
JFP 31, e6, 55 pages, 2021. c© The Author(s), 2021. Published by Cambridge University Press 1
doi:10.1017/S0956796821000022

Linear capabilities for fully abstract compilation
of separation-logic-verified code

T H O M A S V A N S T R Y D O N C K AND F R A N K P I E S S E N S
KU Leuven, Leuven, Belgium

(e-mails: thomas.vanstrydonck@cs.kuleuven.be, frank.piessens@cs.kuleuven.be)

D O M I N I Q U E D E V R I E S E
Vrije Universiteit Brussel, Brussels, Belgium

(e-mail: dominique.devriese@vub.be)

Abstract

Separation logic is a powerful program logic for the static modular verification of imperative pro-
grams. However, dynamic checking of separation logic contracts on the boundaries between verified
and untrusted modules is hard because it requires one to enforce (among other things) that outcalls
from a verified to an untrusted module do not access memory resources currently owned by the
verified module. This paper proposes an approach to dynamic contract checking by relying on sup-
port for capabilities, a well-studied form of unforgeable memory pointers that enables fine-grained,
efficient memory access control. More specifically, we rely on a form of capabilities called linear
capabilities for which the hardware enforces that they cannot be copied. We formalize our approach
as a fully abstract compiler from a statically verified source language to an unverified target language
with support for linear capabilities. The key insight behind our compiler is that memory resources
described by spatial separation logic predicates can be represented at run time by linear capabili-
ties. The compiler is separation-logic-proof-directed: it uses the separation logic proof of the source
program to determine how memory accesses in the source program should be compiled to linear
capability accesses in the target program. The full abstraction property of the compiler essentially
guarantees that compiled verified modules can interact with untrusted target language modules as if
they were compiled from verified code as well. This article is an extended version of one that was
presented at ICFP 2019 (Van Strydonck et al., 2019).

1 Introduction

Separation logic is the basis for tools that support sound, modular verification of C pro-
grams, such as VeriFast (Jacobs et al., 2010). However, for such verification to be sound
for a whole program, all modules of the program have to be verified (Agten et al., 2015).

In this paper, we are concerned with scenarios where verified code interacts with
untrusted code (e.g. when installing plug-ins from the internet). Our goal is to compile the
verified code securely, that is, in such a way that we can preserve the guarantees obtained
from verification, even under this interaction with untrusted code. To achieve this, the
compiler has to dynamically enforce separation logic contracts on the boundary between
verified and untrusted code.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022
https://orcid.org/0000-0002-5262-1381
mailto:thomas.vanstrydonck@cs.kuleuven.be
mailto:frank.piessens@cs.kuleuven.be
https://orcid.org/0000-0002-3862-6856
mailto:dominique.devriese@vub.be
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796821000022&domain=pdf
https://doi.org/10.1017/S0956796821000022

2 T. Van Strydonck et al.

As a concrete example of our approach, consider a separation-logic-verified video player
that runs locally on a user’s computer and allows for the installation of untrusted and
unverified plug-ins to extend its functionality. An example plug-in would be a codec
(coder-decoder), that includes support for the decompression of specific video encod-
ings before display. The separation logic contract for the decompression function of this
plug-in could, for instance, provide it access to the buffer where the compressed video is
stored, but forbid it from retaining references to this buffer afterward. The contract for the
decompression function might then informally (we elided functional assertions) look as
follows:

void decompress(char* b, format f)
//@pre b �→ contents_pre * . . .

//@post b �→ contents_post * . . .

The decompress function receives a pointer to the buffer b and is supposed to decom-
press b using the proper codec for format f . In the precondition //@pre, decompress
receives ownership of the buffer’s contents (represented by the points-to chunk �→), so that
it can perform decompression in-place (assuming sufficient buffer size). In the postcondi-
tion //@post, decompress returns ownership over the contents of this buffer and should
consequently lose its access to it. However, this revocation of access is hard to enforce
dynamically: an unverified plug-in could, for example, copy and store the reference to b
and use it to freely read and write to it later, even after returning control. Plug-ins can
violate their contracts in many other ways: they can deviate from their specified behavior,
while they legitimately hold references to the internal state (e.g. decompress could use the
wrong format, or do nothing); they might read or write outside the intended ranges of the
references they are provided with (e.g. perform a buffer overread or -write outside of b’s
bounds) or might return incorrect values. In the current state of the art, separation-logic
verification guarantees are not enforced at run time for partially verified programs.

To perform dynamic checking of separation logic contracts efficiently, some form of
hardware support for memory protection is required. Agten et al. (2015) proposed an
approach for dynamic checking of contracts based on a hardware protection primitive
known as protected module architectures (Strackx et al., 2010; Noorman et al., 2013;
Costan & Devadas, 2016). However, they only provide run-time preservation of integrity
guarantees, not of confidentiality, meaning that non-verified adversaries could still read
data they should not contractually be allowed to read. Hence, they do not ensure full
abstraction: a formal property that is often used to define secure compilation (Abadi,
1999). This property requires that attacker code interacting with the compiled code in the
target language should not have more power than arbitrary verified code interacting with
the verified source code.

The main contribution of this paper is the development of a fully abstract compiler that
dynamically enforces separation logic contracts by relying on another kind of hardware
support. Our approach relies on support for capabilities: a well-studied form of unforge-
able memory pointers that are in essence regular pointers enhanced with a field containing
privileges (read, write, execute, . . .) and fields describing a memory range these privileges
can be exerted on. Capabilities allow for fine-grained, efficient memory access control and
are implemented in special processors called capability machines (see Levy, 1984, for an

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 3

Separation logic
proof of program

Compiled
program

Annotated
programProgrammer Semi-automatic

verification tool
Compiler

Fig. 1. A usage model of our compiler.

overview). The CHERI processor (Watson et al., 2015) is an example of a recent design
for a capability machine.

More specifically, we rely on a form of capabilities called linear capabilities. Linear
capabilities are specially treated by the hardware to ensure that they can never be copied.
They are related to, but different from, CHERI’s local capabilities (which can, essentially,
only be stored in registers or on the stack, not in memory) and should be implementable
efficiently in capability machines. Skorstengaard et al. (2019) have previously used them
in the secure calling convention StkTokens, and an early design for their implementation
in CHERI is given in the latest CHERI ISA Spec (Watson et al., 2020). Our compiler only
requires basic linear capabilities with read/write permissions.

The key insight of our approach is that memory resources (described by spatial sep-
aration logic predicates) can be represented at run time as linear capabilities. Hence,
transferring ownership of memory resources to another module on function call or return
can be compiled to passing the corresponding linear capabilities as additional parame-
ters and/or return values. Compiler-generated stubs, on the boundaries between verified
and unverified code, can then dynamically check separation logic contracts. However,
those linear capabilities cannot simply be substituted for regular pointers in existing
programs, as they behave fundamentally differently (because of their hardware-enforced
non-duplicability). We can pass them in addition to regular pointers, but then the difficulty
is that every memory access in the original program (through a regular pointer) needs to
happen through an appropriate linear capability in the compiled program. Since those lin-
ear capabilities are not necessarily in one-to-one correspondence with the regular pointers
that the program works with, it is not clear how the compiler can decide which one to use.

However, for verified programs, this information is apparent from the separation logic
proof of verified code. In that proof, every memory access is justified using a single mem-
ory resource, and by carefully tracking the capability corresponding to every such resource,
we can decide which capability to use. Hence, our compiler is separation-logic-proof-
directed: it requires not simply the raw source code, but a separation logic proof of this
code as input, and uses the information in the proof to generate correct and secure tar-
get code. Although it does not matter to our compiler where this proof comes from, we
envision scenarios as depicted in Figure 1, where the programmer writes a program with
contracts and minimal annotations, a semi-automatic verification tool like VeriFast (Jacobs
& Piessens, 2008) elaborates these into a full proof, and this proof is then passed to our
compiler. To be clear, only the last (compilation) step is the topic of this paper, although
we sometimes use VeriFast notations in our examples, for readability.

We clarify upfront that our goal is not gradual verification (Agten et al., 2015; Bader
et al., 2018), that is, we do not support taking a large codebase, verifying parts of it
and securely combining the verified and unverified parts. Instead, our compiled code
can securely interact with arbitrary untrusted code (e.g. the downloaded plug-ins above).
However, our compiled code will only interact correctly with other code that respects our
calling convention: we only allow linking to untrusted code if it respects our compiled

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

4 T. Van Strydonck et al.

interfaces, that is, sends and receives linear capabilities encoding memory resources as
extra arguments and return values when handling incalls from or outcalls to our code.

Moreover, this paper contains but the first steps toward a practically applicable secure
compilation scheme, since the power of the separation-logic-verified source language is
limited. Concretely, the source language only consists of simple resources in the separation
logic, has a simple type system and features restrictions on the separation logic contracts
for calls to and from untrusted code. Perhaps most notably, our source language does not
yet support a notion of C-like structures; it does not support any type of recursive data
structures. Additionally, the separation logic does not support the abstract predicates that
would be required to reason about such data structures. These restrictions and how to
alleviate them will be further detailed in the future work section.

In summary, the contributions of this paper are:

• a novel approach to compile separation-logic-verified C code to linear-capability-
enhanced unverified C code that dynamically checks the contracts at the boundaries
of the verified code; we demonstrate our approach for an essential separation logic
with array resources and explain how the approach might be extended to more
advanced logics;

• a formalization on a model of C, and a proof that our compiler is fully abstract; and
• a new use case for linear capabilities in capability machines like CHERI.

This paper is structured as follows. The compiler is illustrated in Section 2. Section 3
discusses the compiler’s source and target language. Section 4 formally defines the
separation logic rules and the full compiler. Section 5 formally defines full abstraction
and discusses our proof approach, motivating the need for a new target-to-source
transformation called the back-translation. This back-translation is illustrated by means
of an example in Section 6. Having discussed both an example of compilation and
back-translation, Section 7 zooms in on one part of the full abstraction proof, namely how
we simulate source versus target code. Sections 8 and 9, respectively, discuss future and
related work. Section 10 concludes.

This paper is an extended version of one that was previously published and presented at
ICFP 2019 (Van Strydonck et al., 2019). The most important additions are:

• A better explanation of how linear capabilities work in the target language opera-
tional semantics (Section 3.3).

• The new Section 5.3 which explains the role played by two relations R and S that
relate source and target code in the proof of full abstraction.

• A rewritten Section 6 explaining the back-translation in a more complete and more
pedagogical way.

• Finally, a new Section 7 which further decomposes the aforementioned relations R
and S, showcasing how their components, respectively, prove the correctness and
security directions of full abstraction through simulation.

Nevertheless, in this paper, we have still omitted details and simplified infer-
ence rules to maintain readability and ease of understanding on multiple occa-
sions. Interested readers can find full details and the entire full abstraction proof
in a 120-page technical report submitted as Supplementary Material (available at:
http://dx.doi.org/10.1017/S0956796821000022) (Van Strydonck et al., 2020).

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 5

Verified Component Outcall Stub Context Declaration
So

ur
ce

void f(int* a)
//@pre n: a �→ [0]
//@post n: a �→ [1] {

g(a);
a[0] = 1

}

void g(int* a)
//@pre n: a �→ [0]
//@post n: a �→ [0]

T
ar

ge
t int* f(int*0 a,int* n) {

n = gstub(a,n);
n[0] = 1;
return n

}

int* gstub(int*0 a,int* n) {
n = g(a,n);
guard(n != null); guard(length(n) == 1);
guard(a == addr(n)); guard(n[0] == 0);
return n

}

int* g(int*0 a,int* n)

Fig. 2. Motivating example: a verified function f interacts with an untrusted context function g.

2 Compiler illustration

Figure 2 illustrates the operation of our compiler with a trivial example in the C-like syntax
(which includes separation logic annotations) we employ. As suggested in the introduction,
the target language of the compiled code is actually again C-like and not assembly. The
reason is that the compilation from C to assembly would require the (fully abstract) com-
pilation of many concepts (e.g. function calls, stack accesses) which are orthogonal to the
topic of this paper and in at least one case already covered elsewhere (Skorstengaard et al.,
2019).

The example contains the verified source function f , which performs an outcall to the
context identity function g and afterward sets the contents of pointer a from 0 to 1. Function
f only knows g’s separation logic contract and not its implementation.

To see how function declarations (including separation logic contracts) are compiled,
we look at the function f (g is similar). The void function f takes a single argument: an
integer pointer variable a. The precondition states that f receives a memory resource n to
read and write pointer a in the heap, where a points to the single element array [0]. The
resource can be seen as a (heap) permission. When f returns, its postcondition states that
f hands back this permission, but a will contain the value 1. The verification of f proves
that f upholds this contract.

Having introduced the example, the remainder of this section discusses how we compile
it in a separation-logic-proof-directed way. By separation-logic-proof-directed compila-
tion, we mean that our compiler uses the separation logic proof of the source program to
guide compilation, in order to ensure that the compiled code enforces the separation logic
contracts. Concretely, our compiler combines three separate techniques to dynamically
enforce all information contained in separation logic contracts:

1. The shape of separation logic resources (i.e. their linearity and bounds, but not
their functional aspects such as contents) is enforced by reifying separation logic
resources to linear capabilities.

2. The contents of these linear capabilities are updated (but not checked) in parallel
with the resources they were reified from by having compiled source statements
manipulate capabilities.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

6 T. Van Strydonck et al.

3. The actual checking of all aspects of contracts (i.e. the shape and contents
of separation logic resources originating from adversaries, but also other non-
spatial constraints) is performed by so-called checking functions or stubs at trust
boundaries.

We now further detail these three aspects of proof-directedness in order.
First, we want to enforce the shape of separation logic resources at the target level, that

is, make sure that resources to access the heap are handled linearly and bounds-checked
at the target level. The reason we care about the semantics of these resources is that, for
example, resource n for address a determines whether f can access a’s contents during the
proof, not a itself. This fact is reflected in the compilation, where the heap resource n is
reified into a target-level linear capability int∗ n. Although separation logic resources exist
only conceptually and are not represented in the source language, they are transformed into
real target-level program variables, as concrete instantiations of the source-level permis-
sions. The semantics of the linear capability n corresponds very well to the meaning of the
heap resource n in the following ways:

• The fact that the reified resource int∗ n is a capability ensures that anyone owning
it cannot read outside of its intended bounds; the single location a in this case.

• The linearity of int∗ n constitutes a guarantee to its owner, that they are the sole
owner of the permission n to access a.

These reified resources are manipulated in parallel with the source-level resources and
represent the otherwise erased separation logic proof guarantees. The precondition of f
mentions that it receives the resource n at the start of execution. This resource is reified as
an extra argument int∗ n. The postcondition of f requires the resource n to be returned, so
analogously, the reified version of n is returned in the compilation.

The source-language argument a, on the other hand, is compiled to a length-0 regular
capability int∗0 a. The length-0 capability type int∗0 denotes a non-linear capability of
type int that cannot be dereferenced (this is in effect just an address). The reason int∗0 a is
kept is for performing address operations and checks, as these non-spatial manipulations
require no separation-logic resources.

Representing both addresses and resources at run time introduces a certain duplication
of information in cases where addresses coincide with the bounds of the resources. This
is the case, for example, in Figure 2, where the address a always coincides with the start
address of the resource a �→ []. However, in general, there is not necessarily a one-to-one
connection between addresses and resources for them. It is hence impossible to just dis-
card the pointer int∗0 a and perform address operations and checks on the reified resource n
directly. For example, the function f could create multiple aliases for a through an assign-
ment b = a, and it would not be clear which address to track in the reified resource. For
the same reason, we cannot simply erase heap resources and compile the source pointer
a to a linear target pointer a. In this case too, it would not be clear what to do when
aliases are created for a. The problem in both cases is precisely that a is not a resource
that should be handled linearly, but a regular non-linear program variable. Compiling both
a and its aliases to non-linear length-0 capabilities and separately reifying the resources
to linear capabilities instead avoid this mismatch. By separately representing addresses
and resources, we can keep our compiler general and uniform. In a subsequent phase, a

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 7

compiler with a sufficiently clever static analysis engine could detect duplication of infor-
mation and, for example, remove addresses of type int∗0 when their value can always be
recomputed from a corresponding linear capability.

Second, the introduction of linear capabilities to represent separation logic resources,
combined with the fact that the capabilities need to have the correct contents when passed
to the context as resources, again requires our compiler to be separation-logic-proof-
directed. The compiler inspects the verification proof to see how a source statement affects
the state of the separation logic resources and mirrors the change to these resources in
the compiled version of this statement. For example, setting a to 1 in f is compiled to
setting the reified resource for a, n, to 1. The call to g now also receives and returns the
resource n along with the address a. In summary, separation-logic-proof-directedness
entails that operations performed on pointers in the source language are performed on
the reified resources corresponding to these pointer’s resources in the target language, as
these resources are what justify these operations in the separation logic verification in the
first place.

Third, the interaction between f and g at the trust boundary of the compiled component
requires a checking function or stub (in this case an outcall stub for the outcall) that wraps
g and verifies that it does indeed uphold its postcondition. This is necessary since f can
outcall arbitrary compiled code g that might or might not uphold the contract that f expects
of g. The postcondition of g says that it returns a resource n for address a with single-
element contents 0. These conditions correspond exactly to the four guard statements in
the outcall stub of Figure 2. If the verified component was to export f , allowing it to
be called by untrusted code, then the compiled component would additionally contain an
incall stub, to verify that f ’s precondition is met at call-time. To simplify the generation of
stub functions, and thereby limit the size of the proofs, we have placed extra restrictions on
contracts of functions at trust boundaries. These restrictions are described in more detail in
Section 4.4, and ways to alleviate them are discussed in the future work section.

3 Source and target languages

The separation logic and the source and target languages are first discussed in Section 3.1.
Section 3.2 then introduces notation to extend source language programs to source lan-
guage proofs (as our compiler is separation-logic-proof-directed). Section 3.3 finally
briefly discusses the operational semantics (including memory model) of the source and
target languages.

In this paper, k denotes an integer, id� a logical variable, idp a program variable, f a
function and n a heap resource. Logical and program variables are considered to have
separate namespaces.

3.1 Source and target language definition

The formalization of our separation logic assertions and the source and target languages
is given in order of structural complexity by the BNF grammar in Figure 3, where the
notation symbol〈parameter〉 is used for parameterized symbols. The concrete notation for
separation logic annotations and assertions is inspired by the VeriFast tool (Jacobs et al.,

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

8 T. Van Strydonck et al.

Fig. 3. Grammar describing our separation logic and the source and target languages.

2010). For the features and syntax of the source language, we drew some inspiration from
Clight, one of the intermediate languages used in CompCert (Leroy, 2006; Leroy et al.,
2016).

Both the source and target languages (i.e. the program domain) build statements
sstm/tstm out of expressions sexp/texp, components scomp/tcomp out of functions contain-
ing statements and programs sprog/tprog out of components. The separation logic (i.e. the
logical domain), used in source function contracts and separation logic proofs, builds its
assertions assert out of symbolic expressions exp. The remainder of this section discusses
the BNF grammar in order.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 9

Types. To simplify types, the type bool is embedded in the type int, where 0 is true and
k �= 0 is false. The target type τt∗ is assumed linear, requiring value erasure (i.e. replacing
the value with null) whenever such a value is copied (e.g. assigned to another variable,
passed to a function, stored in an array, . . .), whereas the source type τs∗ is a regular
non-linear heap pointer. A type (τ , . . . , τ), representing length-n (n ≥ 0) tuples, is present
for all three cases. Pointers and arrays are seen as identical types τ∗ in our formalization,
for simplicity’s sake.

The target language has an extra type τt∗0 of length-0 non-linear capabilities, used by
the compiler to store the compiled version of the source-level permissionless program
variables. The separation logic has a type listτ , which is a type of logical list variables.
These variables are used to represent the contents of source-level arrays in resources.
Expressions. Separation logic makes a distinction between program variables idp, which
appear in source programs, and expressions sexp over them on the one hand and logical
(or symbolic) proof-only variables id�, which only appear in separation logic contracts and
proofs, and logical expressions exp, which are a third type of expression, on the other hand.
Source expressions are the least expressive, allowing program variables and the common
expressions only.

Target expressions texp additionally contain a function addr, which returns the τt∗0-type
address of a τt∗-type value, and a function “length”, which returns the length of the region
addressed by a linear capability τt∗. These functions are realistic (since linear capabilities
encode their own length and address information) and needed (for the contract checks
performed in incall and outcall stubs).

Logical expressions contain extra functions to manipulate listτ -typed values: a length
function and an indexing construct exp[exp]. Universal and existential quantification allow
constraining elements of non-statically sized logical lists. For readability, we also pro-
vide repeat, append, take and update list constructs, but these can be desugared to the
other logical expression constructs. The repeat(exp1, exp2) construct returns a logical exp1-
length list where each element equals exp2, append(exp1, exp2) appends lists exp1 and exp2,
take(exp1, exp2, exp3) constructs a new list from elements exp2 up to (but not including)
exp3 of list exp1 and update(exp1, exp2, exp3) updates index exp2 of list exp1 with exp3.
Assertions. Assertions are the building blocks of function contracts and separation logic
proofs. Logical expressions exp are assertions, and so is the separating conjunction ∗ of
two assertions. Conditional assertions of the form exp ? assert express that assert only
needs to hold if exp == true can be derived. Last, two types of assertions represent spa-
tial resources: array and range resources. Array resources exp1 �→τs exp2 represent an
array at address exp1, containing the elements of list exp2. In order to talk about fixed-
size array resources, we use the syntax exp1 �→τs [exp1

2, . . . , expk
2], which desugars to

exp �→τs l ∗ l[i] = expi
2 ∗ length(l) = k and is already demonstrated in Figure 2.

Range resources [assert | exp1 ≤ id� < exp2] represent the separating conjunction of
assert for each value from exp1 to (but not including) exp2, where assert usually depends
on id�. Range resources can be nested and will be useful for the back-translation in
Section 6.

An alternative design could have made use of a single, primitive points-to resource
a �→p v, representing permissions to access the single value v at address a, instead of
our array resources. All types of array resources could then be desugared in terms of this

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

10 T. Van Strydonck et al.

primitive primitive resource as follows: a �→ l� [a + i �→p l[i] | 0 ≤ i < length(l)]. This
change should not impact the rest of the formalization in any major way.

Since both types of resources will be reified during compilation, as demonstrated for
array resources in Section 2, we have to associate names n with both types. However,
within a named range resource, no more names should occur, as the outer resource will be
reified as a whole. This is the reason for the distinction between outer and inner resources
in the grammar.

Statements. Statements in the target correspond one to one to statements in the source,
except for the //@flatten and //@collect statements, which do not appear in the target
language. The guard statement gets stuck during execution if its condition evaluates to
false. The foreach statement executes its statement for every value of i in the given range.
The foreach statement could technically be left out, since we have recursive calls, but it is
kept for conciseness. Finally, both source and target languages have array assignment and
array lookup statements.

The malloc statement used in the target language does not correspond to the vanilla
malloc function in C. First, it returns a linear capability, not a regular pointer (since it essen-
tially creates a target-level reified resource). Second, it guarantees a fresh heap location for
the allocated variable. This avoids reuse of locations after free; if any newly allocated loca-
tion could have been previously used by the context, it could have kept a reference to it and
hereby broken the linearity guarantees. The target malloc statement hence respects tempo-
ral safety, an important desired property in any capability machine, even for non-linear
capabilities (Watson et al., 2015). In a practical implementation, freshness of the malloced
heap locations could realistically be achieved by a form of garbage collection, much like
in libgc (Insolvibile, 2003). Interestingly, the run-time bounds that capabilities inherently
provide will allow for more precise garbage collection, instead of the conservative variant
that libgc necessarily employs.

For simplicity reasons, we do not consider free (see Section 8 for further discussion).
In addition to these regular statements, there are also ghost statements. These operate

on logical state instead of program state in the source language and are only relevant for
the construction of the separation logic proof. VeriFast-style syntactic ghost statements are
usually used as hints for a semi-automated proof tool during construction of the proof. We
hence do not technically need them, since, as mentioned in the introduction, our compiler
assumes a full separation logic proof as input (cfr. Figure 1). Instead, we could simply
have separation logic rules manipulating ghost state without requiring corresponding syn-
tactic constructs. For readability reasons in symbolic executions, and to make the source
language correspond better to the target syntactically, we still use VeriFast-style syntactic
ghost statements in this paper. Since separation logic resources are reified during compila-
tion, ghost statements will have to be reified as well. Ghost statements and their target-level
counterparts will hence be syntactically different between the source and target languages.
We now discuss each ghost statement.

The source split statement splits a separation logic resource n into two at a given
index sexp. For example, //@split n[1] applied to the array resource n : a �→ [1, 2, 3]
splits this resource into n′ : a �→ [1] and n′′ : a + 1 �→ [2, 3]. When applied to the range
resource n : [assert | 0 ≤ i < 3], the same //@split n[1] creates n′ : [assert | 0 ≤ i < 1] and
n′′ : [assert | 1 ≤ i < 3]. The source join statement is the inverse of split and merges two

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 11

adjacent resources into one, for example, both previous sets of resources n′ and n′′ are
merged into n by //@join n′ n′′. As the resources that split and join operate on are reified,
so are the operations themselves: built-in target functions to analogously split and join
linear capabilities are provided in the target language.

The source flatten and collect statements are each other’s inverse and, respectively, strip
a top-level range resource or create it. This only works for statically sized range resources.
For example, the resources n′ : a + 1 �→ [1] and n′′ : a + 2 �→ [2] can be combined into n :
[a + i �→ [i] | 1 ≤ i < 3] by the statement //@collect n′ · n′′, where the · is used to delimit
the sequence of resource names for each individual index of the constructed range resource.
Notice again how only the top-level resource is named. The postcondition in the proof
specifies which exact range resource is created. Conversely, the statement //@flatten n
creates resources n′ and n′′ from n.

Interestingly, the target language does not contain reified, built-in functions to flatten
or collect linear capabilities. The reason is that ghost statements are the only way to
manipulate resources in the source language, and flatten and collect statements to switch
representations are hence required. In the target language however, all resources are rei-
fied to linear capabilities, which can be manipulated by target code. The flatten and collect
statements can hence be compiled to regular target-level statements, obviating the need for
built-in functions. For example, the effect of //@collect n′ · n′′ could be realized by the
compiled code: int∗∗ n; n = malloc(2 ∗ sizeof(int∗)); n[0] = n′; n[1] = n′′.

Functions. Two classes of functions exist: implemented and context functions.
Implemented functions consist of both a function declaration and a body. Context functions
solely consist of the declaration that a component expects of this function. For simplicity,
tuple return types (τ ∗) exist in both source and target languages and every function has to
end in a single return statement return exp∗. Source language functions are annotated with
separation logic contracts that use the separation logic assertions mentioned before for pre-
and postcondition. As mentioned, contracts are situated in the separation logic domain and
hence range over logical variables id�, not program variables idp.

Components and programs. A sequence of implemented functions that uses context
functions in its function import and export lists is called a component. A sequence of
components with a main function id forms an entire program.

3.2 Source language proofs

As explained, our compiler is separation-logic-proof-directed, that is, not a regular source
program, but its separation logic proof is the input to the compiler. In addition to the gram-
mar defining the syntax of source language programs, we need a notation for separation
logic proofs (in this subsection) and a set of inference rules that describe how to construct
such proofs starting from the source code (Section 4). Hoare triples are the building blocks
of separation logic rules (Reynolds, 2002).

Classical separation logic uses Hoare triples of the form {P} c {Q}. In this paper, they
have a partial correctness semantics: {P} c {Q} states that given precondition P, either post-
condition Q holds after execution of the piece of source code c, or c diverges (Reynolds,
2002). A triple {P} c {Q} is only provable if there exists a proof tree, constructed from
the individual separation logic rules, that has this triple as the root. In our formalization

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

12 T. Van Strydonck et al.

of separation logic, however, we split the condition P (and Q) into two separate parts,
partly inspired by the approach of VeriFast (Vogels et al., 2015). These parts are called the
symbolic heap P and the environment γ and give rise to the extended Hoare triple nota-
tion {P}γ c {Q}γ ′ , stating that if (P, γ) holds, then either c diverges or (Q, γ ′) holds after
execution of c. If γ == γ ′, we shorten the Hoare triple notation to {P} c {Q}. The two
aspects of extended Hoare triples and the triples themselves are defined by the following
BNF grammar:

〈P〉 ::= assert (SYMBOLIC HEAP)

〈γ 〉 ::= •[idp : exp]∗ (ENVIRONMENT)

〈c〉 ::= sstm
| sstm; return sexp (SOURCE CODE)

〈triple〉 ::= {P}γ c {P}γ (HOARE TRIPLE)

We will often use this notation c independently, to denote a piece of source (or target)
code.

The two parts, γ and P, of separation logic states have the following meaning:

• The environment γ maps program variables idp to expressions exp over logical,
proof-level variables id�. The environment γ hence relates the program domain to
the logical domain.

• The symbolic heap P is a ∗-separated list of assertions representing the symbolic
program state. It is of the same form assert as the contracts described in Figure 3.

Hoare triple syntax is only useful for verifying (parts of) function bodies. In Section 4,
we verify entire functions, components and programs. Given any piece of source code s,
be it (part of) a function (body), a component or a program, the notation � s represents a
specific, valid separation logic proof tree for s. This proof � s is what our proof-directed
compiler uses as input.

3.3 Operational semantics

We define C-style small-step operational semantics for both the source and target
languages. The operational semantics rules in both languages are of the following form:

Premise

〈s, h〉 | c ↪→ 〈s′, h′〉 | c′ (RULENAME)

The small-step operational semantics ↪→ transform a program state 〈s, h〉 | c into a state
〈s′, h′〉 | c′, where s is the list of stack frames containing local variables, h is the heap,
and c is a list of partly executed function bodies, separated by return statements, where
the sequence c corresponds to the sequence of stack frames s. A function call creates a
new stack frame and accompanying executing function body and adds them to s and c,
respectively. A return statement erases one of each. Erroneous programs get stuck because
no operational semantics rules apply to them. The same happens for false guard statements.

One special case should be considered; at the very start of execution, c is a single,
monolithic source or target program prog. Execution of a full program prog starts off by
executing the function whose id is given in //@main = id , thereby creating the first stack
frame. Since we are interested in the termination behavior of our programs, rather than their
exact output, we require the main function id to have return type void. Main functions are

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 13

not allowed to have arguments either. The initial state before calling the main function is
〈•, •〉 | prog: both the stack and heap are empty, denoted by •. We say that prog terminates,
denoted prog ⇓, if a sequence of small-step transitions exists that reduces the program to
a single return statement with no arguments (i.e. the original return statement of the main
function). We can then define termination formally as follows:

prog ⇓ � ∃ s, h, exp. 〈•, •〉 | prog ↪→∗ 〈s, h〉 | return

Note that termination does not include getting stuck.
The memory model for both source and target languages is location-based, that is,

addresses are pairs (l, i) of an opaque location and an index i and hence h ∈ (Loc, Index)
fin
⇀

Val. A malloc statement that allocates k units of type τ creates a new location l in the
heap, populated with default values (out of simplicity considerations) for type τ at indexes
0 through k − 1. The default value for pointers is the null pointer, which implies that it is
currently impossible to have a non-nullable pointer type in the source or target language. A
possible solution to avoid this technical limitation would be to stick closer to the C seman-
tics by not specifying a default value and making a dereference of an uninitialized pointer
undefined behavior instead. Separately malloced variables are hence logically separate.

Source pointer values of type τs∗ follow the heap memory model and are hence denoted
as either null, in case of the null pointer, or pairs (l, i). Target-level linear capabilities τt∗,
on the other hand, are denoted as either null or l[a,b], where [a, b] is the closed interval of
indexes at location l that they carry authority over. They do not need an index i, as source
pointer arithmetic is compiled to target pointer arithmetic on length-0 capabilities and not
on linear capabilities (see Section 2). A capability value l[a,b] hence always points to index
a. Target-level length-0 capabilities are represented by li

0-values, which do not carry any
authority, but keep an index i for pointer arithmetic.

The operational semantics for the source language are standard, but those for the target
are not. The two main differences between these semantics are discussed in the following
paragraphs, where the target-level semantics are illustrated by means of some representa-
tive rules in Figure 4. The rules in this figure make the simplifying assumption that s = s,
that is, only a single stack frame is considered, and that c consists of a single source state-
ment. In the following discussion, h[(l, i) → v] denotes an update of the existing value of
the heap h at location l and index i with value v. For the stack, s[idp → v] similarly denotes
an assignment of the value v to the previously declared variable idp. The evaluation of exp
in stack-frame s is denoted by �exp�s.

The first difference between the source and target semantics is caused by the linearity
of capabilities, as they cannot be duplicated. When a linear capability l[a,b] is copied, the
original value is set to null. We call this process linear capability erasure. The target-level
judgment v�ValErase v′ describes how a target value v is erased into a result value v′ by
replacing linear capabilities with null pointers. For example:

l[a,b]�ValErase null (l[a1,b1]
1 , 5, l[a2,b2]

2)�ValErase (null, 5, null)

The rule ARRAYLKUP in Figure 4 describes the operational semantics of target-level
array lookup. It is equivalent to its source-level counterpart, except for the addition of a
�ValErase judgment. It illustrates how the read value v should be erased inside the array, by
setting h′(l, a + n) = v′.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

14 T. Van Strydonck et al.

�texp1�s = l[a,b] �texp2�s = n h(l, a + n) = v

0 ≤ n ≤ b − a v�ValErase v′
s′ = s[idp → v] h′ = h[(l, a + n) → v′]

〈s, h〉 | idp = texp1[texp2] ↪→ 〈s′, h′〉 | skip
(ARRAYLKUP)

s(idp) = l[a,b] �texp1�s = n �texp2�s = v

0 ≤ n ≤ b − a texp2�s
StoreLinCap [env]

s′ = s[env] h′ = h[(l, a + n) → v]

〈s, h〉 | idp[texp1] = texp2 ↪→ 〈s′, h′〉 | skip
(ARRAYMUT)

s(idp3) = l[a,b] �texp�s = n 1 ≤ n ≤ b − a
s′ = s[idp1 → l[a,a+n]][idp2 → l[a+n,b]][idp3 → null]

〈s, h〉 | (idp1, idp2) = split(idp3, texp) ↪→ 〈s′, h〉 | skip
(SPLIT)

s(idp2) = l[a,n] s(idp3) = l[n,b]

s′ = s[idp1 → l[a,b]][idp2 → null][idp3 → null]

〈s, h〉 | idp1 = join(idp2, idp3) ↪→ 〈s′, h〉 | skip
(JOIN)

Fig. 4. Rules illustrating the target language operational semantics and its linear aspects.

The rule ARRAYMUT in Figure 4 describes the operational semantics of target-level
array mutation. The sole difference with the source-level version is caused by the judgment

texp2�s
StoreLinCap [env]

which we illustrate below. This judgment is used to erase any linear capabilities present
in texp2 that were written into the array l[a,b] by the ARRAYMUT operation, to avoid them
being duplicated. The resulting environment [env] nulls these capabilities in the current
stack frame, as shown by the assignment s′ = s[env] in the ARRAYMUT rule. Additionally,
this judgment makes the semantics get stuck if the same linear capability is used twice in
texp2.

Generally, texp�s
StoreLinCap [env] can be seen as the lifting of v�ValErase v′ from val-

ues v to expressions texp. Rather than erasing capabilities inside values v, now stack
variables idp that appear inside texp have to be reassigned in order to erase their lin-
ear capabilities. This is the reason the judgment’s output is not an expression texp′, but
rather, a reassignment of these local variables, that is, an environment [env]. The judgment
texp�s

StoreLinCap [env] is used whenever a target operational semantics rule evaluates and
uses texp, and the linear capabilities that are moved in the process have to be erased.
The judgment is therefore also used when, for example, calling functions using linear
arguments or when assigning variables.

More concretely, texp�s
StoreLinCap [env] erases the linear capabilities that appear inside

texp by reassigning (in the current stack frame s) local variables idp appearing inside texp.
Notice that solely the linear capabilities that are actually used linearly should be erased;
for example, idp appearing under an equality or as an argument to the addr function does
not require erasure. The environment [env] computes values for the erased idp by using
�ValErase. For example, assuming �idp1�s = l[a1,b1]

1 and �idp2�s = (l[a2,b2]
2 , l[a3,b3]

3), we have:

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 15

Fig. 5. Structural separation logic rules that can be extended to compilation rules.

(idp1, idp2)�s
StoreLinCap [idp1 → null][idp2 → (null, null)]

addr(idp2)�s
StoreLinCap []

idp2.2�s
StoreLinCap [idp2 → (l[a2,b2]

2 , null)]

(idp1, idp2).1�s
StoreLinCap [idp1 → null]

Additionally,�s
StoreLinCap should ensure that a single linear capability is not used mul-

tiple times in the same texp, since this would cause duplication. For example, assuming
the same stack frame as before, we have ¬∃v′. (idp1, idp1)�s

StoreLinCap v′, causing the
semantics to avoid duplication by getting stuck.

The second big difference between source and target occurs where the built-in target-
level functions join and split are concerned. These ghost statements and their reification
were already discussed in Section 3.1. As mentioned, source-level ghost statements solely
have an effect on the separation logic proof and are hence equivalent to skip in the source
semantics. In the target, on the other hand, the reified ghost statements manipulate physical
linear capabilities instead. The rules for these reified ghost statements are given by SPLIT

and JOIN in Figure 4. As expected, they, respectively, split and join linear capabilities.
Notice that both rules erase their source operands to ensure linearity, by explicitly setting
them to null. A use of �s

StoreLinCap is not required, given that the source operands are
constrained to be simple program variables.

4 Inference rules and compilation by example

This section introduces the separation logic inference rules that constitute separation logic
proof trees. Because our compiler is separation-logic-proof-directed, the compilation rules
directly derive from these rules, so we present both simultaneously. The rules we present
in this section are syntactic, that is, presented axiomatically rather than derived from the
operational semantics. While it allowed us to focus more on the essential points of this
paper, this approach has disadvantages. For a discussion of syntactically versus semanti-
cally derived rules, see the future work section. A relevant selection of rules is spread over
Figures 5, 6, 7 and 8. The separation logic rules and the compilation rules are obtained by,
respectively, ignoring and not ignoring all green text. Compilation of a separation logic
proof � s to target code t is denoted � s� t. Other judgments appearing in these figures
are explained as needed below.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

16 T. Van Strydonck et al.

Fig. 6. Basic separation logic rules that can be extended to compilation rules.

Fig. 7. Higher-level separation logic rules that can be extended to compilation rules.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 17

(CONDITIONREIFY)

exp�p guard(exp)

C�p c1 C′�p c2

(SEPCONJPREIFY)

C ∗ C′�p c1; c2

τ �CompileType τ ′
check = (guard(n != null); guard(length(n) == k))

decl = (τ∗0 x; τ ′ x1; . . . ; τ ′ xk)
assign =

(x = addr(n); x1 = n[0]; . . . ; xk = n[k − 1])
(RESOURCEREIFY)

n : x �→τ [x1, . . . , xk]�s (check, decl, assign)

C�s (c1, d1, a1)
C′�s (c2, d2, a2)

(SEPCONJCREIFY)

C ∗ C′

�s (c1; c2, d1; d2, a1; a2)

fi = τ ′
ret f (τarg idarg)

//@pre m : PREs ∗ PREp //@post n : POST s ∗ POSTp

pi = {τ ′
ret, τpost} f (τ ′

arg idarg, τpre m) � fi� pi

m : PREs�s (, dpre, apre) n : POST s�s (cspost, dpost, apost)
POSTp�p cppost

stuboutcall =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{τ ′
ret, τpost} fcomp (τ ′

arg idarg, τpre m){
dpre; apre; τ ′

ret result; τpost n;
(result, n) = f (idarg, m);
cspost; dpost; apost; cppost;
return (result, n)}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(OUTCALL)

� fi�Outcall pi, stuboutcall

Fig. 8. Compilation rules for generating outcall stubs.

We illustrate the rules using the running example in Figure 9. Since our compiler is
separation-logic-proof directed, it receives a proof of the verified component in Figure 9
as input. To keep the example simple and concise, we avoid foreach loops and range
resources, stick to arrays of statically known size, and we use the fixed-size array resource
syntax discussed in Section 3.1. The inference and compilation rules will still be presented
in their general form.

By f ’s contract in Figure 9, it receives a pointer a and a resource m to access a two-
element integer array corresponding to this pointer. For simplicity, f leaks the memory
resource m by not handing it back in its postcondition. It adds 1 to either the second ele-
ment of a or its negation, depending on the first element c. It will use an untrusted library
function add1 to add the 1. The contract of add1 specifies that it takes a pointer a and a
resource m to access a one-element array corresponding to a. It returns the value result,
equaling the contents of a increased by 1, and returns the same resource from the pre-
condition, now named n, in its postcondition. The symbolic variable identifier result is a
privileged name, used to denote a function’s return value(s) in its postcondition (resulti is
used in case of multiple return values). Based on the value of a’s first element c, f either
calls add1 directly or emulates adding 1 to the negation by inverting the last element of a,
storing it in a new array b and only then calling add1.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

18 T. Van Strydonck et al.

Fig. 9. Illustrative example: conditionally add 1 to the second element of a length-2 array or its
negation.

There are four types of compilation rules: structural, basic, higher-level and stub compi-
lation rules. We discuss these classes in the next subsections and illustrate them using the
running example.

4.1 Structural rules

Structural rules are rules that build more complex proofs from simpler proofs. They are
more involved in the construction of the separation logic proof itself than in the proof-
directed aspects of the compilation and therefore have very straightforward compilation
rules. The structural rules are CONSEQPOST, FRAME, SEQ and IF, presented in Figure 5.

The consequence and frame rules CONSEQPOST and FRAME are pure proof glue rules
that allow altering proofs and do not influence the compiled program. The consequence
rule CONSEQPOST allows weakening of both the symbolic heap and the environment in
the postcondition of a separation logic triple, in order to link it to a subsequent triple. The
judgment assump � cond denotes that the boolean condition cond holds under the assump-
tions in assump. In fact, we also need a dual rule CONSEQPRE that allows strengthening
the precondition of a separation logic triple. The rules CONSEQPRE and CONSEQPOST

combine to form the full consequence rule CONSEQ. Our full CONSEQ rule also allows
renaming outer separation logic resources n and manipulating conditional assertions. Both
of these operations will influence the compiled code p, but are omitted for brevity.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 19

1 {m : a �→int [c, a1]}•[a:a]
2 int res;
3 {m : a �→int [c, a1]}•[a:a][res:0]
4 int c; c = a[0];
5 {m : a �→int [c, a1]}•[a:a][res:0][c:c]
6 //@split m[1];

7
{m1 : a �→int [c]
∗ m2 : a + 1 �→int [a1]}•[a:a][res:0][c:c]

8 if c == 0
9 then

10 {m2 : a + 1 �→int [a1] ∗ c == 0}•[a:a][res:0]
11 {res = add1(a + 1)}
12 {c == 0 ∗ x == a1 + 1}•[res:x]
13 else

14 {m2 : a + 1 �→int [a1] ∗ c != 0}•[a:a][res:0]
15 {int* b; int a1;

16
{m2 : a + 1 �→int [a1]
∗ c != 0}•[a:a][res:0][b:null][a1:0]

17 a1 = (a + 1)[0];
18 {c != 0}•[res:0][b:null][a1:a1]
19 b = malloc(1 * sizeof(int));
20 {c != 0 ∗ l : y �→int [0]}•[res:0][b:y][a1:a1]
21 b[0] = −a1;
22 {c != 0 ∗ l : y �→int [−a1]}•[res:0][b:y]
23 res = add1(b)};
24 {c != 0 ∗ x == −a1 + 1}•[res:x]

25 {x == (c == 0 ? a1 + 1 : −a1 + 1)}•[res:x]
26 return res
27 {result == (c == 0 ? a1 + 1 : −a1 + 1)}•

Fig. 10. Separation logic proof of the function given in the illustrative example.

The frame rule is a classical separation logic rule. It allows neglecting a redundant part of
the symbolic heap and the environment in order to simplify the separation logic state. The
function CN(R) returns all resource names that appear in the separation logic assertion R.
We require these names to be fresh, to avoid name clashes. The sequence and conditional
rules SEQ and IF describe proofs for the sequencing and conditional source statements,
respectively. If all applications of these four structural proof rules are left implicit in a
function body’s separation logic proof, the proof tree can be represented as a symbolic
execution (Vogels et al., 2015). Such a symbolic execution of the body of f is used in
Figure 10 to illustrate the rules in this subsection and the next.

The CONSEQ rule is used to omit information that is no longer useful as quickly as
possible in order to keep the proof concise. Examples are the resource m1 that is dropped
after line 7 and the environment entry [a : a] that is omitted after line 16. Consequence is
also used to reshape postconditions to match the conditions required by a different rule:
CONSEQ unifies, for example, the symbolic heaps on lines 12 and 24 by weakening them
to the symbolic heap on line 25. Because of this unification, the IF rule becomes applicable.

The IF rule obviously creates the separation logic triple for the if-statement on lines 8–
24. Notice how the IF rule introduces c == 0 and c != 0 in the symbolic heaps on lines 10
and 14, respectively.

4.2 Basic rules

Basic rules construct a proof triple from the ground up for a single non-sequenced source
statement. They are the elementary building blocks of the symbolic execution in Figure 10
and the workhorses of the separation-logic-driven compiler. The rules are named after
the source statements they create a proof for, that is, SKIP, MALLOC, FOR, FLATTEN,
COLLECT, SPLIT (has 2 versions: one for range resources and one for array resources),
JOIN (again has 2 versions), VARDECL, VARASGN, ARRAYMUT, ARRAYLKUP, GUARD,
FAPP and RETURN. A representative selection is presented in Figure 6.

In the following descriptions of the inference rules, sexpγ denotes sexp where each
program variable idp is substituted by γ (idp) (implicitly requiring that idp ∈ dom(γ)).
Also note that compilation is the identity for expressions sexp, since the variables that

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

20 T. Van Strydonck et al.

Fig. 11. Inference rules defining. τs�CompileType τt

Fig. 12. Inference rules defining. τs�def v

represent pointers contained in sexp are automatically converted to address capabilities by
the compilation.

The auxiliary judgments τs�CompileType τt, which compiles a source type τs to the cor-
responding target type τt, and τs�def v, which returns the default value v for the type τs,
are first defined in Figures 11 and 12, respectively.

The remainder of this section consists of a discussion of the depicted basic separation
logic rules and compilation rules. Separation logic rules are illustrated by referencing lines
from Figure 10. Compilation rules are illustrated using a combination of source code lines
from Figure 10 and lines from the compiled verified function fcomp in Figure 9.

The MALLOC rule assigns a fresh logical variable id� to idp in γ and creates a new array
resource n, consisting of the default value v repeated sexpγ times. In the corresponding
MALLOC compilation rule, the variable τ ′∗ n is declared and assigned the malloced linear
capability, that is, the resource corresponding to idp in the source language. This target-
level assignment to the variable n clearly makes it the reified version of the source resource
n (also freshly introduced by the rule). As idp is itself merely a permissionless address
on the target level, we assign it using the addr function, maintaining the correspondence
between a and n from the separation logic proof. The MALLOC rule is demonstrated on
lines 18–20, where a new resource l is created. Lines 18–20 are compiled to lines 7–8 in
fcomp.

The SPLIT and JOIN rules for both array resources and range resources are dual, with the
difference that SPLIT has to check whether the given splitting index to split on is in bounds,
whereas JOIN has to check memory adjacency of the two resources it is given. Given the
similarities, only the array version of the split rule is detailed in Figure 6. Notice how this
rule indeed performs the same operation on separation logic resources that the target oper-
ational semantics rule SPLIT in Figure 4 performed on linear capabilities. Consequently,
the SPLIT compilation rule simply mirrors the source-level split statement in the target
language, using the built-in split operation on the corresponding reified linear capabilities.
The SPLIT rule is demonstrated on lines 5–7, where resource m is split. Lines 5–7 are
compiled to line 3 in fcomp.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 21

The rule VARDECL and VARASGN prove variable declaration and assignment, respec-
tively. Their compilation rules are straightforward, apart from the change in type in
VARDECL. The VARDECL rule is demonstrated on, for example, lines 1–3, which compile
to the first declaration on line 2 in fcomp.

The rules ARRAYMUT and ARRAYLKUP are very similar, so Figure 6 only shows the
former. The mutation of source arrays is again compiled to the same action on the cor-
responding reified resource. Both rules are demonstrated on lines 20–22 and lines 16–18,
respectively. The ARRAYMUT rule enforces the logical address of the resource n to be
exactly equal to idprog,γ , rather than allowing for some additional offset, out of simplicity
considerations (ARRAYLKUP enforces something similar). For this reason, line 17 contains
(a + 1)[0] and not a[1]; (a + 1)γ equals the logical address of the resource m2, whereas aγ

does not. These lines, respectively, compile to lines 9 and the end of line 6 in fcomp.
The GUARD rule adds the asserted conditions to the symbolic heap, and compilation is

the identity.
Function application FAPP is the most intricate basic rule. The variable � denotes a

component-wide function environment that contains the contract and argument names for
each function f (including imported functions). The caller does not need to match the
called function’s contract exactly: we can allow outer resource names to differ. That is
why the relation ≈Names is used, to enforce equality up to resource names of pre- and
postcondition. In the caller’s pre- and postcondition PRE and POST , the concrete logical
expressions sexpγ used in the function call are substituted for the arguments idarg, instanti-
ating the callee’s contract with the caller-provided arguments. Additionally, in the caller’s
postcondition, the privileged result variables are substituted with fresh logical variables
idres, linked to id in γ ′. Fresh resource names n are required to avoid name clashes.

Given this rule, the FAPP compilation can now be discussed. The resource names m
in PRE will be reified and are extracted using the function CN. The resource names n in
POST have to be fresh and will hence need to be declared in the compiled code first, before
reification. We use an auxiliary judgment assert�ResDecl τn n that extracts all resource
names n in assert and pairs them with their reified types τn in target-level declarations
τn n. This judgment extracts the correct names n from POST and immediately tells us
what declarations τn n to create. The compiled function call contains the reified versions
of the precondition resources m as extra arguments and receives the reified postcondition
resources n as extra return values. The reason each function f is renamed to fcomp during
compilation is related to incall and outcall stubs and will become more clear in Section 4.4.

The FAPP rule is illustrated on lines 10–12 and lines 22–24. For lines 10–12, for exam-
ple, [substpre] == [a �→ a + 1] and [substpost] == [a �→ a + 1][result �→ x], where [res : x]
is substituted in the environment after the call. Given these substitutions, we can see that
the preconditions indeed only differ in the chunk names m2 versus m, hereby satisfying
≈Names. The same holds for the postconditions (where the returned resource has already
been omitted by CONSEQ on line 12). Lines 10–12 are hence compiled to line 5 in fcomp,
where add1comp denotes the outcall stub for add1.

The RETURN rule forms a special case because return is not a source statement; it
appears exactly once at the end of each function body. Since SEQ can only sequence
source statements, the RETURN rule has to manually construct a new proof from a previous

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

22 T. Van Strydonck et al.

one. Conceptually, however, RETURN is a basic rule. Given a proof of sstm, the RETURN

rule introduces the privileged result logical variables to the symbolic heap, equaling the
returned expressions. The return compilation rule produces a target return statement, which
additionally returns all reified resources n. The CONSEQ rule reshapes the contract Q after
the return into the function body’s postcondition (in this phase, leaking resources is disal-
lowed because the set of reified resources n is already fixed). Lines 25–27 demonstrate
the return rule and are compiled to line 11 in fcomp. No returned variables are added
because f leaks its resources. Notice that line 27 follows from RETURN’s postcondition
{x == (c == 0 ? a1 + 1 : −a1 + 1) ∗ result == x} by the CONSEQ rule.

4.3 Higher-level rules

Given a separation-logic proof of a function’s body, constructed as in the previous sub-
sections, we now introduce rules that define the notion of separation logic proof �
for entire functions, components and source programs, as these higher-level structures
are what we are most interested in compiling. The higher-level rules are IMPLFVERIF,
CONTFVERIF, COMPVERIF and PROGVERIF, presented in Figure 7 and discussed below.
For all compilation-related judgments�X, we define the following tuple-based shorthand:
� si�X ti � ∀i. � si�X ti.

First, we have the rules for implemented functions IMPLFVERIF and context functions
CONTFVERIF. The main difference between these rules is that CONTFVERIF does not
reference any function body, as expected, whereas IMPLFVERIF requires a proof of the
function body to construct a function proof �. The precondition environment of this proof
is [idarg : idarg], since our separation logic contract preconditions always implicitly map the
function arguments idarg to logical variables of the same names idarg. Non-coincidentally,
this environment is the starting environment in Figure 10. This initial environment explains
how we can allow function contracts to be entirely logical assertions, but still reference
function arguments idarg.

The corresponding compilation rules both use an auxiliary judgment sfunc�Decl tfunc
that compiles a function declaration sfunc to a declaration tfunc by reifying all resources
in the given pre- and postcondition into arguments and return values, respectively, and
compiling existing argument and return types using �CompileType. The rule IMPLFVERIF

also changes any implemented function f ’s name to fcomp during compilation, again for
stub-related reasons explained in Section 4.4. The proof of Figure 10 suffices to construct
a proof � of f using IMPLFVERIF, which can then be compiled to the target-level function
fcomp in Figure 9. The declaration of add1, on the other hand, is compiled to the declaration
of add1 using CONTFVERIF.

The component verification rule COMPVERIF allows verification and compilation of
entire components. A component scomp has a proof � scomp if it is well-formed (denoted
by �WF scomp, which includes some restrictions mentioned in Section 4.4) and if all its
implemented and (exported and imported) context functions have proofs. A compiled com-
ponent is constructed from the compilation of its functions. The compilation rules�Incall

and�Outcall both subsume the CONTFVERIF rule and additionally generate the incall and
outcall stubs for exported and imported functions, respectively. Both of these rules are
discussed in the next subsection.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 23

As an example, given the proofs of f and add1 constructed in the previous paragraph,
the COMPVERIF rule proves the source component in Figure 9, which has f as an internal
function, an empty export list and the declaration of add1 as the import list. The source
component is compiled to the target component in the bottom half of Figure 9, where
add1comp is the outcall stub resulting from the application of �Outcall on add1. In a real-
life setting, we would have made f callable by including it in the export list of the source
component, such that an incall stub f would have been created by �Incall as well. We
omitted this detail for simplicity’s sake.

Finally, the program verification rule PROGVERIF allows verification and compilation
of entire programs. A program sprog has a proof � sprog if it is well-formed (�WF sprog,
which e.g. states that every imported function should be exported by another component)
and if all of its components have a proof. The compilation of a program is constructed from
the compilations of its components.

4.4 Stub compilation

As illustrated in Section 2, we require checking functions or stubs in our compiled code
to enforce separation logic contracts at trust boundaries, both when receiving an untrusted
incall to an exported function and performing an outcall to an untrusted imported function.
A verified component of course trusts itself, requiring no stubs when internal calls are
performed, as no trust boundary is crossed. We call functions that require the generation of
stubs during compilation, that is, functions that are imported or exported by any module,
boundary functions.

This section discusses how our compiler generates outcall stubs specifically, by means
of the OUTCALL compilation rule in Figure 8. The INCALL compilation rule that generates
the incall stubs for exported functions is an analogous but simpler version of OUTCALL

and hence not detailed. No OUTCALL or INCALL separation logic rule exists, since stubs
are not part of the source code; separation logic contracts are enforced at trust boundaries
by the separation logic proof itself.

The OUTCALL rule generates the outcall stubs for a component’s imported functions by
defining the previously mentioned compilation rule csfunc�Outcall ctfunc, stuboutcall that
both compiles a context function csfunc to ctfunc using CONTFVERIF and generates an
outcall stub stuboutcall for it. The latter is a wrapper around the outcall to f and reifies f ’s
postcondition in the form of guard statements that check, after f has returned, whether it
has upheld its postcondition.

Before generating outcall stubs for imported boundary functions, we make three
assumptions on the form of the contracts of boundary functions. These assumptions allow
us to easily generate both types of stubs by means of contract reification.

First, we only allow fixed-size, non-conditional array resources n : exp �→
[exp1, . . . , expk] to appear in boundary function contracts. This allows us to do
away with quantification in boundary contracts, making the reification of conditions in
stubs easier, since every condition ranges over a predetermined set of variables. Since
boundary contracts do not contain nested or conditional resources, pre- and postcondition
symbolic heaps PRE and POST are separable into a spatial heap m : PREs or n : POST s,
consisting of a sequence of separating-conjunction separated fixed-size array resources

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

24 T. Van Strydonck et al.

(whose names n and m we externalize in our notation), and a pure heap PREp or POSTp,
consisting of pure conditions. The OUTCALL rule will make handy use of this separability.
Possible measures to weaken this restriction are future work.

Second, we require boundary functions to have linear contracts, in the sense that all
argument names, all logical variable names in PREs and POST s and the set of names
result must be mutually distinct and cannot contain duplicates. This makes any otherwise
implicit conditions in PREs and POST s explicit in PREp and POSTp and hence easier to
check. This assumption can be made without loss of generality, as non-linear contracts can
easily be linearized. For example, the programmer-written contract for add1 in Figure 9 is
linearized to:

//@pre m : apre �→int [apre
1] ∗ apre == a

//@post n : apost �→int [apost
1] ∗ result == apost

1 + 1 ∗ apost == a ∗ apost
1 == apre

1 .

Last, we require boundary functions not to introduce any new logical variables (except
for result) in their spatial heaps PREp and POSTp. This will make the constraints in
PREp and POSTp easier to reify into program-level guards, as all their logical variables
either correspond to arguments, result variables or spatial values in the symbolic heap.
For example, in the above linearized contract, we can easily access the values for a, apre,
apre

1 , apost, apost
1 and result in the compiled code. The restrictions imposed by these last

two assumptions are included as part of the component well-formedness �WF scomp in
COMPVERIF.

An outcall stub then needs to generate code in order to check any constraints present in
the untrusted function’s postcondition POST .

We first investigate what information from m : PREs and n : POST s we need to reify to be
able to check POST . Both m : PREs and n : POST s are linear and hence use fresh variable
names that can reappear in conditions in POSTp. These variables hence need to be reified,
that is, declared and assigned the right values, so they can be used when reifying POSTp’s
conditions. Additionally, any constraints present in the linear spatial heap n : POST s need
to be checked in the target language. Remember that an outcall stub solely checks the
postcondition. The only information to check is that none of the reified resources n can
be null, together with the fact that each reified resource n has its correct fixed length k.
Both of these checks need to be performed by a guard statement for each n. We need a
way to reify the aforementioned checks check, declarations decl and assignments assign
for a given spatial assertion asserts (i.e. m : PREs or n : POST s). This is the function of the
auxiliary compilation rule asserts�s (check, decl, assign), defined by RESOURCEREIFY

and SEPCONJCREIFY in Figure 8. The checks generated for m : PREs are simply discarded.
Next, we investigate what information from PREp and POSTp we need to reify to check

POST . Neither one is allowed to introduce fresh variables, due to the third assumption we
made above. Therefore, no declarations or assignments will be reified; only checks. Since
outcall stubs only check postconditions, we can disregard PREp. All constraints present
in POSTp can simply be reified to guard statements over the identical constraints, due to
the three form assumptions on contracts we made above and since we already declared
and assigned all variables occurring in these constraints when we reified m : PREs and n :
POST s in the previous paragraph. The auxiliary compilation rule assertp�p check, defined
by CONDITIONREIFY and SEPCONJPREIFY in Figure 8, generates these checks check
when given a pure assertion assertp (i.e. POSTp in this case).

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 25

The OUTCALL compilation rule in Figure 8 integrates �s, �p and CONTFVERIF to
create the outcall stub stuboutcall. Precondition-related declarations dpre and assignments
apre happen before the function call to f , since the reified resources m might be altered by
f . Postcondition-related declarations dpost, assignments apost and checks cspost and cppost

happen after the call.
The reason the rule IMPLFVERIF renamed every function f to fcomp had everything to

do with stubs. First of all, any incall stub generated for an exported source function f can
now simply be called f and internally call the compiled target function fcomp, so that the
names of a component’s exported functions do not change during compilation. Conversely,
outcall stubs for imported functions f are named fcomp as well, as OUTCALL demonstrates,
so that the FAPP rule does not need to know whether an internal or imported function is
being called in order to derive the compiled function’s name.

The outcall stub add1comp for add1 in Figure 9 gives an example of the generated stub
stuboutcall in the OUTCALL compilation rule (compiled using the linearized contract above).
As always, the stub has the same declaration (bar function name) as the function add1 it
wraps. The declarations dpre can be found on line 2 and the assignments apre on line 3. The
declarations dpost are generated on line 7, assignments apost on line 8 and checks cspost and
cppost on line 6 and lines 9–10, respectively.

5 The full abstraction proof

This section summarizes the full abstraction proof for the compiler presented in Section 4.
The full abstraction proof by itself takes up roughly 80 pages in the technical report and
is therefore too long and detailed to include in this paper. This section and sections 6
and 7 hence summarize the essential concepts in an example-driven fashion, after which
the reader should be able to digest the technical report, should they wish to read it.

In the following, notions relating to the source and target languages are typeset in green
and pink, respectively. The first Subsection 5.1 formally defines both directions of full
abstraction. Subsection 5.2 motivates the need for a back-translation and illustrates how
both directions of full abstraction can be proved by proving equi-termination between
source and target code. Subsection 5.3 further reduces these proofs of equi-termination
to a proof of relatedness under specific adequate relations between source and target code.

5.1 Full abstraction definition

To define our notion of full abstraction, we require a notion of behavioral equivalence.
As is standard in the literature, we define behavioral equivalence to be contextual equiva-
lence (Abadi, 1999; Patrignani et al., 2015; New et al., 2016; Devriese et al., 2016). Terms
x and x′ are contextually equivalent, denoted x �ctx x′, if ∀C : C[x] ⇓ ⇔ C[x′] ⇓ where ⇓
denotes termination of execution and C is any program context with a hole that x and x′

can be plugged into. Both x and x′ are either source or target components in our case. A
context C consists of two parts in both source and target languages: a component context
Cs or Ct, which is a sequence of components, and a main function identifier, denoted by
the metavariable id, identifying the main function to execute when starting program exe-
cution. A context is hence denoted (C, id) and an entire program C[x]//@main = id . In

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

26 T. Van Strydonck et al.

our source language, the notion of plugging from the contextual equivalence definition
above also requires (in addition to the program well-formedness constraints denoted by
�WF scomp in Figure 7 in the previous section) that given the source component proof
� s and the context (Cs, id), a program proof � Cs[s]//@main = id exists. The notion of
plugging in the target language solely requires program well-formedness, expressed by a
similar judgment �WF tcomp for target programs, defined in the technical report.

Full abstraction is then defined as the reflection and preservation of contextual equiv-
alence �ctx (Abadi, 1999). Given source components s and s′ and target components
t and t′, we have that compilation is fully abstract iff � s� t and � s′� t′ imply that
(t �ctx t′ ⇔ s �ctx s′). This statement depends on the chosen proofs � of s and s′, but has to
hold for any such choice. Notice how our formulation of full abstraction does not make a
distinction between code that gets stuck and code that diverges. In other words, diverging
source code could in theory be compiled to target code that gets stuck. This is, however,
not a real concern; since our compiler does not alter control flow, it should be easy to prove
that it preserves divergence and stuckness individually, if so desired.

Fully abstract compilation proofs are usually split up in a correctness proof direction
⇒ that states (by contraposition) that non-equivalent source programs should yield non-
equivalent target programs and a security proof direction ⇐ that (by contraposition) states
that any non-equivalence in the target programs should already have been there in the
source programs, and hence attackers have no more power in the absence of contracts than
they do in their presence. Both proof directions are summarized by the following equations:

∀ s, s′, t, t′. � s� t ∧ � s′� t′ ⇒ (t �ctx t′ ⇒ s �ctx s′) (CORRECTNESS)
∀ s, s′, t, t′. � s� t ∧ � s′� t′ ⇒ (t �ctx t′ ⇐ s �ctx s′) (SECURITY)

5.2 Full abstraction as source-to-target equi-termination

We first dissect the CORRECTNESS direction above. To prove s �ctx s′, we need to
prove (by definition) that Cs[s]//@main = id ⇓ ⇔ Cs[s′]//@main = id ⇓, given any
source context (Cs, id) such that we can construct proofs � Cs[s]//@main = id and
� Cs[s′]//@main = id from � s and � s′. If we can prove that verified code and its com-
pilation equi-terminate, that is, if it holds for any contexts (Cs, id) and (Ct, id) and any
components s and t (with � s� t) that:

� Cs[s]//@main = id � Ct[t]//@main = id ⇒
(Cs[s]//@main = id ⇓ ⇔ Ct[t]//@main = id ⇓)

(COMP-�)

then we can prove s �ctx s′. The reason is that we know from t �ctx t′ that
Ct[t]//@main = id and Ct[t′]//@main = id equi-terminate, and hence that:

Cs[s]//@main = id ⇓ ⇔ Ct[t]//@main = id ⇓ ⇔
Ct[t′]//@main = id ⇓ ⇔ Cs[s′]//@main = id ⇓.

We would like to repeat the above process for the SECURITY direction, that is, prove
t �ctx t′ through some form of equi-termination between source and target code. To prove
t �ctx t′, we need to prove (by definition) that

Ct[t]//@main = id ⇓ ⇔ Ct[t
′]//@main = id ⇓

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 27

given any target context (Ct, id) and source component proofs � s and � s′. There is,
however, one problem: since we start from a target context (Ct, id) rather than a source
context (Cs, id), we cannot use our compiler to construct an equi-terminating source
program for us. Simply inverting the compilation function is impossible, since it is not
a bijection; the compiler’s range is a strict subset of the target language. Hence, we
need a new transformation, this time from target to source, to create equi-terminating
source code, starting from any target-context (Ct, id) and a source component proof
� s. This target-to-source code transformation is called the back-translation, denoted
� s, (Ct, id)�b � Cs[s]//@main = id , and is a standard tool in full abstraction proofs.
The proof � s is necessary because the back-translated context (Cs, id) needs to result in
a sound program proof � Cs[s]//@main = id (since s �ctx s′ requires verified code). To
back-translate individual target statements tstm, no such proof is required and we hence
simply write tstm�b � sstm.

Having introduced a back-translation, we can repeat the process used to prove
CORRECTNESS. If we can prove that target code and its back-translation equi-terminate,
that is, if it holds for any contexts (Cs, id) and (Ct, id) and any components s and t (with
� s� t) that:

� s, (Ct, id)�b � Cs[s]//@main = id ⇒
(Cs[s]//@main = id ⇓ ⇔ Ct[t]//@main = id ⇓)

(BT-�)

Then t �ctx t′. The reasoning is analogous to the one for CORRECTNESS above.
For the sake of brevity, we introduce short notations for the compilation of general

source code s and the back-translation of target contexts Ct:

• The target code �� s� denotes the result t of the compilation � s� t.
• The source context (without proof) 〈〈� s, (Ct, id)〉〉 denotes the context Cs in the back-

translation � s, (Ct, id)�b � Cs[s]//@main = id . To avoid notational clutter, we
usually simply write 〈〈Ct〉〉 when � s is clear from context.

5.3 Proof decomposition: Relational view

This subsection provides a more detailed account of the proofs of CORRECTNESS

and SECURITY by further decomposing their proof obligations COMP-� and BT-� from
the previous subsection. The proof schemata in Figures 13 and 14 (inspired by the schemata
of Devriese et al., 2016) illustrate this decomposition graphically. The equi-termination in
both COMP-� and BT-� is proved by using two auxiliary relations R and S, for the cor-
rectness and security directions of full abstraction, respectively. Both R and S are binary
relations that relate source language states to target language states during execution. These
states are of the same form as the program states in the operational semantics, 〈s, h〉 | c.
Again, c is either a sequence of partially executed function bodies, or an entire program.

These relations internally make use of simulation relations (see e.g. Chlipala, 2017),
to capture the lock-step execution of source and target code. However, R and S are not
technically simulation relations themselves (see Section 7). In this section, we consider
both relations to be black boxes.

One important caveat should already be made regarding the source language states: since
our compilation is separation-logic-driven, the target language states mirror the states of

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

28 T. Van Strydonck et al.

the separation logic proof in the source language, and not just the states of the execut-
ing source code itself. For example, at any given point during execution of code and its
compilation, the linear capabilities present in the heap and stack in the target language will
correspond to the separation logic resources present in the proof of the current source code.
An analogous argument holds for the back-translation; the linear capabilities in the target
language are reflected as separation logic resources in the source language at any point
during execution and hence require the inclusion of a proof into the source-language states.

As an example of why raw, unverified source code does not suffice to define R (or S),
consider the following single-statement verified source program � s :

{n : a �→int [2]}•[a:a] a[0] = 3 {n : a �→int [3]}•[a:a]

and its compilation �� s� ≡ n[0] = 3. In the correctness setting, that is, when relating � s
and �� s� through R, we need to relate the contents of the linear capability n in the target
to the separation logic resource n in the source. If we solely used the raw source code
without proof as the source state in R, that is, the program a[0] = 3, then it would be
impossible to know what part of the source heap the target linear capability n corresponds
to because we erased the connection between n and a by erasing the verification proof.
Additionally, if R would not constrain the contents of both to correspond and be equal to
the single element 2 (in the target-level stack and the separation logic proof, respectively),
simulation would get stuck if, for example, a conditional statement was encountered that
checked whether a[0] == 2 in the source language (and hence whether n[0] == 2 in the
target). Of course, in addition to enforcing this correspondence between source proof and
target-level capabilities, R and S will also need to relate the concrete stack and heap in the
source language to the current logical state in the precondition. More details about this can
be found in the technical report.

In order to relate source and target states as they execute, we need a notion of separation
logic proof that evolves along with the executing source code. We obtain this by lifting the
source-level operational semantics to the verified source code. This new lifted operational
semantics is detailed in the technical report. The definition relies on the property of proof
preservation (the analog to type preservation in type systems, see e.g. Pierce, 2002). The
property states the following: if we have a transition 〈s, h〉 | c ↪→ 〈s′, h′〉 | c′ in the non-
lifted operational semantics, and proofs � c, then the resulting program c′ is also provable,
that is, we can construct proofs � c′. Using this lemma, the lifted operational semantics
essentially lets verified programs � c step to � c′.

To better understand the lifted semantics, let us consider the execution of � s and �� s�

in the above example. Assuming appropriate stacks and heaps, both s (the source pro-
gram without proof) and �� s� evaluate to a single skip statement in one step (cfr. the
ARRAYMUT rule in Figure 4). Proof preservation updates the proof of � s to a proof of the
resulting skip statement:

{n : a �→int [3]}•[a:a] skip {n : a �→int [3]}•[a:a]

Note how we have “executed” the precondition of � s to match the now executed array
mutation.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 29

s �???
ctx s′

Cs[s] ⇓ Cs[s′] ⇓???

�ctx

� Cs[s] ⇓ � Cs[s′] ⇓
(1) (1)

�� Cs�
[
�� s�

]
⇓ �� Cs�

[
�� s′�

]
⇓���

(2) + (3) (2) + (3)

�s� ����
ctx �s′�

�ctx

(1) � sprog ⇓ ⇔ sprog ⇓ (COHERENCE)

(2) � Cs[s]//@main = id �
�� Cs�

[
�� s′�

]
//@main = id

⇒

(〈•, •〉 | � Cs[s]//@main = id) R

(〈•, •〉 | �� Cs�
[
�� s�

]
//@main = id)

(COMPATIBILITY)

(3) (〈•, •〉 | � sprog) R (〈•, •〉 | tprog) ⇒
� sprog ⇓ ⇔ tprog ⇓

(ADEQUACY)

Fig. 13. CORRECTNESS proof outline.

s ����
ctx s′

〈〈Ct〉〉[s] ⇓ 〈〈Ct〉〉[s′] ⇓���

�ctx

� 〈〈Ct〉〉[s] ⇓ � 〈〈Ct〉〉[s′] ⇓
(1) (1)

Ct

[
�� s�

]
⇓ Ct

[
�� s′�

]
⇓???

(2) + (3) (2) + (3)

�s� �???
ctx �s′�

�ctx

(1) � sprog ⇓ ⇔ sprog ⇓ (COHERENCE)

(2) � s, (Ct, id)�b

�〈〈Ct〉〉[s]//@main = id

⇒

(〈•, •〉 | �〈〈Ct〉〉[s]//@main = id) S

(〈•, •〉 | Ct

[
�� s�

]
//@main = id)

(COMPATIBILITY)

(3) (〈•, •〉 | � sprog) S (〈•, •〉 | tprog) ⇒
� sprog ⇓ ⇔ tprog ⇓

(ADEQUACY)

Fig. 14. SECURITY proof outline.

Now that we understand how R and S relate source states of the form 〈s, h〉 | � c
(where � c is either a monolithic, verified source program or a sequence of verified,
partially executed function bodies) with target states of the form 〈s, h〉 | c, let us take
a close look at Figures 13 and 14. Note how their visual similarity illustrates the
similarities between the two proof directions. For compactness’ sake, the main function
specification //@main = id has been left out of the source and target program descrip-
tions in both schemata, for example abbreviating � Cs[s]//@main = id to � Cs[s] and
Ct[t]//@main = id to Ct[t]. The proof steps are denoted by arrows ⇒, where a��� denotes
a given and ??? a proof obligation. The contextual equivalence we need to prove has been
boxed and is situated across from the given contextual equivalence. The proof in both

proof schemata starts at the left side of the dashed
???=⇒ and traces the entire circle before

arriving at its right side. For both correctness and security, all proof steps ⇒ are explained
by either the definition of contextual equivalence �ctx, or one of a set of three auxiliary

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

30 T. Van Strydonck et al.

lemmas. These three lemmas are similar between correctness and security and numbered
(1), (2) and (3) in both. Notice how the number-annotated proof steps, considered in
isolation, indeed constitute a decomposition of the proof obligations COMP-� and BT-�
in the respective figures. For example, starting from the top left corner in Figure 13, con-
secutively applying (1), (2) and (3) and ending up in the bottom left corner, corresponds
to the left-to-right implication in COMP-�. Starting from the bottom right and moving
upwards results in the right-to-left implication direction. We now discuss the role of both
contextual equivalence and the three lemmas in order.

The arrows annotated with �ctx and �ctx denote an application of the definition of
source- and target-level contextual equivalence, respectively. The universal quantification
over (well-formed) contexts (Cs, id) and (Ct, id) is left implicit in the unfolding of the def-
inition. For correctness (and similarly for security), the implication in the proof obligation

Cs[s] ⇓ ???=⇒ Cs[s′] ⇓ is sufficient to prove contextual equivalence in the source language.
The other direction follows by symmetry.

The COHERENCE lemma (1) states that source programs in the regular operational
semantics (i.e. without their proofs) and the same source programs in the lifted operational
semantics (i.e. including their proofs) equi-terminate. This lemma allows adding proofs to
source programs and conversely stripping them away, all the while preserving termination.
This conversion is necessary since �ctx is defined using the regular operational semantics,
whereas the relations S and R make use of the lifted semantics.

The COMPATIBILITY (2) and ADEQUACY (3) lemmas are used in combination to
prove equi-termination between a source program and its compilation in the correct-
ness case, and between a target program and its back-translation in the security case.
COMPATIBILITY proves that any source program and its compilation are related by R
under the empty stack and heap for correctness and that any target program and its back-
translation are related by S under the empty stack and heap for security. ADEQUACY

finishes the combined equi-termination argument by stating that source and target pro-
grams related by S or R equi-terminate (from the empty stack and heap). The proof of
ADEQUACY follows straightforwardly from the fact that S and R internally make use of
simulation relations. This will be clarified further in Section 7.

6 Proving security: the back-translation

Similarly to how Section 4 introduced compilation using Figure 9, this section will
introduce the back-translation by means of an example, that builds on top of the com-
pilation example. The goal of this section is to illustrate how the back-translation of
this example satisfies one specific instance of BT-� from the previous section, in the
process highlighting the key concepts behind the back-translation. Concretely, we will
back-translate a target-level implementation of the context function add1 from Figure 9
and provide intuitions for why the back-translation and the original implementation
equi-terminate. The concrete implementation of add1 that we will back-translate is given
in the bottom-right of Figure 16.

Let us identify what concrete instance of BT-� we have to prove here. The verification
of f from Figure 9 acts as our verified component � s = � (f //@import add1). Note the

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 31

1 void main()
2 //@pre true
3 //@post true {
4 int* a; a = malloc(2 * sizeof(int));
5 a[0] = 0; a[1] = 1;
6 int res; res = f(a);
7 return }

Fig. 15. Example implementation of a main function wrapping f from Figure 9.

Fig. 16. Illustrative example: Naive back-translation of a context that implements add1.

slight abuse of notation, where we use the name of a function (f) for its entire implemen-
tation. Consequently, fcomp and add1comp together act as our compiled target component
t = �� s� = fcomp add1comp //@import add1 . Our target context (Ct, id) then consists of
the target function add1’s implementation in Figure 16 and an arbitrary choice for the
main function id.

Since the main function in our formalization is not allowed to have arguments, needs
to have void as its return type and needs to be exported by some component, we cannot
have fcomp nor add1 as a main function. Instead, we could, for example, add an exported
function main to � s, solely serving as a wrapper for f , with an implementation as shown
in Figure 15.

This function main is compiled by our compiler to a function maincomp, and since it is an
exported function, an incall stub (without guard statements, since the precondition of main
is true) main is generated, which is the target main function and would in turn have to be

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

32 T. Van Strydonck et al.

back-translated as well. However, to not needlessly clutter our example, we simply assume
the main function in both source and target languages to be called main, respectively main,
and do not explicitly represent or back-translate this main function anywhere.

In other words, (Ct, id) = ((add1 //@export add1), main), where we will not explic-
itly write main in t. Notice how t and (Ct, id) together form a sound target-program, as
required by the definition of contextual equivalence t �ctx t′ in Section 5.2. To prove this
specific instance of (BT-�), we have to back-translate the example context (Ct, id) to
a context (Cs, id) such that � Cs[s]//@main = id is a valid separation logic proof, and
Cs[s]//@main = id and Ct[t]//@main = id equi-terminate. As we will see, Cs will con-
tain both a back-translation add1bt of add1 and a back-translation add1 of the outcall stub
add1comp, resulting in the source context

(Cs, id) = (〈〈Ct〉〉, id) = ((add1 add1bt //@export add1), main)

where, again, we will not explicitly write main in � s.
Notice how the implementation of the context function add1 in Figure 16 upholds the

source-level contract that the verified component � s expects of add1 in Figure 9: it reads
the first element of resource m, increments and returns it, together with resource m, without
altering the address of m or its contents. The context (Ct, id) is not required to behave
properly like this! It might also add 2 instead, change the contents of the resource m,
etc., effectively ignoring the expectations of � s and causing execution to get stuck at the
guard statements of the outcall stub add1comp. This extra freedom of the target context
to misbehave, and the requirement for guard statements to detect such misbehavior, is
at the core of the full abstraction proof: the security proof direction states that we can
reinterpret (i.e. back-translate) even possibly misbehaving contexts as equi-terminating,
verified source contexts that are incapable of breaking the verification guarantees of � s.
Section 6.3 will further illustrate this point, by briefly demonstrating the back-translations
of a few misbehaving implementations of add1.

The remainder of this section introduces the back-translation incrementally, introduc-
ing key concepts gradually. First, Section 6.1 starts off with a naive back-translation of
add1 that does not generalize to arbitrary code. After pointing out some problems in gen-
eralizing this back-translation, Section 6.2 introduces a version that works for any target
code not using nested pointer types (such as int∗∗) in the target language. As mentioned,
Section 6.3 briefly investigates the back-translation of misbehaving contexts. Finally,
Section 6.4 sketches what the most general back-translation looks like by investigating
the back-translation of nested pointers.

6.1 Naive back-translation

This subsection constructs a naive version of the back-translation of add1 from Figure 16
and discusses the results in the Source row of this same figure. The back-translation is
naive because it assumes a statically known size of 1 for all target capabilities (the naive
assumption) and does not support back-translating nested pointer types. These assumptions
are unproblematic for add1.

We first define the back-translation of types and expressions. Target types that can result
from compilation of source types, that is, int, length-0 capabilities τs∗0 and tuples (τ ∗

t), are

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 33

simply back-translated inversely to how they are compiled. However, linear capabilities
are reified resources and did not originally exist in the source language, so we have to
come up with a way to represent them.

Target linear capabilities l[a,b] inherently contain both an address l and a length b − a +
1, as discussed in Section 3.3. To extract these, the target language contains built-in addr
and length functions. Pointers in the source language are of the form (l, i), are non-linear
and do not have built-in length information, and the source language does not have (or
need) addr or length functions. Fortunately, the naive back-translation assumes all target
pointers to have a statically known length of 1, so there is no need to keep any length
information in the source language. It is hence possible to simply back-translate linear
capabilities of type τ∗ to source-level pointers τ ′∗, where τ ′ is obtained by recursively
back-translating τ . The pointer τ ′∗ simultaneously represents the back-translated address,
since τ ′∗ is non-linear and allows for pointer arithmetic. Both the length and the address
information of each capability are hence retained during back-translation. These back-
translations of target types are formalized by the judgment τ �InvCompileType τ ′, dual to
τ �CompileType τ ′ from Section 4.2, that recursively back-translates target types as follows:

(INVCOMPILEINT)

int�InvCompileType int

τ ′�InvCompileType τ

(INVCOMPILESRCPTR)

τ ′∗0�InvCompileType τ∗

τ1�InvCompileType τ ′
1 . . . τk�InvCompileType τ ′

k
(INVCOMPILETUPLE)

(τ1, . . . , τk)�InvCompileType (τ ′
1, . . . , τ ′

k)

τ �InvCompileType τ ′
(INVERTCAPABILITY)

τ∗�InvCompileType τ ′∗
Section 6.2 will scrap the naive assumption and will therefore have to introduce a more
involved back-translation for pointer types, retaining length information.

Unfortunately, the back-translated linear capabilities will not automatically behave
linearly. Therefore, our back-translation needs to simulate their linear behavior. Extra
statements have to be added during the back-translation to imitate the target-language
erasure of capabilities. For example, when back-translating the assignment x = y with y
of type int∗, an erasure assignment y = null will be added in the source. Similarly, once
we support back-translating nested pointers in Section 6.4, back-translating the assign-
ment x = n[2] with n of target type int∗∗ produces an erasure assignment n[2] = null in the
source. Additionally, since the target language gets stuck when the same target capability
is used twice in one statement, the back-translation then has to artificially get stuck as well.
For example, when back-translating the assignment x = (y, y), with y as before, the source
language needs to add a statement guard(false) to ensure equi-termination.

The back-translation of expressions texp, denoted texpb, is now easy to define, since
target and source expressions only differ in the addr and length functions mentioned before.
The back-translation hence maps addr(texp) to texpb (the pointer doubles as address, since
it is copyable) and length(texp) to (texpb != null) (all non-null capabilities are assumed to
have length 1, whereas null has length 0). All other cases proceed structurally.

With these prerequisites out of the way, we can examine the back-translation Cs of the
target context Ct, shown in the top row of Figure 16. As mentioned, this back-translation
consists of two separate parts: not only the expected back-translation add1bt of the target

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

34 T. Van Strydonck et al.

1
{univ contrint∗0

(a)
∗ univ contrint∗(m)}•[a:a][m:m]

2 int b;
3 {∼}•[a:a][m:m][b:0]

4
{univ contrint∗0

(a) ∗ univ contrint∗(m)
∗ univ contrint(b)}•[a:a][m:m][b:b]

5
{true ∗ (m != null) ? mchunk : m �→int [l1]
∗ true}•[a:a][m:m][b:b]

6 guard(m != null);
7 {mchunk : m �→int [l1] ∗ 0 < 1}•[a:a][m:m][b:b]
8 b = m[0];
9 {∼}•[a:a][m:m][b:l1]

10
{univ contrint∗0

(a) ∗ univ contrint∗(m)
∗ univ contrint(b)}•[a:a][m:m][b:b]

11 return (b + 1,m)
12 {univ contrint(result1) ∗ univ contrint∗(result2)}•

int b; �b

b = m[0]; �b

return (b + 1,m) �b

Fig. 17. Separation logic proof of the body of add1bt from the naive back-translation example.

function add1 on the right, but also a back-translation add1 of the previously generated
stub add1comp on the left. Conceptually, the universal contract of add1bt captures how the
use of linear capabilities in the target language restricts the behavior of the context function
add1, whereas guards in add1 will enforce further functional conditions that f expects of
add1. The function add1 is derived from add1bt, using a separate back-translation for stubs
that we will motivate below. First, let us investigate how regular target functions such as
add1 are back-translated.

Essentially, our goal is to understand Figure 17: the back-translation equivalent of the
proof of add1bt in Figure 10. The notation ∼ is used to denote an unaltered symbolic heap.
A first question is what the separation-logic contract of the back-translated function add1bt

should be. The desired contract is the one � s expects for add1 in Figure 9, so that the
resulting source program Cs[s]//@main = id has a sound verification. However, since the
target context add1 can freely misbehave as we saw earlier, proving this contract will in
general be impossible. Additionally, if the context contains functions that are not imported
by � s, there are no restrictions on their contract whatsoever.

The solution is to employ the most general admissible contract for the back-translation
and adapt it to the expected contract separately (see below). This contract will express
the permissions associated with target-language capabilities as separation logic resources
in the source. Combining the resources represented by all arguments of a back-translated
function gives us its precondition and the resources represented by its result are the post-
condition. We call this type of contract a universal contract and define it in the next
paragraph. Lines 2–3 of add1bt in Figure 16 show the universal contract for add1bt.

Universal contracts univ contrτt are predicates on logical expressions exp. They are
indexed by the target type τt of idp, since this type determines the target-language permis-
sions associated with the variable. Universal contracts are separation logic assertions and
hence cannot take program variables like idp as a direct argument. The universal contract
for a program variable idp of type τt is obtained by applying univ contrτt to the variable’s
logical interpretation γ (idp).

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 35

We now present a simplified definition for universal contracts, which we will expand
upon in Sections 6.2 and 6.4:

Definition (univ contrτt (exp)).

univ contrτt (exp)� true if τt = int or τt = τs∗0

univ contr(τ1,...,τk)(exp)� univ contrτ1 (exp.1) ∗ . . . ∗ univ contrτk
(exp.k)

univ contrτt∗(exp)� (exp != null) ? ∃l1. n : exp �→τs [l1]

given that τt�InvCompileType τs and n fresh

The case for target capabilities τt∗ is the only non-trivial one. It states that a linear
capability is either the null-pointer or that it has length one (per the naive assumption
made before) and allows access to its unspecified contents l1.

Universal contracts are now used to back-translate each target-level statement to a block
of verified source code. Both the separation-logic pre- and postconditions of such blocks
consist of the separating conjunction of universal contracts for all declared target-level pro-
gram variables. The universal contract will hence monotonically increase throughout the
proof; if a tstm declares a set of variables Vtstm, if variables Vpre were previously declared
and if tstm�b � sstm holds, then sstm has as contract (omitting type subscripts)

{univ contr(γpre(Vpre))}γpre sstm {univ contr(γpost(Vpre ∪ Vtstm))}γpost

One of the main efforts in defining the back-translation is proving that the above Hoare
triple indeed holds for all single-statement back-translation rules. Figure 17 demonstrates
this block-level proof; the three statements (including return) of add1 are back-translated
to the three annotated blocks on lines 1–4, 4–10 and 10–12 in the proof.

These separate proof blocks offer the advantage that the back-translation can be proven
modularly, on a block-per-block basis, since we already know that the last block’s post-
condition and the next blocks’s precondition will correspond. At the start of function
execution, only the arguments idarg have been declared; the precondition of a back-
translated function is hence univ contr(idarg), as demonstrated on line 1 of Figure 17. The
postcondition is an exception, since the caller only cares about the privileged result vari-
ables and resources over them. The universal postcondition is hence univ contr(result), as
demonstrated on line 12 of Figure 17. This postcondition is achieved through CONSEQ

once the function’s body (without the return statement) is proven.
Since each back-translated block of code has to start and end in a universal contract, each

block consists of three separate phases. These three phases are summarized in Figure 18.
To illustrate this figure, we investigate the back-translation of the array lookup on line 2 in
add1, that is, the middle block on lines 4–10 in Figure 17.

First, to match the precondition of the ARRAYLKUP separation logic rule, we need
a resource different from the null pointer and we need to know that our index (0 here)
is within the bounds of our array. This last fact follows automatically from the naive
assumption. Since the universal contract does not provide us guarantees about the pointer
m not being null, lines 4–7 add this condition through a guard and derive the necessary
preconditions for ARRAYLKUP using CONSEQ. Failing this inserted guard statement
would make the back-translated program get stuck. This is desired behavior, preserving

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

36 T. Van Strydonck et al.

Fig. 18. Illustration of the general three-phase structure of back-translation rules.

equi-termination, since the target operational semantics would also get stuck in this
faulty case. To summarize, this first phase, called CONCRETIZATION in Figure 18, starts
from the universal contract and transforms it into the precondition concrete pre of the
separation logic rule we actually want to apply. As we will discuss in Section 6.2, this
phase will also include transformations on ghost resources in the general case.

Second, the core rule ARRAYLKUP is applied on lines 7–9, leaving us with the con-
crete postcondition concrete post. This second phase is called RULE APPLICATION in
Figure 18. Finally, on lines 9–10, CONSEQ is applied to forget the information added
through the guard statement and the array lookup, making the postcondition univer-
sal again. This third phase is called UNIVERSALIZATION in Figure 18 and transforms
concrete post back into a universal contract. As with CONCRETIZATION, transformations
on ghost resources can be required in more complex cases. In general, it is non-trivial to
see that the CONSEQ rule will always suffice to prove UNIVERSALIZATION. In the techni-
cal report, this fact is proven for each back-translation rule individually, by making use of
Theorems 5 and 6.

The back-translations of other statements follow the same structure of Figure 18. For
some simple statements, the first phase might be empty. Such is the case for, for example,
the return block on lines 10–12 of Figure 17.

The aforementioned simulation of linearity in the source language has so far been
swept under the rug in this discussion. Concretely, the UNIVERSALIZATION phase inserts
erasure statements for linear capabilities, whereas the CONCRETIZATION phase makes
sure that guard(false) statements are inserted when linear capabilities would otherwise be
duplicated.

We can now back-translate regular target functions, but the resulting universal contracts
do not match the concrete contracts that the source context � s expects, for example, the
contract for add1 in Figure 9 does not match the universal contract of add1bt in Figure 16.
When f performs an outcall to add1, the gap between the preconditions of add1 and
add1bt needs to be bridged: the back-translated argument m needs to be constructed and
the universal contracts univ contr of m and a need to be satisfied, starting from the con-
crete precondition of add1. Conversely, when add1 returns control to f afterward, we
need to find a way to transform the universal postcondition of add1bt into the concrete
postcondition of add1 that f expects.

When we had a similar mismatch between guarantees and expectations on trust bound-
aries during compilation, we introduced stubs to enforce contracts at the target level.
Enforcing a contract is exactly what we need to do here, but now at the source level. We
therefore reexamine the outcall stub add1comp (semi-transparently repeated in Figure 16)
that � s generates for add1, based on the contract it expects add1 to uphold. This outcall

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 37

1 (. . .)
2 (result,n) = add1bt(a,m);

3

{univ contrint∗0
(result)

∗ univ contrint∗(n, 1)}•[a:a][a
pre
1 :a1][result:result][n:n]

4 guard(n != null);
5 {true ∗ nchunk : n �→int [l1]}[∼]

6 int* apost; int apost
1 ;

7 {nchunk : n �→int [l1]}
[∼][apost:0][a

post
1 :0]

8 apost = n; apost
1 = n[0];

9 {nchunk : n �→int [l1]}
•[∼][apost:n][a

post
1 :l1]

10 guard(result == apost
1 + 1);

11 guard(apost == a); guard(apost
1 == apre

1);

12
{nchunk : n �→int [l1] ∗ result == l1 + 1
∗ n == a ∗ l1 == a1}[∼]

13
{nchunk : a �→int [a1] ∗
result == a1 + 1}[result:result]

14 return result
15 {n : a �→int [a1] ∗ result == a1 + 1}[result:result]

Fig. 19. Excerpt from the separation logic proof of the body of add1 from the naive back-translation
example.

stub contains reified checks (i.e. the guard statements on line 6 and lines 9–10) enforcing all
conditions present in the postcondition of add1. In other words, if we can somehow back-
translate the outcall stub add1comp and insert it between f and add1bt, the back-translated
guard statements should correctly add the missing concrete conditions to add1bt’s uni-
versal postcondition. Additionally, but less crucially, this back-translated outcall stub will
have to connect the arguments and preconditions of the two functions. Given that the back-
translated outcall stub needs to convert add1bt’s universal postcondition into f ’s concrete
one and vice versa for preconditions, the back-translation cannot make use of universal
contract blocks, as it did for add1bt. Stubs hence make use of an alternative, second,
back-translation, which does retain concrete information across back-translated statements.

The back-translated outcall stub, called add1 to match the name used by f , is shown in
the top left corner of Figure 16. It mostly consists of straightforward back-translations of
the individual statements of add1comp, with a few caveats, mainly caused by the fact that
f is a regular verified source function, whereas add1comp is a back-translated function that
mimics a target function. The non-obvious aspects are the following:

• Notice how the guard statement checking the length of n on line 6 of add1comp

is absent on line 9 of add1. This discrepancy is caused by the naive assumption,
which allows us to know beforehand that n has length 1. This distinction between
the functions is a clear hint that our current back-translation schema is not suffi-
ciently general. It will naturally disappear in the next section, when we lift the naive
assumption.

• A proof of the contract of add1 needs to be constructed, to prove soundness of
the back-translation. Contrary to the regular back-translation, no universal contract
blocks are created for each back-translated statement, since we want to make a non-
modular proof. This implies that only the RULE APPLICATION phase for each back-
translated block is kept. An example of symbolic execution of the interesting part
of add1, describing how the back-translated guard statements transform a universal
contract into a concrete postcondition, is found in Figure 19.

• The function f is unaware of the back-translated reified resource m, whereas add1bt

expects m as an argument. This value hence has to be declared and assigned on
line 4 of add1, using the information about the logical resource m present in the
precondition.

• The back-translated guard statements in add1 guarantee equi-termination between
source and target languages when add1bt misbehaves, since they mirror the guards
in the target-level outcall stub add1comp.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

38 T. Van Strydonck et al.

Because the example’s back-translation (including source-level stubs) forms a sound
separation-logic proof and closely mimics the target language, this concrete instantiation
of equation (BT-�) will indeed hold, as we set out to illustrate at the start of this section.

6.2 The regular back-translation

In this section, we generalize the back-translation of add1, introduced in Section 6.1, by
lifting the naive assumption made there. Concretely, we discard the assumption that each
target-level linear capability should have size one and extend the back-translation to allow
for linear capabilities of arbitrary size. In fact, the size of linear capabilities may not be
statically determined, and we have to take this into account in the back-translation. For
example, add1 might be invoked by other functions than f , which may hand it a capability
m with an arbitrary size. The current universal contract for m in Figure 16 clearly does not
allow for this case.

In addition to this first generalization, we will reformulate the definition of universal
contracts to use range instead of array resources. This reformulation is required for the
back-translation of nested pointers, the discussion of which we defer to Section 6.4.

The back-translation of our example-context, add1, is updated to reflect both changes.
The results are presented in Figures 20 and 21, which generalize Figures 16 and 17, respec-
tively. We first revisit the back-translation of types and expressions, before redefining
universal contracts.

Now that linear capabilities l[a,b] are no longer assumed to always have length 1 in the
target language, an information discrepancy between source and target pointers arises. The
naive back-translation of target pointers to source pointers in the INVERTCAPABILITY

rule made us forget their length b − a + 1. We add length information to back-translated
pointers by introducing a form of fat pointer scheme. We back-translate each linear capa-
bility of type τ∗ to a pair (τ ′∗, int). The first element τ ′∗ is a pointer to contents of
type τ ′ (the recursive back-translation of type τ). Again, τ ′∗ simultaneously represents
the pointer’s address. The second int element is the externalized length of the capability.
The null-pointer null is back-translated to the fat pointer (null, 0). In summary, we update
the judgment τ �InvCompileType τ ′, by redefining its INVERTCAPABILITY rule as follows:

τ �InvCompileType τ ′
(INVERTCAPABILITY)

τ∗�InvCompileType (τ ′∗, int)

The simulation of linear behavior in the source language remains mostly unaltered. The
only difference is that linear erasure should now make use of fat pointers. When, for exam-
ple, back-translating the assignment x = n[2] with n of target type int∗∗ from before, an
erasure assignment n[2] = (null, 0) has to be added in the source (remember that (null, 0)
is the fat null-pointer).

The back-translation of expressions also largely remains the same, except for the length
and address functions, which we created our fat pointer scheme for. The back-translation
hence maps addr(texp) to texpb.1 (the address is the first part of the fat pointer), length(texp)
to texpb.2 (the length is the second part of the fat pointer) and null to (null, 0) (as mentioned
before). All other cases are still the identity.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 39

Fig. 20. Illustrative example: back-translating a context that implements add1. The differences with
Figure 16 have been highlighted.

1
{univ contrint∗0

(a)
∗ univ contrint∗(m)}•[a:a][m:m]

2 int b;
3 {∼}•[a:a][m:m][b:0]

4
{univ contrint∗0

(a) ∗ univ contrint∗(m)
∗ univ contrint(b)}•[a:a][m:m][b:b]

5

{true ∗ (m.1 != (null, 0)) ? (length(l) == m.2
∗ mchunk : [m.1 + i �→int l[i] | 0 ≤ i < length(l)])
∗ true}•[a:a][m:m][b:b]

6 guard(m != (null,0)); guard(0 ≤ 0 < m.2);

7
{mchunk : [m.1 + i �→int l[i] | 0 ≤ i < length(l)]
∗ length(l) == m.2 ∗ 0 < m.2}•[a:a][m:m][b:b]

8 //@split mchunk[1]; //@flatten m0
chunk;

9

{m0,flat
chunk : m.1 �→int l[0]

∗ m1+
chunk : [m.1 + i �→int l[i] | 1 ≤ i < length(l)]

∗ length(l) == m.2 ∗ 0 < m.2}•[a:a][m:m][b:b]

10 b = m.1[0];
11 {∼}•[a:a][m:m][b: l[0]]

12 //@collect m0,flat
chunk; //@join m0

chunk m1+
chunk;

13
{mchunk : [m.1 + i �→int l[i] | 0 ≤ i < length(l)]
∗ length(l) == m.2}•[a:a][m:m][b:b]

14
{univ contrint∗0

(a) ∗ univ contrint∗(m)
∗ univ contrint(b)}•[a:a][m:m][b:b]

15 return (b + 1,m)
16 {univ contrint(result1) ∗ univ contrint∗(result2)}•

int b; �b

b = m[0]; �b

return (b + 1,m) �b

Fig. 21. Separation logic proof of the body of add1bt from the back-translation example.

We now examine the updated back-translation add1bt of add1 in Figures 20 and 21. The
differences with Figure 16 are highlighted in Figure 20.

The first thing to note is the introduction of the guard statements on line 10 of add1
and line 6 of add1bt. Since we discarded the naive assumption, we have to manually
check whether add1bt returns a capability of size 1 as specified by the contract of add1.
In this way, these guards reintroduce length information to the universal contract. With
the addition of this length guard, add1 now reflects all guard statements of add1comp, as
expected.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

40 T. Van Strydonck et al.

Second, fat pointers cause minor differences. Lines 4, 6, 8, 10 and 13 of add1 and lines
1, 6 and 8 of add1bt have been adjusted to accommodate the fat pointer scheme.

Finally, as mentioned, the pointer case in the universal contracts on lines 2–3 of add1bt

has been adjusted to allow non-statically sized capabilities and to use range resources. The
new definition looks as follows:

Definition (univ contrτt (exp)-bis).

univ contrτt (exp) = true if τt = int or τt = τs∗0

univ contr(τ1,...,τk)(exp) = univ contrτ1 (exp.1) ∗ . . . ∗ univ contrτk
(exp.k)

univ contrτt∗(exp) =
exp != (null, 0) ? ∃l. (n : [exp.1 + i �→τs l[i] | 0 ≤ i < length(l)] ∗ length(l) == exp.2)

given that τt�InvCompileType τs and n fresh

The case for target capabilities τt∗ now states that a linear capability is either the fat null-
pointer (null, 0), or that we have a range resource that allows us to access each element l[i]
of the capability (without knowing anything about the value of l[i], hence the existen-
tial quantification over l), where exp.1 is the capability’s address and exp.2 is its length.
The fat-pointer scheme appears here because the universal contracts are used to describe
the permissions associated with back-translated τt∗-typed variables idp, and these back-
translated variables are fat pointers. Again, the CONSEQ rule will allow us to introduce or
eliminate the universal quantification.

Note that if we solely wanted to support non-statically sized capabilities, we might as
well have defined the τt∗-case as follows:

exp != (null, 0) ? ∃l. (n : exp.1 �→τs l ∗ length(l) == exp.2)

However, this formulation would not be sufficiently general to handle the back-translation
of nested pointers in Section 6.4, since it does not allow for nested universal contracts.
Specifically, when back-translating nested linear capabilities, each element of the back-
translated capability is again a pointer whose permissions are described by a universal
contract. This will require a recursive universal contract call inside the range resource in
the pointer case above.

The use of range resources in universal contracts necessitates some changes in the differ-
ent back-translation phases of Figure 18. Since the separation logic rules that are applied in
the RULE APPLICATION phase require array resources in their pre- and postconditions, we
need to convert the range resources from the universal contract to array resources before
applying the rule, and back afterward. This is what happens on lines 7 and 9 of add1bt

in Figure 20; the resource we have for the fat source pointer m is a range expression, but
we need an array resource to apply ARRAYLKUP on line 8. Afterward, we need a range
resource again to satisfy the universal contract. Lines 7–13 in Figure 21 perform this con-
version between array and range resources in both directions. A length-1 range resource
m0

chunk (not explicitly shown) is split from mchunk and flattened to the array resource m0,flat
chunk

on lines 7–9. The rule ARRAYLKUP can now be applied on lines 9–11. Afterward, the
resource is recollected to reobtain the range resource m0

chunk and rejoined to the rest of
the range resource on lines 11–13. In other words, the CONCRETIZATION phase for each

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 41

Type of Misbehavior Example Body

Functional
int b;
b = m[0];
return (b − 1,m)

Out of bounds
int b;
b = m[1];
return (b + 1,m)

Breaching linearity:

• Storing
int b;
b = m[0];
int* n; n = m;
return (b + 1,m)}

• Duplicating

int b;
b = m[0];
(int*,int*) n; n = (m,m);
m = n.1;
return (b + 1,m)

Fig. 22. Examples of different classes of misbehaving implementations of add1.

back-translated statement uses split and flatten statements to convert range resources to
array resources, and the UNIVERSALIZATION phase will use collect and join statement to
do the inverse.

A similar conversion between array and range resources is now required in the back-
translated stub add1, since the function f uses array resources, whereas add1comp uses
range resources. Lines 7 and 11 of add1 switch between the two representations, similarly
to lines 7–13 of Figure 21. Line 11 of add1 can simply be inserted (together with the new
guard on line 10) into the proof of Figure 19 to make it go through with the new definition
of universal contracts.

In the general case, lines 7 and 11 of add1 will not suffice to convert between a range and
array representation of resources. The reason for this is that the universal contract consists
of a range resource containing length-1 array resources. If, for example, the resource m in
the precondition of add1 was to have a length greater than 1, split statements would be
required before the collect on line 7 of add1. The technical report defines procedures to
perform this conversion in the general case.

6.3 Back-translating misbehaving contexts

Having defined a more general back-translation, this section briefly investigates how the
back-translation handles alternative, misbehaving implementations of add1. Notice that
swapping out the implementation of add1 does not affect the back-translated stub add1.
These misbehaving target contexts will always get stuck, either due to a failing guard
statement or due to the operational semantics. Since these alternative implementations of
add1 and their back-translations have to satisfy a specific equi-terminating instance of
BT-�, their back-translation should get stuck as well. The different types of misbehavior
are listed in Figure 22 and illustrated by means of a possible implementation of the body
of add1. They can be subdivided into three main categories: functional misbehavior, out of
bounds accesses and breaking the restrictions of linearity. We now discuss these in order.

First, add1 functionally misbehaves when it does not satisfy one or more non-spatial
conditions that f expects add1 to uphold in its postcondition. This will cause the failure of

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

42 T. Van Strydonck et al.

one or more guard statements in both add1 and add1comp, ensuring equi-termination. In the
concrete example from Figure 22, the variable b is decremented instead of incremented,
causing the guard statement on line 14 of add1 in Figure 20 and the corresponding guard
on line 9 of add1comp in Figure 9 to fail. Similarly, the example could have set the value
of m[0] to 0 before returning, reduced the bounds of m or tried to return a different linear
capability altogether, each time making a different pair of guard statements fail.

Second, out of bounds accesses happen when add1 reads from or writes to linear capa-
bilities outside their intended bounds. The example in Figure 22 contains a read from index
1 of m, causing ARRAYMUT from Figure 4 to get stuck when fcomp provides a value for m
with a length of 1. On the source level, the second guard statement on line 6 of add1bt in
Figure 20 (now enforcing 0 ≤ 1 < m.2) would ensure equi-termination.

Last, add1 can try to breach linearity guarantees and keep a copy of the linear pointer m,
either by trying to store it for later use, or by using multiple copies of m in one statement,
thereby trying to duplicate m.

The storing example in Figure 22 stores the value of m in n for later use. Currently, n in
this example is modeled as local state for simplicity reasons. However, it would be more
useful for a malicious context to store linear capabilities in context-global state. Our target
language model does not include such global state, but it could be simulated by passing
global state around using an additional parameter.

The third line of the example is back-translated to (int*,int) n; n = m; m = (null,0). The
last statement emulates erasure and ensures that both the first guard statement on line 10 of
add1 and the corresponding guard in add1comp fail. Notice that, if the postcondition of add1
did not require the return of the resource n, then the guard statements on line 10 of add1
would not have been generated, and the storing example would not have been problematic.

The duplication example in Figure 22 duplicates the value of m in n, before perhaps
storing it for later use or causing aliasing in the return value. The third line of the exam-
ple is back-translated to ((int*,int),(int*,int)) n; guard(false); n = (m,m); m = (null,0).
Remember that a guard(false) statement is inserted when back-translating code that
attempts to duplicate a linear capability. The guard statement ensures equi-termination,
emulating the target-level semantics getting stuck.

6.4 Back-translating nested pointers

The back-translation in Section 6.2 did not yet support back-translating nested pointer
types. This section will fill this gap, by defining universal contracts for back-translated,
nested pointers and investigating how they are used in statements. Notice that back-
translated nested pointers can never appear in the universal contracts of back-translated
boundary functions, since Section 4.4 required boundary function contracts to solely con-
tain array resources, which cannot result in nested pointers after compilation. Although
alleviating this restriction is future work, this currently means that the conversion between
range and array resources in back-translated stubs does not need to be generalized in this
section.

We now investigate what the universal contract for a back-translated pointer of target
type int∗∗ looks like. The general case can easily be derived from this, but contains some

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 43

additional uninteresting clutter, to do with resource names n. The τt∗-case of the universal
contracts from Section 6.2 contains a range resource

n : [exp.1 + i �→τs l[i] | 0 ≤ i < length(l)]

that in turn contains array resources to access each individual element of the pointer rep-
resented by exp. Unfortunately, this does not represent the permissions carried by nested
pointers. The reason is that l[i] itself is not necessarily a permissionless value with uni-
versal contract true, but rather a value of a type that carries its own permissions, again
described by a universal contract. In our case where τt∗ = int∗∗ and int∗∗�InvCompileType

((int∗, int)∗, int), the logical list element l[i] represents a value of type (int∗, int), that we
should again define an inner universal contract for, using a range resource. The only dif-
ference between the outermost and inner universal contracts was highlighted in Section 3.1
already; the nested universal contracts do not require chunk names, as range resources are
reified as a whole during compilation.

Given these observations, we can define universal contracts for int∗∗-pointers as
follows:

Definition (univ contrint∗∗(exp)).

univ contr innerint∗(exp) =
exp != (null, 0) ? ∃l. ([exp.1 + j �→int l[j] | 0 ≤ j < length(l)] ∗ length(l) == exp.2)

univ contrint∗∗(exp) =
exp != (null, 0) ? ∃l. (n : [exp.1 + i �→(int∗,int) l[i] ∗

univ contr innerint∗(l[i]) | 0 ≤ i < length(l)] ∗ length(l) == exp.2)

given that n fresh

The interesting aspects have been highlighted; notice the nesting of the inner contracts
univ contr innerint∗ inside the outer contract univ contrint∗∗ and the single range resource
name n. This nested contract structure would not have been possible using a single resource
name n if universal contracts used array resources instead. This is the motivation for the
reformulation in terms of range resources in Section 6.2. The above structure is easily
generalized to arbitrary target types τt, by allowing inner contracts to contain more deeply
nested inner contracts.

The back-translation of statements containing nested pointers happens very similarly to
the non-nested examples we saw before, except that more intricate emulation of linear-
ity in the source language is often required. To illustrate this, we rewrite line 2 of add1
in Figure 16 with m now of type int∗∗, obtaining int* b; b = m[0]. This line gets back-
translated to the code on the right in Figure 23. Notice how small the differences with the
original back-translation on the left are: only lines 1 and 4 differ because b is now a linear
value itself, instead of a duplicable integer. The proof is also very similar to the one from
Figure 21, except that on line 10 of this figure, we would need to consume the inner uni-
versal contract for m.1 at index 0 to derive that the new value of b satisfies the universal
contract of its type int∗. Since universal contracts are linear, we need the erasure of m.1[0]
on line 4 of Figure 23 to re-establish the universal contract of m.1 at index 0 afterward.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

44 T. Van Strydonck et al.

Excerpt from Figure 20

5 int b;
6 guard(m != (null,0)); guard(0 ≤ 0 < m.2);
7 //@split mchunk[1]; //@flatten m0

chunk;
8 b = m.1[0];

9 //@collect m0,flat
chunk; //@join m0

chunk m1+
chunk;

Back-translation of int* b; b = m[0]

1 (int*,int) b;
2 guard(m != (null,0)); guard(0 ≤ 0 < m.2)
3 //@split mchunk[1]; //@flatten m0

chunk;
4 b = m.1[0]; m.1[0] = null;

5 //@collect m0,flat
chunk; //@join m0

chunk m1+
chunk;

Fig. 23. Back-translation of line 2 of add1 with and without nested pointers.

7 Simulation relations

This section takes the black-box relations for correctness and security, R and S, from
Section 5.3 and decomposes both in Sections 7.1 and 7.2, respectively. Formulated
differently, this section provides more details on how to prove the ADEQUACY proof step
in Figures 13 and 14.

7.1 Decomposing R

We decompose R first, since its decomposition is easier. The reason is that the proof of
COMP-� only involves compiled components, whereas BT-� requires simulating both
compiled and back-translated components.

To illustrate this section, we need a source program and its compilation. We assume the
source component from Figure 9 as our verified source component � s and an arbitrary
verifiable source context (Cs, id) that implements and exports add1, with the main function
main from Figure 15 as our main function id. Again, we ignore the actual implementation
of main and its compilation main in, respectively, � s and t to avoid uninteresting clutter.
Including compiled components, we then have the following (we repeat the same nota-
tional abuse from Section 6 where the names of functions can be used to represent their
entire implementation):

s = f //@import add1

(Cs, id) = ((add1 //@export add1), main)

�� s� = fcomp add1out
comp //@import add1

(Ct, id) = (�� Cs�, id) = ((add1 add1comp //@export add1), main)

The lower two lines follow from the COMPVERIF rule of our compiler in Figure 7. Note
how we added the superscript out to the generated outcall stub add1out

comp, to distinguish it
from the compiled context function add1comp. The context function add1 is the generated
incall stub.

The statement we need to prove as part of COMPATIBILITY is shown on the left in
Figure 24. The right side of this figure shows how this statement, once proven, implies
equi-termination of our source and target programs, or in other words, proves ADEQUACY.
We now focus on explaining this right part.

When simulating our compiled code, a distinction has to be made between execution
within the individual source components s and Cs, and execution when an outcall stub
is called or is being returned from, that is, when a transition between s and Cs (or back)
occurs. Notice that an outcall stub is always called first, and then execution transitions to

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 45

Rcomp StubsOK Rcomp

add1� f

add1comp add1 add1out
comp fcomp

�� Cs� �� s�

� Cs s //@main = id

R

�� Cs� �� s� //@main = id

is decomposed as followsThis statement

Fig. 24. Visual representation that illustrates the decomposition of R (inspired by the schemata of
Devriese et al., 2016).

the incall stub of the component that is being called. When returning, the order is inverted.
In general, we will refer to this sequence of either two calls or two returns as a component
switch.

The reason that R (and S) is not a simulation relation itself (as we mentioned in
Section 5.3) is that R does not consider states to be related during in- or outcalls, but
rather consists of two separate parts: an actual simulation relation Rcomp and a connecting
lemma StubsOK to link up different instances of Rcomp across component switches.

First, R consists of a simulation relation Rcomp that relates source code to its compila-
tion and models how the compiler produces equi-terminating code in the target language.
The relation Rcomp is solely used to reason within a single domain of trust, that is, within
a single source and target component (hence the comp subscript) during execution. The
simulation halts right before a component switch occurs. More concretely, the technical
report proves that Rcomp satisfies the following definition of a forward, strong simulation
relation (inspired by the definition of a Simulation relation with multiple matching steps in
Chlipala, 2017):

Definition (source-to-target forward simulation relation). Given a relation Rcomp relating
source states st = 〈s, h〉 | � c to target states st = 〈s, h〉 | c . If the following 2 properties
hold, then Rcomp is a source-to-target forward simulation relation:

1. The first property is used to guarantee equi-termination in the proof
of ADEQUACY, when we know that the source program terminates:

∀ P, Q, s, h, s, h, c. (〈s, h〉 | {P} return {Q}) Rcomp (〈s, h〉 | c) ⇒ c = return

It states that a terminated source statement (i.e. a single return statement) must
correspond to a terminated target statement.

2. The second property is the inductive part of the simulation relation:

∀ st, st, st′. st Rcomp st ∧ st ↪→ st′ ⇒ ∃ st′. st ↪→+ st′ ∧ st′ Rcomp st′

Note that this condition requires the target operational semantics ↪→ to perform at
least one step, denoted ↪→+. Remember that the source level makes use of the lifted
operational semantics.

Second, R also requires proving a connecting lemma StubsOK. This lemma essen-
tially states that if the source and target states are related by Rcomp before a component

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

46 T. Van Strydonck et al.

switch, they will still be related after the switch, and Rcomp can hence continue simulating.
Additionally, StubsOK does not allow target code to get stuck while executing code in an
in- or outcall stub, since source code does not have any stub code to execute, and this would
otherwise break equi-termination. Fortunately, R only relates correctly behaving programs
that live up to their contracts, and the guards will never fail. The situation will be different
in the security direction, where we consider potentially misbehaving contexts.

Skipping the execution of the main functions main and main that simply perform setup
and pass control to f and fcomp, the right side of Figure 24 now ensures equi-termination
as follows; execution starts off on the far right in the function f (fcomp in the target), and
Rcomp simulates (using the second property in the above definition) until fcomp is about to
perform an outcall to add1out

comp. At this point, the StubsOK lemma is applied, guaranteeing
us that we can bypass the stubs add1out

comp and add1 in the middle and resume simulation
under Rcomp at the left side, in the function add1 (add1comp in the target). Once add1 is
about to return, the StubsOK lemma is again applied to make the inverse transition back to
f . When execution terminates in main at the source level, the first property in the above
definition is applied, thereby proving that the target program has also terminated (in main
in this case).

7.2 Decomposing S

Having expanded our toolbox in the previous section, we now study the decomposition of
the relation S. As stated before, this decomposition is slightly more involved, since both
compiled and back-translated components are present in the statement of BT-�.

To illustrate this section, we reuse the example described in the introduction of Section 6
(including the main function defined there, the fact that we keep the main functions
implicit, and the abuse of notation for functions). To reiterate, we had the following:

s = (f //@import add1)

(Ct, id) = ((add1 //@export add1), main)

�� s� = fcomp add1comp //@import add1

(Cs, id) = (〈〈Ct〉〉, id) = ((add1 add1bt //@export add1), main)

Figure 25 is similar to Figure 24, showing the COMPATIBILITY statement on the left
and how it implies adequacy on the right. We now focus on explaining this right part.

In this case, we need to make a distinction between not two, but four different modes of
execution. First off, there are two different regular, intra-component modes of execution:
either execution is happening within the source component s and its compilation, or within
the component Ct and its back-translation. Furthermore, two different transitions can now
be made: either s performs an outcall to the context, or the context performs an incall to s.
Since f is not an exported function, this second scenario cannot occur in our simple exam-
ple. Unlike in Section 7.1, incalls and outcalls do not occur in pairs, since the target context
does not result from compilation and hence does not generate its own stubs. Another dis-
tinction with Section 7.1 is that in- and outcalls now execute code in both the source and
target languages, since stubs such as add1comp are back-translated into the source context.

Again, S as introduced in Section 5.3 was not really a simulation relation, but rather
consisted of the four aforementioned parts: two simulation relations Rcomp and Scomp (with
Rcomp as defined before) and two connecting lemmas Incall and Outcall.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 47

Scomp
Incall,
Outcall Rcomp

add1bt� add1 f

〈〈Ct〉〉

add1 add1comp fcomp

�� s�

� 〈〈Ct〉〉 s //@main = id

S

Ct �� s� //@main = id

is decomposed as followsThis statement

Fig. 25. Visual representation that illustrates the decomposition of S (inspired by the schemata of
Devriese et al., 2016).

First, S consists of two different simulation relations Rcomp and Scomp, both used to reason
within a single domain of trust, that is, halting before a component switch. The relation
Rcomp, discussed in the previous section, is used to reason about code and its compilation.
On the other hand, the relation Scomp relates target code to its back-translation and models
how the back-translation produces equi-terminating code in the source language.

Since Scomp performs a target-to-source simulation of back-translated code in terms of
target code, whereas Rcomp performed source-to-target simulation of compiled code in
terms of the original source code, the technical report defines a second, different notion
of forward, strong simulation relation. The relation Scomp is then proven to satisfy this
notion. The second version of simulation we use is defined as follows (again inspired by
the definition of a Simulation relation with multiple matching steps in Chlipala, 2017):

Definition (target-to-source forward simulation relation). Given a relation Scomp relating
source states st = 〈s, h〉 | � c to target states st = 〈s, h〉 | c . If the following 2 properties
hold, then Scomp is a target-to-source forward simulation relation:

1. The first property is used to guarantee equi-termination in the proof
of ADEQUACY, when we know that the target program terminates:

∀ s, h, c, s, h. (〈s, h〉 | c) Scomp (〈s, h〉 | return) ⇒ ∃ P, Q. c = {P} return {Q}
It states that a terminated target statement (i.e. a single return statement) must
correspond to some valid proof of a terminated source statement.

2. The second property is the inductive part of the simulation relation:

∀ st, st, st′. st Scomp st ∧ st ↪→ st′ ⇒ ∃ st′. st ↪→+ st′ ∧ st′ Scomp st′

Note that this condition again requires the target operational semantics ↪→ to per-
form at least one step, denoted ↪→+. Remember that the source level makes use of
the lifted operational semantics.

Second, S also requires proving two connecting lemmas Incall and Outcall, used for
incalls and outcalls, respectively. The Outcall lemma states that if Rcomp holds in the veri-
fied component s, we can perform an outcall to the context, and after executing the outcall

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

48 T. Van Strydonck et al.

stubs in both source and target languages, Scomp will hold in the context. Similarly, when
returning from the outcall, Rcomp will still hold in s. A crucial difference with last section
is that execution is now allowed to get stuck in the outcall stubs, as long as it gets stuck
in both source and target languages, preserving equi-termination. The Incall lemma makes
similar claims, but for incalls.

The right side of Figure 25 illustrates the decomposition of S. Interestingly, note how
add1comp is part of the compiled, verified component in the target language, whereas its
back-translation add1 is part of the source context. Equi-termination is proved as follows
(again ignoring the execution of the main functions main and main in our example); exe-
cution starts off on the far right in the function f (fcomp in the target), and Rcomp simulates
(similarly to what we saw in the previous subsection) until f and fcomp are about to perform
an outcall to the pair of outcall stubs add1 and add1comp.

In order to be able to apply the Outcall lemma here (and similarly for Incall), both the
source and target code must reach their respective outcalls to add1 and add1comp simulta-
neously during simulation (and similarly, return from them simultaneously). This follows
easily from the definitions of Rcomp and Scomp in the technical report. Consequently, the
Outcall lemma can be applied, guaranteeing that either execution gets stuck in both stubs,
or we can bypass the stubs in the middle and resume simulation under Scomp at the left
side, in the function add1bt (add1 in the target). Once add1bt is about to return, the Outcall
lemma is again applied to make the inverse transition back to f .

Proof Conclusion. In the previous Sections 5, 6 and 7, we discussed the main intuitions
behind the full abstraction proof of our compiler, including the back-translation, in an
example-driven way. These sections should provide the reader with sufficient anchoring
points to understand the full proof in the aforementioned technical report (Van Strydonck
et al., 2020), in case they are interested in the more formal and detailed approach.

8 Discussion and future work

This section first provides more detail on two challenges in making our compiler more
broadly applicable and subsequently discusses the benefits of semantically deriving our
separation logic rules, instead of stating them syntactically.

8.1 Gradual verification

Function signatures are modified by our compiler, as apparent from its definition in
Section 4: additional parameters and/or return values that represent the memory resources
that are transferred are added. Additional effort is hence still required by third-party devel-
opers to produce code that follows our target-level calling convention. Two scenarios are
possible.

First of all, a developer could write verified code themselves and compile it using our
compiler, gaining the same secure compilation guarantees that our compiled code does.
Although this could be realistic in some settings, it goes against our original goal of
allowing interaction of our compiled code with arbitrary, non-verified attacker code.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 49

Second, the developer could write unverified code in the target language. This code must
then be written to call and be called with the modified function signatures. This might be
realistic for applications like the video player with codec plug-in described in the introduc-
tion. However, we would also like to support a form of gradual verification, where we can
take a large, unverified codebase, verify the critical parts and securely combine them with
the rest. This type of use case is currently only supported when boundary functions solely
use integer arguments and return values and do not receive or return memory resources,
since the declaration of such functions is not altered during compilation. Even with this
strong restriction, our strong security results might still be useful in some scenarios.

We plan to explore two ideas for extending our approach to large, partially verified
codebases: either based on the use of an automatic verifier on the unverified code, like
Smallfoot (Berdine et al., 2005), Space Invader (Distefano et al., 2006; Berdine et al.,
2007), Infer (Calcagno et al., 2015) or SLAyer (Berdine et al., 2011), or on a kind of
universal contract for unverified code in terms of a pure predicate similar to the lowval
predicate of Swasey et al. (2017). Such an approach could be valuable in practice, as many
large code bases contain small, isolated components whose security is of high value and
for which the verification effort might be realistic and cost-effective.

8.2 Extending the source language

A second direction we want to expand our work in is to extend the compiler itself. As
mentioned in the introduction, this paper contains but the first steps toward a practically
applicable secure compilation scheme. Notably, the source language only consisted of sim-
ple resources in the separation logic, had a simple type system and featured restrictions on
the form of boundary contracts. We now discuss some ideas for extensions in these three
directions in order. We do believe all suggested extensions to be within reach.

Resources. In this paper, we support only two kinds of spatial predicates, describing array
and range resources. We believe our approach can be extended to a more general form of
predicates, by relying on a notion of capability sealing. Support for such predicates would
also allow us to formalize memory de-allocation, that is, a free-statement. The difficult
part in supporting free is that the authority to deallocate a block of memory needs to be
represented separately from the authority to access the memory (i.e. our array points-to
predicate). This is because the latter can be subdivided, but the former should not be, since
most memory allocators rely on the entire block being deallocated together. To accom-
modate this, separation logics like VeriFast represent the authority to deallocate memory
with a special malloc resource abstract predicate. We could do the same and compile this
resource in the same way as the discussed general predicates.

Type system. As mentioned in the introduction, the most obvious feature missing from
the source language is support for recursive data types, for example, in the form of C-
like structs. We believe the type system will scale in parallel with the introduction of
resources to represent more complex permissions, for example, struct types would be
introduced in parallel with the general predicate resources discussed above. The gen-
eral resource reification principles demonstrated in the current submission would remain
the same.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

50 T. Van Strydonck et al.

Boundary contract restrictions. Loosening boundary contract restrictions corresponds
to loosening the constraints on calls to untrusted code. It seems possible to allow non-fixed-
length array resources and range resources to appear in boundary contracts, by reifying
(nested) foreach loops in our stubs, given some proof changes. Reification of foreach loops
could also be used to allow quantifiers over finite domains in boundary contracts (although
efficiency remains an open question here).

8.3 Semantic separation logic rules

The separation logic rules presented in Section 4 are syntactic in nature; they are presented
as axioms in the logic, without any formal justification. In other words, they are assumed
to be part of the trusted computing base of the source language. To decrease the trusted
computing base and make our approach more foundational, it would be worthwhile to lift
these rules out of the trusted computing base. There are two ways to do so:

• Perform a proof of adequacy for our current rules, proving that the syntactic rules
are adequate with respect to the operational semantics.

• Derive the rules semantically from the operational semantics, on top of some appro-
priate program logic. Preferably, this program logic would contain a built-in proof
of adequacy for any Hoare triples derived this way. For example, the Iris program
logic framework (Jung et al., 2016, 2018; Krebbers et al., 2017) (and correspond-
ing proof assistant, implemented in Coq, in case we mechanize our results) would
likely be a good fit to perform these derivations in, as it has proofs of adequacy for
its weakest precondition judgment.

The advantage of deriving rules semantically over our current approach seems to be two-
fold; it would be possible to derive a back-translation that does not have to be syntactic
in nature, and the CONCRETIZATION phase in Figure 18 is likely not required. We briefly
discuss both advantages in the following two paragraphs.

Because of the syntactic nature of our separation logic rules, it is currently impossible
to “look under the hood” and derive what we call a semantic back-translation. By seman-
tic back-translation, we mean a back-translation where not each individual back-translated
statement is proven to preserve universal contracts by a derived separation logic rule, but
rather, it suffices to prove that the overall back-translated code respects universal contracts
(similar to the proofs of semantic type safety in RustBelt Jung et al., 2018 or the semantic
proofs of wrapper contracts that Sammler et al., 2020 use). In this setting, we would still
have some notion of “universal contract”, but now defined in terms of some underlying
base logic. It is not unlikely, however, that it would still be easiest to derive semantic ver-
ification rules for individual code blocks based on universal contracts, as we currently do,
rather than try to construct an end-to-end proof of a function’s universal contract directly.
This would need to be investigated further.

As for the necessity of the CONCRETIZATION phase in Figure 18; this too has to do
with the fact that our separation logic rules are derived syntactically. What we illustrate
in Figure 18 is essentially a syntactic derivation of a proof rule for the back-translation of
each type of target statement that operates on the shapes of resources (i.e. universal con-
tracts), instead of using some concrete pre- and postconditions like the rules we presented

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 51

in Section 4. This new, universal rule is derived by proving that each back-translated block
can be proven to respect a contract that consists of universal contracts of local variables.
If our rules were to be derived semantically, it would be possible to derive these rules
in a more direct way, without going through the concrete syntactic-style rules. It seems
likely that we would be able to use information from the operational semantics themselves,
instead of using the explicit “guard” statements in the CONCRETIZATION PHASE, to derive
rules that operate on universal contracts. This would reduce the CONCRETIZATION phase
to only inserting a “guard(false)” statement to simulate linearity where necessary.

9 Related work

Our work builds on three research lines with a long and rich history: capability machines,
separation logic and full abstraction. It is not feasible to give complete surveys of these
three research lines here, so we just provide some pointers to key papers. For an excellent
introduction to separation logic and references, we refer to O’Hearn (2012).

Capability machines have been studied for decades. Levy (1984) provides a good survey
of early systems. With the increased need for security and fine-grained protection, there is
a renewed interest in these machines, or in generalizations where the hardware can track
even more metadata. Two influential recent systems are the CHERI system developed in
Cambridge (Watson et al., 2015; Chisnall et al., 2015) and the SAFE machine developed
within the CRASH/SAFE project (Knight, Jr. et al., 2012; de Amorim et al., 2015, 2016).
Linear capabilities have already been implemented in the latter. Skorstengaard et al. (2019)
have used them in a secure calling convention StkTokens, and an early design for their
implementation in CHERI is in the latest CHERI ISA Spec (Watson et al., 2020).

To formalize secure compilation, we use the property of fully abstract compilation
(Abadi, 1999), like many previous results (e.g., Abadi & Plotkin, 2012; Fournet et al.,
2013; Patrignani et al., 2015; New et al., 2016; Devriese et al., 2016; Skorstengaard
et al., 2019). We refer to Patrignani et al. (2019) for an overview of the field. Recent
research has investigated other formal characterizations of secure compilation: robust
safety preservation (Swasey et al., 2017; Patrignani & Garg, 2018), trace-preserving com-
pilation (Patrignani & Garg, 2017) and robust hyperproperty preservation (Garg et al.,
2017). Although we only prove fully abstract compilation, it is important to understand
that most of our proof consists of the construction of the back-translation and its properties,
and those parts could be immediately reused to prove many of the alternative properties.

The fact that our back-translation depends just on the context, not on the compiled pro-
gram, suggests that our compiler actually also satisfies the property that Garg et al. (2017)
call Relational Hyperproperty Preservation. Technically, our back-translation and its use of
universal contracts are reminiscent of the use of universal types and universal embeddings
in previous work (New et al., 2016; Devriese et al., 2016).

Our work is also related to the body of work on contract enforcement, where the enforce-
ment of higher-order contracts and the assignment of blame on contract violations have
received significant attention. A recent Functional Pearl (Dimoulas et al., 2016) provides
an in-depth discussion of this line of work. Bader et al. (2018) recently demonstrated
how dynamic checking of Hoare logic contracts can be obtained using the general AGT
framework for gradual typing (Garcia et al., 2016).

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

52 T. Van Strydonck et al.

Directly related to our work are other approaches to dynamic checking of separation
logic. The main challenge for such dynamic techniques is the enforcement of framing.
Nguyen et al. (2008) use a heap coloring technique and run-time checks at every method
invocation and field access in unverified code to check framing. The performance overhead
of this approach is substantial, and it is limited to safe languages such as Java. Agten et al.
(2015) were the first to propose a contract checking approach for C, but, as we discussed
in the Introduction, their approach is not fully abstract, it only guarantees integrity: safety
properties expressed in separation logic assertions within a verified module are guaranteed
to hold at run time in the presence of an unverified context, but confidentiality properties
are lost. Building further on Agten et al. (2015)’s work, van Ginkel et al. (2017) developed
a separation-logic-based specification language for Intel SGX enclaves, that allows the
automatic generation of contract checking functions at the enclave’s trust boundaries.

Last, the notion of universal contracts introduced here has implicitly been used by other
papers to describe the most general constraints that arbitrary adversarial code satisfies.
More concretely, Skorstengaard et al. (2018, 2019) encode the guarantees obtained when
executing adversarial assembly code in the fundamental theorem of their logical relations.
The semantic type systems defined by Jung et al. (2018) and Sammler et al. (2020) are
similarly used to specify the behavior of arbitrary untrusted code. The lowval predicate,
used to describe safely shareable values, defined by Swasey et al. (2017), again serves
a similar purpose. More generally, the guarantees obtained when syntactically restricting
adversaries can be seen as an instance of parametricity. Note that parametricity should be
interpreted broadly here to refer to the use of logical relations to describe semantic prop-
erties that follow from syntactic restrictions in the language. This includes not just System
F’s parametric polymorphism (Reynolds, 1983) but also many other semantic properties
like sequentiality in PCF (Sieber, 1992), capability safety in object capability languages
(Swasey et al., 2017; Skorstengaard et al., 2018) or purity in dependently typed languages
with effects (Pédrot et al., 2019).

10 Conclusion

We have explored a fundamentally new approach for the dynamic checking of separation
logic contracts. Our approach relies on hardware support for linear capabilities, a form
of unforgeable and non-copyable memory pointers. A proof-directed compiler represents
separation logic memory resources as linear capabilities and relies on the information in
the proof to compile source code pointer dereferences to dereferences of the correct linear
capability. We formalized and proved the correctness of our approach by showing that our
compiler from verified source code to unverified target code is fully abstract.

Acknowledgments

This research is partially funded by the Research Fund KU Leuven, by the Research
Foundation - Flanders (FWO) under grant number G0G0519N and by the Air Force Office
of Scientific Research under award number FA9550-21-1-0054. Thomas Van Strydonck
holds a PhD Fellowship of the Research Foundation - Flanders (FWO).

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 53

Conflicts of Interest

None.

Supplementary materials

For supplementary material for this article, please visit doi.org/10.1017/
S0956796821000022.

References

Abadi, M. (1999) Protection in programming-language translations. In Secure Internet
Programming. Springer-Verlag, pp. 19–34.

Abadi, M. & Plotkin, G. D. (2012) On protection by layout randomization. ACM Trans. Inf. Syst.
Secur. 15(2), 8:1–8:29.

Agten, P., Jacobs, B. & Piessens, F. (2015) Sound modular verification of C code executing in an
unverified context. In Symposium on Principles of Programming Languages. POPL’15. New
York, NY, USA: ACM, pp. 581–594.

Bader, J., Aldrich, J. & Tanter, É. (2018) Gradual program verification. In Verification, Model
Checking, and Abstract Interpretation. Lecture Notes in Computer Science. Springer International
Publishing.

Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P. W., Wies, T. & Yang, H. (2007)
Shape analysis for composite data structures. In International Conference on Computer Aided
Verification. Springer, pp. 178–192.

Berdine, J., Calcagno, C. & O’Hearn, P. W. (2005) Smallfoot: Modular automatic assertion check-
ing with separation logic. In Formal Methods for Components and Objects. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, pp. 115–137.

Berdine, J., Cook, B. & Ishtiaq, S. (2011) SLAyer: Memory safety for systems-level code. In
Computer Aided Verification. Springer, pp. 178–183.

Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn, P.,
Papakonstantinou, I., Purbrick, J. & Rodriguez, D. (2015) Moving fast with software verification.
In NASA Formal Methods Symposium. Springer, pp. 3–11.

Chisnall, D., Rothwell, C., Watson, R. N. M., Woodruff, J., Vadera, M., Moore, S. W., Roe, M.,
Davis, B. & Neumann, P. G. (2015) Beyond the PDP-11: Architectural support for a memory-safe
C abstract machine. In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS’15, Istanbul, Turkey,
March 14–18, 2015, pp. 117–130.

Chlipala, A. (2017) Formal reasoning about programs. Available at: http://adam.chlipala.
net/frap.

Costan, V. & Devadas, S. (2016) Intel SGX explained. IACR Cryptol. Eprint Arch. 2016(086),
1–118.

de Amorim, A. A., Collins, N., DeHon, A., Demange, D., Hritcu, C., Pichardie, D., Pierce, B. C.,
Pollack, R. & Tolmach, A. (2016). A verified information-flow architecture. J. Comput. Secur.
24(6), 689–734.

de Amorim, A. A., Dénès, M., Giannarakis, N., Hritcu, C., Pierce, B. C., Spector-Zabusky, A. &
Tolmach, A. (2015) Micro-policies: Formally verified, tag-based security monitors. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17–21, 2015, pp.
813–830.

Devriese, D., Patrignani, M. & Piessens, F. (2016) Fully-abstract compilation by approximate back-
translation. In Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20–22, 2016, pp. 164–177.

Dimoulas, C., New, M. S., Findler, R. B. & Felleisen, M. (2016) Oh lord, please don’t let contracts
be misunderstood (functional pearl). In International Conference on Functional Programming,
ICFP 2016, Nara, Japan, September 18–22, 2016, pp. 117–131.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000022
https://doi.org/10.1017/S0956796821000022
http://adam.chlipala.net/frap
http://adam.chlipala.net/frap
https://doi.org/10.1017/S0956796821000022

54 T. Van Strydonck et al.

Distefano, D., O’Hearn, P. W. & Yang, H. (2006) A local shape analysis based on separation
logic. In Tools and Algorithms for the Construction and Analysis of Systems, 12th International
Conference, TACAS 2006, Vienna, Austria, March 25–April 2, 2006, Proceedings, Hermanns, H.
& Palsberg, J. (eds). Lecture Notes in Computer Science, vol. 3920. Springer, pp. 287–302.

Fournet, C., Swamy, N., Chen, J., Dagand, P.-É., Strub, P.-Y. & Livshits, B. (2013) Fully abstract
compilation to JavaScript. In Symposium on Principles of Programming Languages, POPL’13,
pp. 371–384.

Garcia, R., Clark, A. M. & Tanter, É. (2016) Abstracting gradual typing. In Principles of
Programming Languages. ACM, pp. 429–442.

Garg, D., Hritcu, C., Patrignani, M., Stronati, M. & Swasey, D. (2017) Robust hyperproperty preser-
vation for secure compilation (extended abstract). Available at: http://arxiv.org/abs/1710.
07309.

Insolvibile, G. (2003) Garbage collection in C programs. Linux J. 2003(113), 7.
Jacobs, B. & Piessens, F. (2008) The VeriFast program verifier. Cw Reports.
Jacobs, B., Smans, J. & Piessens, F. (2010) A quick tour of the VeriFast program verifier. In

Programming Languages and Systems. Lecture Notes in Computer Science, vol. 6461. Berlin,
Heidelberg: Springer, pp. 304–311.

Jung, R., Krebbers, R., Birkedal, L. & Dreyer, D. (2016) Higher-order ghost state. In International
Conference on Functional Programming. ICFP 2016. New York, NY, USA: Association for
Computing Machinery, pp. 256–269.

Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L. & Dreyer, D. (2018) Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program.
28, e20.

Jung, R., Jourdan, J.-H., Krebbers, R. & Dreyer, D. (2018) RustBelt: Securing the foundations of the
Rust programming language. Proc. ACM Program. Lang. 2(POPL), 66:1–66:34.

Knight, Jr., T. F., DeHon, A., Sutherland, A., Dhawan, U., Kwon, A. & Ray, S. (2012) SAFE
ISA (version 3.0 with interrupts per thread). Available at: http://ic.ese.upenn.edu/
distributions/safe_processor/.

Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.-H., Dreyer, D. & Birkedal, L. (2017). The essence
of higher-order concurrent separation logic. In Programming Languages and Systems, Yang, H.
(ed). Berlin, Heidelberg: Springer, pp. 696–723.

Leroy, X. (2006) Formal certification of a compiler back-end or: Programming a compiler with
a proof assistant. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL’06. New York, NY, USA: Association for
Computing Machinery, pp. 42–54.

Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M. & Ferdinand, C. (2016) CompCert
- a formally verified optimizing compiler. In ERTS 2016: Embedded Real Time Software and
Systems, 8th European Congress. SEE, Toulouse, France.

Levy, H. M. (1984) Capability-Based Computer Systems. Digital Press.
New, M. S., Bowman, W. J. & Ahmed, A. (2016) Fully abstract compilation via universal

embedding. In International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18–22, 2016, pp. 103–116.

Nguyen, H. H., Kuncak, V. & Chin, W.-N. (2008) Runtime checking for separation logic. In
Verification, Model Checking, and Abstract Interpretation, 9th International Conference, pp. 203–
217.

Noorman, J., Agten, P., Daniels, W., Strackx, R., Van Herrewege, A., Huygens, C., Preneel,
B., Verbauwhede, I. & Piessens, F. (2013) Sancus: Low-cost trustworthy extensible net-
worked devices with a zero-software trusted computing base. In USENIX Security Symposium,
pp. 479–494.

O’Hearn, P. W. (2012) A primer on separation logic (and automatic program verification and
analysis). In Software Safety and Security - Tools for Analysis and Verification, pp. 286–318.

Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D. & Piessens, F. (2015) Secure
compilation to protected module architectures. ACM Trans. Program. Lang. Syst. 37(2), 6:1–6:50.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

http://arxiv.org/abs/1710.07309
http://arxiv.org/abs/1710.07309
http://ic.ese.upenn.edu/distributions/safe_processor/
http://ic.ese.upenn.edu/distributions/safe_processor/
https://doi.org/10.1017/S0956796821000022

Fully abstract compilation of separation-logic-verified code 55

Patrignani, M., Ahmed, A. & Clarke, D. (2019) Formal approaches to secure compilation: A survey
of fully abstract compilation and related work. ACM Comput. Surv. 51(6), 125:1–125:36.

Patrignani, M. & Garg, D. (2017) Secure compilation and hyperproperty preservation. In Computer
Security Foundations Symposium. IEEE, pp. 392–404.

Patrignani, M. & Garg, D. (2018) Robustly safe compilation or, efficient, provably secure
compilation. Corr, abs/1804.00489.

Pédrot, P.-M., Tabareau, N., Fehrmann, H. J. & Tanter, É. (2019) A reasonably exceptional type
theory. Proc. ACM Program. Lang. 3(ICFP), 108:1–108:29.

Pierce, B. C. (2002) Types and Programming Languages. MIT Press. Google-Books-ID:
ti6zoAC9Ph8C.

Reynolds, J. C. (1983) Types, abstraction, and parametric polymorphism. In Information Processing.
North Holland, pp. 513–523.

Reynolds, J. C. (2002) Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science. IEEE, pp. 55–74.

Sammler, M., Garg, D., Dreyer, D. & Litak, T. (2020) The high-level benefits of low-level
sandboxing. Proc. ACM Program. Lang. 4(POPL), 32:1–32:32.

Sieber, K. (1992) Reasoning about sequential functions via logical relations. Appl. Categories
Comput. Sci. 177, 258–269.

Skorstengaard, L., Devriese, D. & Birkedal, L. (2018) Reasoning about a machine with local capa-
bilities. In Programming Languages and Systems, vol. 10801. Springer International Publishing,
pp. 475–501.

Skorstengaard, L., Devriese, D. & Birkedal, L. (2019) StkTokens: Enforcing well-bracketed control
flow and stack encapsulation using linear capabilities. Proc. ACM Program. Lang. 3(POPL),
19:1–19:28.

Strackx, R., Piessens, F. & Preneel, B. (2010) Efficient isolation of trusted subsystems in embedded
systems. In Security and Privacy in Communication Networks. Lecture Notes. Berlin, Heidelberg:
Springer, pp. 344–361.

Swasey, D., Garg, D. & Dreyer, D. (2017) Robust and compositional verification of object capability
patterns. Proc. ACM Program. Lang. 1(OOPSLA), 89:1–89:26.

van Ginkel, N., Strackx, R. & Piessens, F. (2017) Automatically generating secure wrappers for SGX
enclaves from separation logic specifications. In Programming Languages and Systems, Chang,
B.-Y. E. (ed). Cham: Springer International Publishing, pp. 105–123.

Van Strydonck, T., Piessens, F. & Devriese, D. (2019) Linear capabilities for fully abstract
compilation of separation-logic-verified code. Proc. ACM Program. Lang., ICFP.

Van Strydonck, T., Piessens, F. & Devriese, D. (2020) Linear capabilities for fully abstract compila-
tion of separation-logic-verified code - technical appendix including proofs and details. Available
at: https://soft.vub.ac.be/~dodevrie/seplogic-lincaps-tr20201130.pdf.

Vogels, F., Jacobs, B. & Piessens, F. (2015) Featherweight VeriFast. Log. Methods Comput. Sci.
11(3), 19:1–19:57.

Watson, R. N. M., Neumann, P. G., Woodruff, J., Roe, M., Almatary, H., Anderson, J., Baldwin, J.,
Barnes, G., Chisnall, D., Clarke, J., Davis, B., Eisen, L., Filardo, N. W., Grisenthwaite, R.,
Joannou, A., Laurie, B., Markettos, A. T., Moore, S. W., Murdoch, S. J., Nienhuis, K., Norton,
R., Richardson, A., Rugg, P., Sewell, P., Son, S. & Xia, H. (2020) Capability Hardware
Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8). Technical Report
UCAM-CL-TR-951. University of Cambridge, Computer Laboratory.

Watson, R. N. M., Woodruff, J., Neumann, P. G., Moore, S. W., Anderson, J., Chisnall, D.,
Dave, N., Davis, B., Gudka, K., Laurie, B., Murdoch, S. J., Norton, R., Roe, M., Son, S.,
& Vadera, M. (2015) CHERI: A hybrid capability-system architecture for scalable software
compartmentalization. In IEEE Symposium on Security and Privacy, pp. 20–37.

https://doi.org/10.1017/S0956796821000022 Published online by Cambridge University Press

https://soft.vub.ac.be/~dodevrie/seplogic-lincaps-tr20201130.pdf
https://doi.org/10.1017/S0956796821000022

	Linear capabilities for fully abstract compilation of separation-logic-verified code
	Introduction
	Compiler illustration
	Source and target languages
	Source and target language definition
	Source language proofs
	Operational semantics

	Inference rules and compilation by example
	Structural rules
	Basic rules
	Higher-level rules
	Stub compilation

	The full abstraction proof
	Full abstraction definition
	Full abstraction as source-to-target equi-termination
	Proof decomposition: Relational view

	Proving security: the back-translation
	Naive back-translation
	The regular back-translation
	Back-translating misbehaving contexts
	Back-translating nested pointers

	Simulation relations
	Decomposing R
	Decomposing S

	Discussion and future work
	Gradual verification
	Extending the source language
	Semantic separation logic rules

	Related work
	Conclusion

