Constructing Compacta of Different Extensional Dimensions

Michael Levin

Abstract. Applying the Sullivan conjecture we construct compacta of certain cohomological and extensional dimensions.

1 Introduction

We say that e-dim $X \leq K$ (the extensional dimension of X does not exceed K) if any map of any closed subset of X into K can be extended over X. Thus for the covering dimension $\operatorname{dim} X \leq n$ if and only if e-dim $X \leq \mathbb{S}^{n}$ and for the cohomological dimension with a coefficient group $G, \operatorname{dim}_{G} X \leq n$ if and only if e-dim $X \leq K(G, n)$, where $K(G, n)$ is the Eilenberg-MacLane complex.

We adopt notations of a truncated cohomology. The (reduced) truncated cohomology $T^{k}(X), k \leq 0$ of X (with coefficients in a spectrum) generated by a space L is the set of pointed homotopy classes $\left[X, \Omega^{-k} L\right]\left(=\left[\Sigma^{-k} X, L\right]\right)$ of maps from X to $\Omega^{-k} L$. We write $T^{k}(X)=0$ if $T^{k}(X)$ contains only the null-homotopic map for any base point in L.
T^{k} is said to be continuous if for every countable CW-complex K and every essential map $f: K \rightarrow \Omega^{-k} L$ there exists a finite subcomplex B of K such that $\left.f\right|_{B}$ is essential. Let us say that T^{k} is strongly continuous if for every countable CW-complex K and every map $f: A \rightarrow \Omega^{-k} L$ of a subcomplex A of K which cannot be extended over K there exists a finite subcomplex B of K such that $\left.f\right|_{A \cap B}$ cannot be extended over B.

The strong continuity implies the continuity. Indeed, let T^{k} be strongly continuous and let $f: K \rightarrow \Omega^{-k} L$ be essential. Then f cannot be extended over cone K. Hence there exists a finite subcomplex B of K such that $\left.f\right|_{B}$ cannot be extended over cone B and therefore $\left.f\right|_{B}$ is essential.

The finiteness of the homotopy groups of L implies the finiteness of the homotopy groups of $\Omega^{-k} L$ for every $k \leq 0$ and hence by Proposition 2.1 it also implies the strong continuity (and hence the continuity) of T^{k}.

Dranishnikov [1] proved
Theorem 1.1 Let P and K be countable simplicial complexes. If T^{-2} is continuous, $T^{-2}(P) \neq 0$ and $T^{k}(K)=0$ for all $k<-2$ then there exists a compactum X with e-dim $X \leq K$ such that X admits an essential map to P.

[^0]In this note we generalize Dranishnikov's result in two directions:

Theorem 1.2 Let K and P be countable simplicial complexes and let T^{*} be a truncated cohomology generated by L.
(a) If T^{0} is continuous, $T^{0}(P) \neq 0$ and $T^{k}(K)=0$ for all $k<0$ then there exists a compactum X with $\mathrm{e}-\operatorname{dim} X \leq K$ such that X admits an essential map to P.
(b) If T^{0} is strongly continuous, $T^{0}(P) \neq 0$ and $T^{k}(K)=0$ for all $k \leq 0$ then there exists a compactum X such that $P<\mathrm{e}-\operatorname{dim} X \leq K$.
(a) is a direct generalization of Theorem 1.1, (b) covers additional areas of applications some of which are considered below. The important point of (b) is that the condition e- $\operatorname{dim} X>P$ is stronger than the existence of an essential map to P. Note that the starting point at T^{-2} in Theorem 1.1 is imposed by a use of the MayerVietoris sequence. The approach of this note does not rely on the Mayer-Vietoris sequence.

Let us show how (b) leads to constructing infinite dimensional compacta of $\operatorname{dim}_{\mathbb{Z}}=2$. Let $K=K(\mathbb{O}, 1) \vee\left(\bigvee\left\{K\left(\mathbb{Z}_{p}, 1\right): p\right.\right.$ prime $\left.\}\right), P=\mathbb{S}^{2}$ and $L=M\left(\mathbb{Z}_{2}, 2\right)$ $\left(=\right.$ Moore space of type $\left.\left(\mathbb{Z}_{2}, 2\right)\right)$. Then $T^{0}(P)=\pi_{2}\left(M\left(\mathbb{Z}_{2}, 2\right)\right)=\mathbb{Z}_{2} \neq 0$. Note that by the generalized Hurewicz isomorphism theorem the homotopy groups of $M\left(\mathbb{Z}_{2}, 2\right)$ are finite and hence T^{k} is strongly continuous for every $k \leq 0$. In order to apply Theorem $1.2(\mathrm{~b})$ we have to check that $T^{k}(K(\mathbb{O}, 1))=T^{k}\left(K\left(\mathbb{Z}_{p}, 1\right)\right)=0$. For $K(\mathbb{O}, 1)$ it can be done directly.

Recall that a model for $K(\mathbb{O}), 1)$ is the infinite telescope of $\mathbb{S}^{1} \rightarrow \mathbb{S}^{1} \rightarrow \cdots$ where the i-th bonding map is of degree i !. Let K_{i} be the mapping telescope of the first i maps. Then K_{i} is homotopy equivalent to \mathbb{S}^{1} and $K(\mathbb{O}, 1)=\bigcup K_{i}$. Note that (\mathbb{O}) admits only the trivial homomorphism to a finite group. Let $f: K(\mathbb{O}, 1) \rightarrow$ $\Omega^{-k} M\left(\mathbb{Z}_{2}, 2\right)$. Then $\left.f\right|_{K_{i}}$ is null-homotopic for every i. Since T^{k} is continuous, f is null-homotopic. Thus $T^{k}(K(\mathbb{O}, 1))=0$.

In the case of $K\left(\mathbb{Z}_{p}, 1\right)$ we fortunately have the following powerful theorem of Miller [4]. The importance of Miller's theorem for cohomological dimension was realized by Dydak and Walsh [3], see also [1].

Theorem 1.3 (Miller's theorem (The Sullivan conjecture) [4]) Let K be a connected CW-complex such that $\pi_{i}(K)$ is locally finite and such that $\pi_{i}(K)$ is non-zero for only finitely many i. Let L be a connected finite dimensional CW-complex. Then the space of pointed maps from K to L has the weak homotopy type of a point or, equivalently, $\left[\Sigma^{n} K, L\right]=\left[K, \Omega^{n} L\right]=0$ for all $n \geq 0$.

By Miller's theorem $T^{k}\left(K\left(\mathbb{Z}_{p}, 1\right)\right)=\left[K\left(\mathbb{Z}_{p}, 1\right), \Omega^{-k} M\left(\mathbb{Z}_{2}, 2\right)\right]=0$ and we have verified that $T^{k}(K)=0$ for every $k \leq 0$. Then by Theorem $1.2(\mathrm{~b})$ there exists a compactum X of $\operatorname{dim} \geq 3, \operatorname{dim}_{\mathbb{Q}} X \leq 1$ and $\operatorname{dim}_{\mathbb{Z}_{p}} X \leq 1$ for p prime. By the Bockstein theorems $\operatorname{dim}_{\mathbb{Z}} X \leq 2$. Therefore $\operatorname{dim}_{\mathbb{Z}} X=2$ and $\operatorname{dim} X=\infty$. Since (\mathbb{O}_{2} and \mathbb{Z}_{p} are fields, $\operatorname{dim}_{\mathbb{Q}}(X \times X) \leq 2$ and $\operatorname{dim}_{\mathbb{Z}_{p}}(X \times X) \leq 2$ for p prime. Hence $\operatorname{dim}_{\mathbb{Z}}(X \times X) \leq 3$. Thus we have obtained the Dydak-Walsh example [3], see also [1].

Another application concerns the following question related to the mapping intersection problem [2] which is still open in the case of codim $=2$. Does $\operatorname{dim}_{\mathbb{Z}_{2}} X \leq 1$ imply e-dim $X \leq \mathbb{R} \mathrm{P}^{2}$ for a finite dimensional compactum X ?

Let $\mathbb{S}^{1} \subset \mathbb{R} \mathrm{P}^{2}$ generate $\pi_{1}\left(\mathbb{R} \mathrm{P}^{2}\right)=\mathbb{Z}_{2}$. Since $\pi_{1}\left(\Omega M\left(\mathbb{Z}_{2}, 2\right)\right)=\pi_{2}\left(M\left(\mathbb{Z}_{2}, 2\right)\right)=$ \mathbb{Z}_{2} there is an essential map from \mathbb{S}^{1} to $\Omega M\left(\mathbb{Z}_{2}, 2\right)$ which extends over $\mathbb{R} P^{2}$ and hence $\mathbb{R} \mathrm{P}^{2}$ admits an essential map to $\Omega M\left(\mathbb{Z}_{2}, 2\right)$. Theorem 1.2 (b) applied to $K=K\left(\mathbb{Z}_{2}, 1\right)$, $P=\mathbb{R P}^{2}$ and $L=\Omega M\left(\mathbb{Z}_{2}, 2\right)$ produces a compactum X with $\operatorname{dim}_{\mathbb{Z}_{2}} \leq 1$ and e-dim $>$ $\mathbb{R} P^{2}$. Thus without the finite dimensional restriction on X the answer to the question is "No".

2 Proofs

Proposition 2.1 Let K be a countable CW-complex, let A be a subcomplex of K and let L be such that $\pi_{n}\left(L, l_{0}\right)$ is finite for all $n \geq 0$ and $l_{0} \in L$. If a map $f: A \rightarrow L$ cannot be extended over K then there exists a finite subcomplex B of K such that $\left.f\right|_{A \cap B}: A \cap B \rightarrow K$ cannot be extended over B.

Proof Represent K as the union $K=\bigcup K_{i}$ of an increasing sequence of finite subcomplexes K_{i} such that $K_{0}=\varnothing$ and K_{i+1} is obtained from K_{i} by adjoining only one cell, and assume that f extends over $A_{i}=A \cup K_{i}$ for every i.

Denote by $\left[A_{i}, L\right]_{f}$ the homotopy classes of all possible extensions of f over A_{i} with respect to a homotopy relative to A. Let $p_{i+1}:\left[A_{i+1}, L\right]_{f} \rightarrow\left[A_{i}, L\right]_{f}$ be the correspondence defined by the restriction $\left.g \rightarrow g\right|_{A_{i}}$.

We will show by induction that $\left[A_{i}, L\right]_{f}$ is finite for every i. Since $A_{0}=A,\left[A_{0}, L\right]_{f}$ contains only one element. Assume that $\left[A_{i}, L\right]_{f}$ is finite and $A_{i+1} \neq A_{i}$. Then $A_{i+1}=A_{i} \cup C$ is obtained from A_{i} by adjoining an n-dimensional cell C defined by a characteristic map $h:(B, \partial B) \rightarrow(C, \partial C)$ from an n-dimensional ball B.

Let $g: A_{i} \rightarrow L$ be such that $\left.g\right|_{A}=f$ and assume that $g_{1}, g_{2}, \ldots: C \rightarrow L$ is an infinite sequence of maps such that $\left.g_{j}\right|_{\partial C}=\left.g\right|_{\partial C}$. Let $\mathbb{S}^{n}=B_{1} \cup B_{2}, B_{1} \cap B_{2}=\partial B_{1}=\partial B_{2}$ $\left(=\mathbb{S}^{n-1}\right)$ be a decomposition of an n-dimensional sphere \mathbb{S}^{n} into two n-dimensional balls B_{1} and B_{2}, and let $h_{1}: B_{1} \rightarrow B, h_{2}: B_{2} \rightarrow B$ be homeomorphisms such that $\left.h_{1}\right|_{\partial B_{1}}=\left.h_{2}\right|_{\partial B_{2}}$. For each pair of maps $g_{j_{1}}$ and $g_{i_{2}}$ define the map $\alpha\left(j_{1}, j_{2}\right): \mathbb{S}^{n} \rightarrow L$ by $\alpha\left(j_{1}, j_{2}\right)(x)=g_{j_{1}}\left(h\left(h_{1}(x)\right)\right)$ for $x \in B_{1}$ and $\alpha\left(j_{1}, j_{2}\right)(x)=g_{j_{2}}\left(h\left(h_{2}(x)\right)\right)$ for $x \in B_{2}$. Since the homotopy groups of L are finite there exist $1<j_{1}<j_{2}$ such that the maps $\alpha\left(1, j_{1}\right)$ and $\alpha\left(1, j_{2}\right)$ are homotopic. Then $\alpha\left(j_{1}, j_{2}\right)$ is null-homotopic and hence $g_{j_{1}} \cong g_{j_{2}}$ rel ∂C. Thus g admits only finitely many extensions over A_{i+1} representing different elements of $\left[A_{i+1}, L\right]_{f}$ and therefore $\left[A_{i+1}, L\right]_{f}$ is finite.

Since $\left[A_{i}, L\right]_{f}$ is finite for every $i, \lim _{\leftarrow}\left(\left[A_{i}, L\right]_{f}, p_{i}\right) \neq \varnothing$. Then any element of $\lim _{\leftarrow}\left(\left[A_{i}, L\right]_{f}, p_{i}\right)$ defines an extension of f over K. This contradiction shows that there exists A_{i} such that f does not extend over A_{i}. Set $B=K_{i}$ and we are done.

Proposition 2.2 Assume that for a countable simplicial complex K_{1} and a space K_{2}, $\left[\Sigma^{n} K_{1}, K_{2}\right]=0$ for all $n \geq 0$. Let A be a finite simplicial complex and let $f_{1}: A_{1} \rightarrow K_{1}$ be $f_{2}: A_{2} \rightarrow K_{2}$ be maps of a closed subset A_{1} of A and a subcomplex A_{2} of A such that f_{2} cannot be extended over A. Then there exist a countable simplicial complex B and a
map $p: B \rightarrow A$ such that for $B_{1}=p^{-1}\left(A_{1}\right)$ and $B_{2}=p^{-1}\left(A_{2}\right), B_{2}$ is a subcomplex of B, the map $g_{1}=f_{1} \circ\left(\left.p\right|_{B_{1}}\right): B_{1} \rightarrow K_{1}$ can be extended over B while the map $g_{2}=f_{2} \circ\left(\left.p\right|_{B_{2}}\right): B_{2} \rightarrow K_{2}$ cannot be extended over B.

Proof Taking a small triangulation of A we may assume that A_{1} is a subcomplex of A and f_{1} is a simplicial map. We may also assume that A_{1} contains the 0 -skeleton of A. For each simplex $\sigma \subset A$ we are going to construct a CW-complex B_{σ} such that $B_{\sigma^{\prime}}$ is a subcomplex of B_{σ} if $\sigma^{\prime} \subset \sigma$. We will also construct maps f_{σ} : $B_{\sigma} \rightarrow K_{1}$ and $p_{\sigma}: B_{\sigma} \rightarrow \sigma \subset A$ such $\left.f_{\sigma}\right|_{B_{\sigma^{\prime}}}=f_{\sigma^{\prime}}$ and $\left.p_{\sigma}\right|_{B_{\sigma^{\prime}}}=p_{\sigma^{\prime}}$ for $\sigma^{\prime} \subset \sigma$. Define $B^{i}=\bigcup\left\{B_{\sigma}: \operatorname{dim} \sigma \leq i\right\}$ with the topology induced by B_{σ} 's and let $f^{i}: B^{i} \rightarrow K_{1}$ and $p^{i}: B^{i} \rightarrow A$ be the maps induced by f_{σ} 's and p_{σ} 's respectively. By ∂B_{σ} we mean $\partial B_{\sigma}=\bigcup\left\{B_{\sigma^{\prime}}: \operatorname{dim} \sigma^{\prime}=\operatorname{dim} \sigma-1\right.$ and $\left.\sigma^{\prime} \subset \sigma\right\} \subset B^{\operatorname{dim} \sigma-1}$.

For a 0 -simplex σ define $B_{\sigma}=\sigma, f_{\sigma}\left(B_{\sigma}\right)=f_{1}(\sigma)$ and $p_{\sigma}\left(B_{\sigma}\right)=\sigma$. Assume that for each $\sigma \subset A$ of $\operatorname{dim} \leq i, B_{\sigma}, f_{\sigma}$ and p_{σ} have been constructed and take $\sigma \subset A$ of $\operatorname{dim}=i+1$. Define B_{σ} as the mapping cylinder of $\left.f^{i}\right|_{\partial B_{\sigma}}$. We will refer to ∂B_{σ} and K_{1} as the 0 and 1 levels of B_{σ} respectively. Define p_{σ} as the map sending the 1level of B_{σ} to the barycenter b_{σ} of σ and linearly extending $\left.p^{i}\right|_{\partial B_{\sigma}}$ along the intervals connecting the 0 -level points with the corresponding points of the 1-level. If $\sigma \subset A_{1}$ set $f_{\sigma}=f_{1} \circ p_{\sigma}$. If σ is not contained in A_{1} define f_{σ} as the natural extension of $\left.f^{i}\right|_{\partial B_{\sigma}}$ which is constant on each interval connecting a 0 -level point with the corresponding point of the 1-level and the identity on the 1-level.

Set $B=B^{k}, p=p^{k}$ where $k=\operatorname{dim} A$ and let us show that the required properties are satisfied. From the construction it follows that f^{k} is an extension of g_{1} and there exists a countable triangulation of B for which B_{2} is a subcomplex of B. Aiming at a contradiction assume that there exists an extension $g: B \rightarrow K_{2}$ of g_{2}. Denote by A^{0} the quotient space of B obtained by identifying $p^{-1}(x)$ with a singleton for every $x \in A_{2}$, i.e., we identify the points of $p^{-1}\left(A_{2}\right)$ with A_{2} according to the map p. Note that since there is a finite subcomplex of B mapped by p onto A we indeed obtain from $p^{-1}\left(A_{2}\right)$ a space homeomorphic to A_{2}. Then A^{0} is a CW-complex, A_{2} can be considered as a subspace of A^{0}, and g and p factor through the maps $\psi^{0}: A^{0} \rightarrow K_{2}$ and $h^{0}: A^{0} \rightarrow A$. Note that $\left.\psi^{0}\right|_{A_{2}}=f_{2}$.

We are going to construct CW-complexes A^{1}, \ldots, A^{k} and maps $h^{i}: A^{i} \rightarrow A$, $h_{i+1}^{i}: A^{i} \rightarrow A^{i+1}$ and $\psi^{i}: A^{i} \rightarrow K_{2}$ such that each A^{i} contains A_{2} as a subspace, $h_{i+1}^{i}\left(A_{2}\right)=A_{2}, h^{i}\left(A_{2}\right)=A_{2}$ and $\left.h_{i+1}^{i}\right|_{A_{2}},\left.h^{i}\right|_{A_{2}}$ are the identity maps, $h^{i}=h^{i+1} \circ h_{i+1}^{i}$ and, finally, $\psi^{i+1} \circ h_{i+1}^{i}$ is homotopic to ψ^{i}. The construction below will imply that $h^{k}: A^{k} \rightarrow A$ is a homeomorphism and this proves the proposition because for $\psi^{k}: A^{k} \rightarrow K_{2}$ we have that $\left.\psi^{k}\right|_{A_{2}}$ is homotopic to f_{2}.

By a barycentric simplex $\beta=\beta\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}\right)$ we mean the simplex spanned by the barycenters $b_{\sigma_{0}}, \ldots, b_{\sigma_{n}}$ of an increasing sequence $\sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{n}$ of distinct simplexes in A with $\operatorname{dim} \sigma_{0}>0$. Note that $p^{-1}(x)$ is a singleton if x belongs to no barycentric simplex. We will define A^{i+1} as the quotient space of A^{0} obtained by identifying the points of $\left(h^{0}\right)^{-1}(\beta)$ with β according to the map h^{0} for each barycentric simplex β of $\operatorname{dim} \leq i$. Then h^{0} naturally factors through $h^{i+1}: A^{i+1} \rightarrow A$ and define h_{i+1}^{i} such that $h^{i}=h^{i+1} \circ h_{i+1}^{i}$.

Note that for a 0 -dimensional barycentric simplex $\beta, X_{\beta}=p^{-1}(\beta)$ is homeomorphic to K_{1}. For an n-dimensional barycentric simplex $\beta=\beta\left(\sigma_{0}, \ldots, \sigma_{n}\right)$,
$n>0$, denote by X_{β} the space obtained from $p^{-1}(\beta)$ after identifying the points of $p^{-1}(\partial \beta)$ with $\partial \beta$ by the map p (where $\partial \beta=\bigcup\left\{\beta\left(\sigma_{0}, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{n}\right)\right.$: $i=0, \ldots, n\})$. Let us show by induction that X_{β} is homotopy equivalent to $\Sigma^{n} K_{1}$. Indeed, from the construction of B it follows that X_{β} is a CW-complex which can be obtained from $X_{\beta\left(\sigma_{0}, \ldots, \sigma_{n-1}\right)} \times[0,1]$ by identifying the points of $X_{\beta\left(\sigma_{0}, \ldots, \sigma_{n-1}\right)} \times\{0\}$ with $\beta\left(\sigma_{0}, \ldots, \sigma_{n-1}\right)$ and the points of $X_{\beta\left(\sigma_{0}, \ldots, \sigma_{n-1}\right)} \times\{1\}$ with a singleton. By the induction assumption $X_{\beta\left(\sigma_{0}, \ldots, \sigma_{n-1}\right)}$ is homotopy equivalent to $\Sigma^{n-1} K_{1}$ and hence X_{β} is homotopy equivalent to $\Sigma^{n} K_{1}$.

Let β be an i-dimensional barycentric simplex which is not contained in A_{2}. It is easy to see that $\left(h^{i}\right)^{-1}(\beta)$ is homeomorphic to X_{β} and for $x \in A^{i+1}$ such that $h^{i+1}(x)$ belongs to no barycentric simplex of $\operatorname{dim}=i,\left(h_{i+1}^{i}\right)^{-1}(x)$ is a singleton. Since $\left[\left(h^{i}\right)^{-1}(\beta), K_{2}\right]=\left[X_{\beta}, K_{2}\right]=\left[\Sigma^{i} K_{1}, K_{2}\right]=0$ and $\left(h^{i}\right)^{-1}(\beta)$ is a subcomplex of A^{i}, ψ^{i} is homotopic to a map which is constant on $\left(h^{i}\right)^{-1}(\beta)$ and hence which admits a factorization through $\psi_{\beta}^{i}: A_{\beta}^{i} \rightarrow K_{1}$ where the CW-complex A_{β}^{i} is obtained from A^{i} by identifying $\left(h^{i}\right)^{-1}(\beta)$ with β by h^{i}. Clearly h^{i} factors through $h_{\beta}^{i}: A_{\beta}^{i} \rightarrow A$ and h_{β}^{i} factors through $\left(h_{i+1}^{i}\right)_{\beta}: A_{\beta}^{i} \rightarrow A^{i+1}$. The same procedure can be carried out for another i-dimensional barycentric complex not lying in A_{2} but this time with respect to $A_{\beta}^{i}, \psi_{\beta}^{i}, h_{\beta}^{i}$ and $\left(h_{i+1}^{i}\right)_{\beta}$ instead of A^{i}, ψ^{i}, h^{i} and h_{i+1}^{i} respectively. Thus passing through all the i-dimensional barycentric simplexes not lying in A_{2} we will end up with $\psi^{i+1}: A^{i+1} \rightarrow K_{1}, h^{i+1}: A^{i+1} \rightarrow A$ and $h_{i+1}^{i}: A^{i} \rightarrow A^{i+1}$ having the required properties. Clearly $A^{k}=A$ and the proposition follows.

Proof of Theorem 1.2 (b) Let $f: P \rightarrow L$ be an essential map. Since T^{0} is strongly continuous there exists a finite simplicial complex $N_{0} \subset P$ such that the map $f_{0}=$ $\left.f\right|_{N_{0}}: N_{0} \rightarrow L$ is essential and hence f_{0} cannot be extended over $M_{0}=$ cone N_{0}.

Assume that we have constructed for $i=0,1, \ldots, n$ finite simplicial pairs $\left(M_{i}, N_{i}\right)$ and maps $p_{i}^{i+1}:\left(M_{i+1}, N_{i+1}\right) \rightarrow\left(M_{i}, N_{i}\right)$ such that $f_{i}=f_{0} \circ\left(\left.p_{0}^{i}\right|_{N_{i}}\right): N_{i} \rightarrow L$ does not extend over M_{i} where $p_{j}^{i}=p_{j}^{j+1} \circ p_{j+1}^{j+2} \circ \cdots \circ p_{i-1}^{i}:\left(M_{i}, N_{i}\right) \rightarrow\left(M_{j}, N_{j}\right)$ for $i>j$ and p_{i}^{i} is the identity.

Construct $\left(M_{n+1}, N_{n+1}\right)$ and p_{n}^{n+1} as follows. Take a map $\psi: C \rightarrow K$ of a closed subset C of M_{i} for some $0 \leq i \leq n$. Define $\psi_{n}=\psi \circ\left(\left.p_{i}^{n}\right|_{C_{n}}\right): C_{n}=\left(p_{i}^{n}\right)^{-1}(C) \rightarrow K$. By Proposition 2.2 there exist a countable simplicial complex M_{n+1}, a subcomplex N_{n+1} of M_{n+1} and a map $p_{n}^{n+1}:\left(M_{n+1}, N_{n+1}\right) \rightarrow\left(M_{n}, N_{n}\right)$ such that f_{n+1} cannot be extended over M_{n+1} and $\psi_{n+1}=\psi_{n} \circ\left(\left.p_{n}^{n+1}\right|_{C_{n+1}}\right): C_{n+1}=\left(p_{n}^{n+1}\right)^{-1}\left(C_{n}\right) \rightarrow K$ admits an extension over M_{n+1}. By the strong continuity of T^{0} we may assume that $\left(M_{n+1}, N_{n+1}\right)$ is a pair of finite simplicial complexes.

Since for each M_{i} we need to solve only countably many extension problems the map ψ on each step of the construction can be chosen such that $X=\lim _{\leftarrow}\left(M_{i}, p_{i-1}^{i}\right)$ will be of e-dim $\leq K$. Let $p: X \rightarrow M_{0}$ be the projection and let $X^{\prime}=p^{\overleftarrow{-1}}\left(N_{0}\right)$. Then $\left.p\right|_{X^{\prime}}: X^{\prime} \rightarrow N_{0} \subset P$ cannot be extended over X as a map to P since otherwise for a sufficiently large $i,\left.p_{0}^{i}\right|_{N_{i}}$ would extend over M_{i} as a map to P and this would imply that f_{i} also extends over M_{i}. Hence e- $\operatorname{dim} X>P$ and the theorem follows.

Proposition 2.3 Assume that for a countable simplicial complex K_{1} and a space K_{2}, $\left[\Sigma^{n} K_{1}, K_{2}\right]=0$ for all $n \geq 1$. Let A be a finite simplicial complex, let $f_{1}: A_{1} \rightarrow K_{1}$ be a
map of a closed subset A_{1} of A and let $f_{2}: A \rightarrow K_{2}$ be an essential map. Then there exists a countable simplicial complex B and a map $p: B \rightarrow A$ such that for $B_{1}=p^{-1}\left(A_{1}\right)$ the map $g_{1}=f_{1} \circ\left(\left.p\right|_{B_{1}}\right): B_{1} \rightarrow K_{1}$ can be extended over B and the map $g_{2}=f_{2} \circ p: B \rightarrow$ K_{2} is essential.

Proof Note that if we assume that $\left[\Sigma^{n} K_{1}, K_{2}\right]=0$ for all $n \geq 0$, then Proposition 2.3 would follow from Proposition 2.2 by embedding A into cone A. In order to avoid the use of $\left[K_{1}, K_{2}\right]=0$ for proving Proposition 2.3 we need to make the following adjustments in the proof of Proposition 2.2.

Let B be constructed as in the proof of Proposition 2.2. Starting from the construction of A^{0} replace A, B and p by $A^{\prime}=$ cone $A, B^{\prime}=\operatorname{cone} B, p^{\prime}=\operatorname{cone}(p): B^{\prime} \rightarrow A^{\prime}$ and consider A_{2} as A embedded in $A^{\prime}=$ cone A and f_{2} as a map of A_{2}.

In the part of the proof of Proposition 2.2 where A^{1}, A^{2}, \ldots are constructed replace $\sigma, \partial \sigma, \beta$ by $\sigma^{\prime}=\operatorname{cone}(\sigma), \partial^{\prime} \sigma=\operatorname{cone}(\partial \sigma), \beta^{\prime}\left(\sigma_{0}, \ldots, \sigma_{n}\right)=$ cone $\left(\beta\left(\sigma_{0}, \ldots, \sigma_{n}\right)\right)$ respectively. Then for $\beta^{\prime}=\beta^{\prime}\left(\sigma_{0}, \ldots, \sigma_{n}\right), X_{\beta^{\prime}}$ will be homotopy equivalent to $\Sigma^{n+1} K_{1}$. Thus we show that if [$\Sigma^{n+1} K_{1}, K_{2}$] $=0$ for $n \geq 0$ then g_{2} cannot be extended over $A^{\prime}=$ cone A and hence g_{2} is essential.

Proof of Theorem 1.2 (a) Let $f: P \rightarrow L$ be an essential map. By the continuity of T^{0} there exists a finite simplicial complex $M_{0} \subset P$ such that the map $f_{0}=\left.f\right|_{M_{0}}: M_{0} \rightarrow L$ is essential.

Assume that we have constructed for $i=0,1, \ldots, n$ finite simplicial complexes M_{i} and maps $p_{i}^{i+1}: M_{i+1} \rightarrow M_{i}$, such that $f_{i}=f_{0} \circ p_{0}^{i}: M_{i} \rightarrow L$ is essential where $p_{j}^{i}=p_{j}^{j+1} \circ p_{j+1}^{j+2} \circ \cdots \circ p_{i-1}^{i}: M_{i} \rightarrow M_{j}$ for $i>j$ and p_{i}^{i} is the identity.

Construct M_{n+1} and p_{n}^{n+1} as follows. Take a map $\psi: C \rightarrow K$ of a closed subset C of M_{i} for some $0 \leq i \leq n$. Define $\psi_{n}=\psi \circ\left(\left.p_{i}^{n}\right|_{C_{n}}\right): C_{n}=\left(p_{i}^{n}\right)^{-1}(C) \rightarrow$ K. By Proposition 2.3 there exist a countable simplicial complex M_{n+1} and a map $p_{n}^{n+1}: M_{n+1} \rightarrow M_{n}$ such that f_{n+1} is essential and $\psi_{n+1}=\psi_{n} \circ\left(\left.p_{n}^{n+1}\right|_{C_{n+1}}\right): C_{n+1}=$ $\left(p_{n}^{n+1}\right)^{-1}\left(C_{n}\right) \rightarrow K$ admits an extension over M_{n+1}. By the continuity of T^{0} we may assume that M_{n+1} is a finite simplicial complex.

Since for each M_{i} we need to solve only countably many extension problems the map ψ on each step of the construction can be chosen such that $X=\lim _{\leftarrow}\left(M_{i}, p_{i-1}^{i}\right)$ will be of e-dim $\leq K$. Let $p: X \rightarrow M_{0} \subset P$ be the projection. p is essential as map to P since otherwise for a sufficiently large i, p_{0}^{i} would be null-homotopic as a map to P and this would imply that f_{i} is also null-homotopic. The theorem is proved.

Remark Note that in the proof of Theorem 1.3 (a) the map $f_{X}=f_{0} \circ p: X \rightarrow L$ is essential if L is a CW-complex. Also note that with no restriction on L, f_{X} may fail to be essential.

References

[^1][3] J. Dydak and J. John Walsh, Infinite-dimensional compacta having cohomological dimension two: an application of the Sullivan conjecture. Topology (1) 32(1993), 93-104.
[4] H. Miller, The Sullivan conjecture on maps from classifying spaces. Ann. of Math. (2) 120(1984), 39-87.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305
Japan
email: mlevin@math.tsukuba.ac.jp

[^0]: Received by the editors February 18, 1999; revised June 17, 1999.
 The author was supported by a JSPS postdoctoral fellowship for foreign researchers.
 AMS subject classification: $55 \mathrm{M} 10,54 \mathrm{~F} 45,55 \mathrm{U} 20$.
 Keywords: cohomological dimension, Eilenberg-MacLane complexes, Sullivan conjecture.
 (C)Canadian Mathematical Society 2001.

[^1]: [1] A. Dranishnikov, Basic elements of the cohomological dimension theory of compact metric spaces. Topology Atlas.
 [2] On the mapping intersection problem. Pacific J. Math. (2) 173(1996), 403-412.

