 1, m = d − 1 + r, where 1 ≤ r ≤ d − 2 and m is even.
_ere are an odd number of net intervals at level one, and by symmetry 1/2 lies at the
centre of the middle interval. _is is a net interval of type F, since 2(m − 1) + 1 ≡ 3
mod 4. At all other levels there are an odd number of net intervals, so again 1/2 lies
at the centre of the middle one and again this is a type F , namely F(2i+1) where i =
(d − r − 1)/2, since 2(d − r) − 1 ≡ 1mod 4. As T(F(2i+1) , F(2i+1)) = [pm/2], we have
dimloc µ(1/2) = ∣log pm/2∣ / log d.

In the proof of the next result we will use the pseudo norm ∥T∥min, deûned in the
previous section, and also the norm

∥T∥max =max
j
∑
i
∣Ti j ∣

where the sum is over all the rows of the matrix. _at is, ∥T∥max is the maximal
column sum of T . For matrices with non-negative values it is easy to see that

∥T1T2∥min ≥ ∥T1∥min∥T2∥min , ∥T1T2∥max ≤ ∥T1∥max∥T2∥max ,
∥T∥min ≤ ∥T∥ ≤ C∥T∥max ,

where C is the number of columns of T .

Proposition 5.6 Let Pi = ∑i≡ j mod d p j , Pmax = max(Pi), and Pmin = min(Pi). For
any x ∈ (0, 1), we have

∣ log Pmax∣

log d
≤ dimlocµ(x) ≤ dimlocµ(x) ≤

∣ log Pmin∣

log d
.

Proof From the formulas given in Propositions 5.1 and 5.4, one can see that the
column sums of an essential, primitive transition matrix T are of the form Pi . Hence,
if T is a product of m essential, primitive transition matrices, then

Pm
min ≤ ∥T∥ ≤ CPm

max ,

where C is a bound for the number of columns of a primitive transition matrix.
Since any x ∈ (0, 1) is truly essential and the set of local dimensions of bound-

ary essential points is contained in the set of local dimensions of interior essential
points (Cor. 3.15), we can assume without loss of generality that x is an interior
essential point. Hence, there exists a k so that ∆k(x) is an essential net interval
and a common ancestor for ∆−n(x), ∆n(x) and ∆+n(x) for all n ≥ k. Consequently,
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µ(∆−n(x)), µ(∆n(x)) and µ(∆+n(x)) can all be approximated by the norms of prod-
ucts of n − k primitive transition matrices within the essential class. From this the
result follows.

Corollary 5.7 (i) If p0 < Pmin, then dimloc µ(0) is an isolated point.
(ii) If m ≥ d and p0 < p j for j /= 0,m, then dimloc µ(0) is an isolated point.

Similar statements can bemade for pm and dimloc µ(1).

Proof We have that (i) is immediate, since dimloc µ(0) = ∣ log p0∣/ log d.
For (ii), one can easily check from these formulas that p0 (and pm) are never the

onlynon-zero entries in a columnwhenm ≥ d. Hence the hypothesis of (i) is satisûed.

Remark 5.8 We remark that it is possible for (i) to be satisûed without p0 being
minimal. For instance, if m ≥ 2d, then every column admits at least two non-zero
entries, and hence it would suõce to have p0 < 2p j for all j in order for dimloc µ(0)
to be an isolated point.

On the other hand, it is also possible for such ameasure to have no isolated points.
Here is an example.

Example 5.9 Consider the IFS {S j(x) = x/3 + j/6 ∶ j = 0, . . . , 4} and probabil-
ities p0 = p4 = 1/3, p1 = p2 = p3 = 1/9. _e essential class is composed of one
reduced characteristic vector, with three transition matrices from this vector to itself.
_e transition matrices are

[
1/3 0
1/9 1/9] , [

1/9 1/3
1/3 1/9] , [

1/9 1/9
0 1/3] .

One can check that the secondmatrix has 4/9 as an eigenvalue. Further, all matrices
have maximal column sum equal to 4/9. _is gives an exact lower bound for the set
of local dimensions. One can compute that the local dimension of the essential class,
(0, 1), contains the interval I = [

log(9/4)
log 3 , 1.24] ≈ [0.738, 1.24] and is contained in

[
log(9/4)

log 3 , 2.00]. We can establish the upper bounds by explicitly ûnding a point of
local dimension 1.24 in the ûrst case, and by using the ∥ ⋅ ∥max norm for the second
case. _e local dimension of the self-similar measure at the two end points of the
support is 1 and 1 ∈ I.

Corollary 5.10 If Pmax = Pmin , then {dimloc µ(x) ∶ x ∈ (0, 1)} = {1}.

Proof _is follows from the observation that

d ⋅ Pmin ≤∑ Pi ≤ d ⋅ Pmax and ∑ Pi = 1.

Here is a family of examples of this phenomena, generalizing [10, Ex. 6.1].
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Example 5.11 Suppose µ is the self-similar measure associated with the IFS (5.1)
with m + 1 ≡ 0 mod d and p j = 1/(m + 1) for all j = 0, . . . ,m ≥ d. _en

dimloc µ(x) = 1 for all x ∈ (0, 1),

dimloc µ(0) = dimloc µ(1) =
log(m + 1)

log d
> 1,

so the set of local dimensions is a doubleton.

Proof _e assumption that m + 1 ≡ 0 mod d ensures that each column of each
essential primitive transition matrix T has exactly k non-zero entries, where m + 1 =
kd. Consequently, Pi = k/(m + 1) = 1/d for each i and the result follows from the
previous corollary.

Remark 5.12 _ese measures are also an example of the phenomena addressed
in Proposition 3.19. _e proof above shows there exists a constant C such that
d−n ≤ ∥T∥ ≤ Cd−nfor all n-fold products of primitive transition matrices. As
dimH supp µ = 1, the proposition implies µ restricted to the truly essential class is ab-
solutely continuous with respect to Lebesguemeasure on [0, 1].

Corollary 5.13 Suppose {µn} is a sequence of Cantor-likemeasures, allwith contrac-
tion factor 1/d. Let P(n)max and P(n)min be themaximal andminimal column sums associated
with µn . If P

(n)
max −P(n)min → 0, then the set of local dimensions at any x ∈ (0, 1) tends to 1.

Proof Similar reasoning to the proof of the previous corollary shows that

P(n)min , P
(n)
max Ð→

1
d
.

Example 5.14 Let µ be the self-similar measure associatedwith the IFS (5.1) and let
µk be the k-fold convolution of µ, normalized to [0, 1]. _en

dimloc µk
(x)Ð→ 1 for all x ∈ (0, 1) and dimloc µk

(x)Ð→∞ for x = 0, 1.

To see this, let Q(x) = p0 + p1x + ⋅ ⋅ ⋅ + pnxn . _emeasure µk is also a Cantor-like
measure with contraction factor 1/d. With the contractions ordered in the natural
way, the probability of the jth term, denoted p(k)j , is equal to the coeõcient of x j in
Q(x)k and

P(k)i = ∑
j≡i mod d

p(k)j =
1
d

d

∑
j=1

Q(ζ j
d)

kζ− ji
d ,

where ζd is a primitive d-th root of unity. It is easy to see thatQ(1) = 1 and ∣Q(ζ j
d)∣ < 1

for j /= d. Hence we see that P(k)i → 1/d as k →∞ for all i. _is in turn implies that
P(k)min − P(k)max → 0 and hence dimloc µk(x)→ 1 for each x ∈ (0, 1).

In contrast, dimloc µk(0) = lim ∣ log pk
0 ∣/ log d →∞ and similarly for dimloc µk(1).

Example 5.15 Suppose ν is the uniform Cantor measure associated with the IFS
{S0(x) = x/d, S1(x) = x/d + (d − 1)/d}. _en νm is the measure of ûnite type
generated by the IFS (5.1) andprobabilities p j = 2−m(

m
j ). Informationwas given about
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the minimum and maximum local dimensions (other than at 0,m) in [2, _m. 6.1]
for m ≤ 2d − 1.

We can extend themaximum local dimension result to m < 3(d − 1) when m − d
is odd, as follows. First, note that the column sums of essential primitive transition
matrices have the form

Pj = 2−m
∞
∑

k=−∞
(

m
j + kd

)

and reasoning as in [2, Lem.6.2] shows that these are minimized at j = [m−d
2 ]. We

can assume that m = 2(d − 1) + r for 1 ≤ r ≤ d − 2. Consider the periodic element x0
with period θ = (F(2i+1) , F(2i+1)) for i = (d − r − 1)/2 = (m − d + 1)/2 − r. _en

T(F(2i+1) , F(2i+1)
) = [

p m−d+1
2

p m−d−1
2

p m+d+1
2

p m+d−1
2

] .

_e two column sums are equal and minimal among all column sums of essential
primitive transition matrices. _us, ∥T∥ ∼ ∥T∥min and further, this is a lower bound
on the norm of any essential primitive transition matrix. Hence dimloc µ(x0) is max-
imal over all x ∈ (0, 1).

Since the column sums are maximized when j = [m/2], we deduce from Exam-
ples 5.3 and 5.5 that dimloc νm(1/2) = ∣ log pm/2∣/ log d is minimal when m < 2(d − 1)
is even, as was also seen in [2].

6 Maximal Loop Classes Outside the Essential Class

In [10], it is shown that if µ is a self-similar measure of ûnite type, with full support
and regular probabilities, then the set of upper (or lower) local dimensions at points in
any positivemaximal loop class is an interval. In this section we show that this is not
true for ûnite type measures satisfying only the positive row property. _e example
we use is a self-similarmeasure thatwould be Cantor-like, in the sense of the previous
section, if we had allowed some probabilities to be zero.

_e measure µ will arise from the maps S i(x) = x/4 + d i/12 with d i = i for i =
0, 1, . . . , 5, d6 = 8, and d7 = 9, and probabilities p0 = 1/2, p i = 1/14 for i = 1, . . . , 7.
_e reduced transition diagram has 7 reduced characteristic vectors. _e reduced
characteristic vectors are
● RCV 1: (1, (0)),
● RCV 2: (1/3, (0)),
● RCV 3: (1/3, (0, 1/3)),
● RCV 4: (1/3, (0, 1/3, 2/3)),
● RCV 5: (1/3, (1/3, 2/3)),
● RCV 6: (1/3, (2/3)),
● RCV 7: (2/3, (0, 1/3)).

_emaps are
● RCV 1→ [2, 3, 4, 4, 4, 4, 5, 6, 2, 7, 6],
● RCV 2→ [2, 3, 4, 4],
● RCV 3→ [4, 4, 4, 4],
● RCV 4→ [4, 4, 4, 4],
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Essential Class

1

2

3

4

5

6

7

Figure 3: Transition diagram for example in Section 6

● RCV 5→ [4, 4, 5, 6],
● RCV 6→ [2, 7, 6],
● RCV 7→ [4, 4, 4, 4, 4, 4, 5, 6].

We refer the reader to Figure 3 for the transition diagram.
As the probabilities are not regular, the reduced transition diagram does not con-

tain all of the necessary information to compute the local dimension at a point, since
to calculate dimloc µ(x),we need to know about ∆−n(x), ∆

+
n(x), in addition to ∆n(x).

To keep track of this information, we introduce the triple transition diagram. Each
triple consists of a net interval and its adjacent net intervals. If there is no adjacent net
interval, then we represent this with an X. _e triple transition diagram also displays
the transitions from each triple to their triple children and denotes which transitions
are right or le�-most descendents. See Figure 4 for the triple transition diagram.

We deûne, in the obvious way, the triple loop classes, triple maximal loop classes
and the triple essential class. In this example, the set of points that are in the triple
essential class, [4, 4, 4], is the same as the set of truly essential points. To see this,
observe that if x is an interior essential point, then there exists an integer n such that
x is in the interior of the net interval ∆n(x) whose reduced characteristic vector is of
type 4. As x is not equal to the end point of ∆n(x), there will exist some k such that
∆n+k(x) and its two neighbours will all have reduced characteristic vector of type 4.
Hence, [∆−n+k(x), ∆n+k(x), ∆+n+k(x)] = [4, 4, 4]. If, instead, x is a boundary essential
point, then there exists an n such that two adjacent ∆n(x) and ∆′n(x) are the reduced
characteristic vector of type 4. In this case, regardless ofwhich net interval containing
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Essential Class

[2, 3, 4]

[4, 4, 4]

LR

[2, 7, 6]

L

[4, 4, 5]

[4, 5, 6]

[5, 6, 2]

R

LR

L

R

[6, 2, 7]

L [7, 6, 2]

R

[3, 4, 4]

LR

R

[6, 2, 3]

L

L

R

R

L

[7, 6, X]

L

R

[X, 1, X]

R

[X, 2, 3]

L

R

L

Figure 4: Triple transition diagram for example in Section 6

x we use, we see that ∆n+1(x) and its two adjacent net intervals will be the reduced
characteristic vector of type 4. Hence, [∆−n+1(x), ∆n+1(x), ∆+n+1(x)] = [4, 4, 4]. _e
other inclusion is clear.
From the triple transition diagram, we can see that there are four triple maxi-

mal loop classes, in addition to the triple essential class. _ree of these are single-
tons, [7, 6, X], [X , 2, 3], and [6, 2, 3]. It is very easy to compute the local dimensions
of these points. _e ûnal maximal loop class is formed by the four triples [2, 7, 6],
[4, 5, 6], [5, 6, 2], [7, 6, 2] and is of positive type. See Figure 5 for the triple transition
diagram of this triple maximal loop class. We have indicated on this diagram which
of these transitions are right or le�-most descendents.

Wewill determine the local dimension of points in this (non-singleton) triplemax-
imal loop. It is important to note that this triple loop class admits no le�-most descen-
dents.
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[2, 7, 6]

[4, 5, 6]

[5, 6, 2]

R

R

[7, 6, 2]

R

R

Figure 5: Triple transition diagram for maximal loop class for example in Section 6

First, assume that the symbolic representation of a point x in the loop classdoesnot
contain arbitrarily long, right-most paths, say these lengths are bounded by K. _is
implies that ∆n(x) is in the interior of ∆n−K(x), hence ∆n(x), ∆+n(x), and ∆

−
n(x)

are all comparable to ∆n−K(x) for all n. _us, wemay ignore the ∆+n(x) and ∆
−
n(x),

and this allows us to use the techniques from [10] without modiûcation. (We will not
be able to ignore ∆+n(x) and ∆

−
n(x) later when we allow arbitrarily long right-most

paths.)
In this case, the relevant transition matrices are:

T(5, 5) = T(7, 5) = [
1/14 1/14
1/14 1/14 ] T(5, 6) = T(7, 6) = [

1/14
1/14 ]

T(6, 7) = [ 1/14 1/14 ] T(6, 6) = [ 1/14 ].

For thesematrices, theminimal column sum is 1/14, and themaximal sum is 1/7.
_ese numbers are also the eigenvalues of T(6, 6) and T(5, 5), respectively. As we
are only concerned with ∆n(x) and do not need to worry about ∆+n(x) or ∆−n(x), we
see that the standard convexity argument can be used to show that the set of local
dimensions is an interval. Consequently, such points produce the interval

[
log 7
log 4

,
log 14
log 4

] ≈ [1.403677461, 1.903677461]

as the set of local dimensions.
To consider the the case when x contains arbitrarily long right-most paths, we

now need to consider ∆+n(x) and ∆
−
n(x). We will need to know about the additional

transition matrices

T(2, 2) = [1/2] and T(6, 2) = [1/14]

First, consider an x whose tail consists of the right-most branch of the triples
[7, 6, 2], [7, 6, 2], [7, 6, 2], . . . . We observe in this case that ∆−n(x) is comparable to
∆n(x) as they share the common ancestor ∆n−1(x), so that µ(∆n(x)) and µ(∆−n(x))
are comparable to ∥T(6, 6)n∥ = 1/14n . We further see that ∆+n(x) is not comparable
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to ∆n(x), as it does not share a common ancestor a bounded number of generations
back. In fact, the symbolic representation of ∆+n(x) has tail (2, 2, 2, . . . , 2) and hence
µ(∆+n(x)) is comparable to ∥T(2, 2)n∥ = 1/2n . _is gives us that the local dimension
at x is

dimloc µ(x) = lim
n

logMn(x)
n log 1/4

= lim
n

log(µ(∆−n(x)) + µ(∆n(x)) + µ(∆+n(x))
n log 1/4

= lim
n

log((1/14)n + (1/14)n + (1/2)n)

n log 1/4
= 1/2.

Next, consider the case where x has arbitrarily long, but not inûnitely-long, right-
most paths from [7, 6, 2]→ [7, 6, 2]. We claim that in this case the upper local dimen-
sion must be greater than log 7/ log 4 ∼ 1.403677461. To see this, we note that for all
n where ∆n(x) is not a right-most child of ∆n−1(x) (which happens inûnitely o�en)
the value of µ(Mn(x)) ∼ µ(∆n(x)), as µ(∆n(x)) ∼ µ(∆+n(x)) ∼ µ(∆−n(x)). As on
this subsequence we have that the lim sup must be greater than log 7/ log 4, it follows
that the set of upper local dimensions is not an interval.

_is is in contrast to the lower local dimension, where we can achieve any value
z in the interval [ 1

2 ,
log 14
log 4 ] . We will prove this by constructing an x in this maximal

loop class such that dimlocµ(x) = z.
Let A = T((7, 6, 2), (2, 7, 6)) ⋅ T((2, 7, 6), (5, 6, 2)) ⋅ T((5, 6, 2), (7, 6, 2)) be a

triple of the transition matrices for the path through

(7, 6, 2)→ (2, 7, 6)→R (5, 6, 2)→R (7, 6, 2).

We note here that these transition matrices may work on the middle or the right-
most matrix of the previous transition, depending upon the nature of the transition.
Consider the path with transition matrices

Tk ∶= T((7, 6, 2), (7, 6, 2))
n1
⋅ A ⋅ T((7, 6, 2), (7, 6, 2))

n2

⋅ A ⋅ ⋅ ⋅A ⋅ T((7, 6, 2), (7, 6, 2))
nk .

We let x be the point in K with symbolic path limk Tk . Let Lk be the length of Tk , that
is, Lk = n1 + 2 + n2 + 2 + ⋅ ⋅ ⋅ + 2 + nk . We see that the threematrices associated with
T1 are

([14−n1 14−n1] , [14−n1] , [2−n1]) = ([14−L1 14−L1] , [14−L1] , [2−L1]) .

_e threematrices associated with T2 are

(2 [14−(n1+2 +n2) 14−(n1+2+ n2)] , 2 [14−(n1+2 +n2)] , [2−(n2+1)14−(n1+1)]) =

(2 [14−L2 14−L2] , 2 [14−L2] , [2−(n2+1)14−(L1+1)]) .

In general, for k ≥ 2, we have that the threematrices associated to Tk are

(2k−1 [14−Lk 14−Lk ] , 2k−1 [14−Lk ] , 2k−2 [2−(nk+1)14−(Lk−1+1)])

So, on the subsequence associated with Lk we see that MLk(x) is approximately
2k−22−(nk+1)14−(Lk−1+1). Choosing the nk such that

z = lim
k→∞

log(2k−22−(nk+1)14−(Lk−1+1))

log(4−Lk)
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gives that the local dimension, computing along this subsequence, is equal to z. For
example taking

nk ≈
log 14 − z log 4
(2z − 1) log 2

Lk−1

will suõce. Note: so long as z ∈ ( 1
2 ,

log 14
log 4 ),we see that this is always a positive constant

times Lk−1.
It is straightforward to see that this subsequence of lower local dimension estimates

gives a lower bound for the sequence, which proves the desired result. To see this just
note that if we consider a path for x of length N ∈ (Lk−1 , Lk), then MLk(x))

1/Lk <

MN(x))1/N .
_us, the set of lower local dimensions at points in the loop class is the interval

[ 1
2 ,

log 14
log 4 ] . _is is in contrast to the set of upper local dimensions at points in the

loop class, which is the union of the interval [ log 7
log 4 ,

log 14
log 4 ] togetherwith the singleton

1/2.

7 When Finite Type IFS have Pisot Contractions

In this section we explore the connection between ûnite type and Pisot contraction
factors. _iswasmotivated by Feng’s observation in [6] showing that the IFS {S j(x) =
ρx + j(1 − ρ)/m ∶ j = 0, . . . ,m} satisûes the ûnite type condition if and only if ρ−1 is
Pisot.

In Example 7.1, the IFS is of ûnite type, does not satisfy the open set condition, but
the contraction factor is not necessarily the inverse of a Pisot number. _is example
also illustrates that we can have ameasure of ûnite type whose support is not the full
interval [0, 1], yet every row of each primitive transition matrix admits a non-zero
entry. In addition, it has the interesting property that every element of the self-similar
set is truly essential.

Example 7.1 Pick any positivenumber ε < 1/8. Let 0 < ρ < 1 be a root of ε−2x2+4x−
1 and consider the self-similar set K generated by the contractions S i(x) = ρx + d i ,
with d0 = 0, d1 = −ρ2+ρ, d2 = ε−ρ2+2ρ, and d3 = ε−2ρ2+3ρ. Consider the associated
probability measure with uniform probabilities, p i = 1/4 for i = 0, . . . , 3. _ere are 5
reduced characteristic vectors: (1, (0)), (1 − ρ, (0)), (ρ, (0, 1 − ρ)), (1 − ρ, (ρ)), and
(1− 2ρ, (ρ)). Figure 6 shows the transition diagram. _e essential class consists of all
the characteristic vectors except 1, and there are no loop classes outside of the essential
class. Hence K is the truly essential set. As this satisûes the positive row property, the
set of local dimensions is a closed interval.

We list below the transition matrices that are not equal to [1/4]:

T(1, 3) = T(2, 3) = T(4, 3) = [1/4 1/4] , T(3, 5) = [
1/4
1/4] ,

T(3, 3) = [
1/4 0
1/4 1/4] , T(3, 3) = [

1/4 1/4
0 1/4] .
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Essential Class

1

2

3

4

5

Figure 6: Transition diagram for Example 7.1

Using techniques similar to [10] one can show that theminimal local dimension is

log (sp[ 1/4 1/4
0 1/4 ][

1/4 0
1/4 1/4 ])

2 log ρ
=

log 3+
√
5

32

2 log ρ
,

and themaximal local dimension is

log (sp[ 1/4 1/4
0 1/4 ])

log ρ
=

log 1/4
log ρ

.

_e details are le� to the reader.
_e incidencematrix of the essential class is

I =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 1 1 0
0 2 0 1
1 1 2 0
1 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Its spectral radius is 2+
√

2, thus the formula fromProposition 3.8 gives that dimH K =

log(2 +
√

2)/ ∣log ρ∣.
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In this example the overlapwas “perfect”; that is, all overlapswere of the form ρnK
for some integer n, (ρ the contraction factor, K the self-similar set). But K /= [0, 1].
In our ûnal proposition we show that if the self-similar set is a full interval and the
overlaps are perfect, in this sense, then ρ is Pisot.

Proposition 7.2 Suppose [0, 1] is the self-similar set associated with contractions
S j , each with contraction factor ρ. Assume that, for each j, the length of the interval
S j([0, 1])∩ S j+1([0, 1])) is either equal to ρk j for some integer k j or has length equal to
0. _en ρ is Pisot.

Proof Assume that we have n contractions. As the self-similar set is [0, 1], we have
that

nρ −
n−1

∑
i=1

ρk i = 1.

Let N = max(k j) and q = ρ−1 . Let f (z) = zN − nzN−1 and g(z) = ∑ j zN−k j . _en
( f + g)(q) = 0. Clearly, f (n) = 0 and all other zeros of f are inside the unit disc
(namely, at 0). Further, on the unit disc, ∣ f (z)∣ ≥ n − 1 ≥ ∣g(z)∣. By Rouche’s theorem,
f + g has n − 1 zeros in the closure of the unit disk and therefore its other root, q, is a
Pisot number.

Remark 7.3 It would be interesting to fully understand the connection between
ûnite type and a Pisot contraction factor. Note that if dimH K = 1, then as dimH K =

log(sp(I))/∣ log ρ∣, and the incidence matrix I is integer valued, it follows that ρ−1 is
an algebraic integer.
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