THE 3-LOCAL COHOMOLOGY OF THE MATHIEU GROUP M_{24} by DAVID JOHN GREEN (Received 15 August, 1994) **Introduction.** In this paper we calculate the localisation at the prime 3 of the integral cohomology ring of the Mathieu group M_{24} , together with its mod-3 cohomology ring. The main results are: THEOREM 1. The ring $H^*(M_{24}, \mathbb{Z})_{(3)}$ is the commutative graded $\mathbb{Z}_{(3)}$ -algebra with generators | Generator | β | θ | ν | ξ | |----------------|---|----|----|----------------| | Degree | 4 | 16 | 11 | 12 | | Additive order | 3 | 3 | 3 | 3 ² | and relations $v^2 = 0$ and $\beta\theta = 0$. The Chern classes of the Todd representation in $GL_{11}\mathbf{F}_2$ generate the even-degree part of this ring. THEOREM 2. The commutative graded \mathbf{F}_3 -algebra $\mathbf{H}^*(M_{24}, \mathbf{F}_3)$ has generators | Generator | В | b | N | n, X | х | T | t | |-----------|---|---|----|------|----|----|----| | Degree | 3 | 4 | 10 | 11 | 12 | 15 | 16 | and relations $$Bn = bN TX = Tn = tN tX = tn$$ $$n^2 = B^2 = T^2 = N^2 = bt = bT = nN = tB = BN = BT = NT = 0$$ $$bX = nX = BX = NX = X^2 = 0.$$ In [9], Thomas uses our results to prove that the elliptic cohomology of the classifying space BM_{24} is generated by Chern classes, and is therefore concentrated in even dimensions. 1. The Mathieu group M_{24} . The Mathieu group M_{24} is a 5-transitive degree 24 permutation group of order 2^{10} . 3^3 . 5. 7. 11. 23. We can read off the 3-local structure we require from the Atlas [2]. The Sylow 3-subgroups are isomorphic to 3^{1+2}_+ , the extraspecial 3-group of order 3^3 and exponent 3. This has a presentation $$3_{+}^{1+2} \cong \langle A, B, C \mid A^3 = B^3 = C^3 = 1, CA = AC, CB = BC, AB = BAC \rangle.$$ Let P be a Sylow 3-subgroup of G. We see that each 3^2 is self-centralising, and that the Sylow 3-normaliser $N = N_G(P)$ is isomorphic to $3_+^{1+2}: D_8$. The outer automorphism Glasgow Math. J. 38 (1996) 69-75. group of 3_{+}^{1+2} is isomorphic to $GL_2\mathbf{F}_3$, which has Sylow 2-subgroups isomorphic to the semidihedral group SD_{16} . As SD_{16} has exactly one subgroup isomorphic to D_8 , there is only one conjugacy class of subgroups of $GL_2\mathbf{F}_3$ isomorphic to D_8 . Hence, choosing new generators for P if necessary, we may assume that the D_8 is generated by elements J and K as follows: conjugation by J sends A to B^2 , sends B to A and fixes C; and conjugation by K sends A to B^2 , sends B to A^2 and C to C^2 . There are two conjugacy classes of elements of order 3 in M_{24} . We may assume that we have chosen generators for P and N/P such that in P, the elements of class 3A are C^r , A^rC^t and B^rC^t , whereas $A^rB^rC^t$ and $A^rB^{-r}C^t$ have class 3B. Here $r \in \{1, 2\}$ and $t \in \{0, 1, 2\}$. 2. The 3-local integral cohomology. We shall now calculate the 3-local integral cohomology ring, using a well-known result from the book of Cartan and Eilenberg. THEOREM 3. ([1]) Let G be a finite group with Sylow p-subgroup P. Recall that a class x in $H^*(P, \mathbb{Z})_{(p)}$ is stable if, for each g in G, the image (under conjugation by g) of x in $H^*(P^g, \mathbb{Z})_{(p)}$ has the same restriction to $P \cap P^g$ as has x itself. The restriction map from G to P is an isomorphism between $H^*(G, \mathbf{Z})_{(p)}$ and the ring of stable classes in $H^*(P, \mathbf{Z})_{(p)}$. Here P is 3^{1+2}_+ , whose integral cohomology was calculated by Lewis. THEOREM 4. ([6]) The cohomology ring $H^*(3^{1+2}_+, \mathbb{Z})$ is generated by | Generator | α_1, α_2 | v_1, v_2 | к | ξ | |----------------|----------------------|------------|---|----------------| | Degree | 2 | 3 | 4 | 6 | | Additive order | 3 | 3 | 3 | 3 ² | The v_i square to zero. The remaining relations are: $$\alpha_{i}\kappa = -\alpha_{i}^{3} \qquad \alpha_{1}v_{2} = \alpha_{2}v_{1} \qquad \alpha_{1}\alpha_{2}^{3} = \alpha_{1}^{3}\alpha_{2} v_{i}\kappa = -\alpha_{i}^{2}v_{i} \qquad \kappa^{2} = \alpha_{1}^{4} - \alpha_{1}^{2}\alpha_{2}^{2} + \alpha_{2}^{4} \qquad \alpha_{2}^{3}v_{1} = \alpha_{1}^{3}v_{2} v_{1}v_{2} = \pm 3\zeta.$$ The automorphism which sends A to $A^{r'}B^{s'}C^{t'}$, B to $A^{r}B^{s}C^{t}$ and C to C^{j} fixes κ , sends ζ to $j^{3}\zeta$ and sends $$\alpha_1 \mapsto r'\alpha_1 + r\alpha_2$$ $\alpha_2 \mapsto s'\alpha_1 + s\alpha_2$ $\nu_1 \mapsto j(r'\nu_1 + r\nu_2)$ $\nu_2 \mapsto j(s'\nu_1 + s\nu_2)$. We start by calculating the cohomology of N: this is the ring of classes in $H^*(P, \mathbb{Z})_{(3)}$ which are invariant under the action of the Sylow 3-normaliser, i.e., under conjugation by J and K. PROPOSITION 5. The ring $H^*(N, \mathbf{Z})_{(3)}$ is generated by $\alpha = \alpha_1^2 + \alpha_2^2$, κ , $\eta = \zeta^2$ and $\nu = (\alpha_1 \nu_1 + \alpha_2 \nu_2) \zeta$. Additive exponents are obvious, and ν squares to zero. The other relation is $\alpha^2 = \kappa^2$. *Proof.* We wish to diagonalise the action of J. Write \mathcal{H}_3 for the module generated by the α_j and the ν_j over the ring generated by the α_j . Then \mathcal{H}_3 is an \mathbf{F}_3 -vector space, and additively a direct summand of $H^*(P, \mathbb{Z})_{(3)}$. Extending the scalars to \mathbb{F}_9 makes the action of J diagonalisable. Write i for a primitive fourth root of unity in \mathbb{F}_9 . J fixes κ and ζ , multiplies $\alpha_1 - i\alpha_2$ by i, and $\alpha_2 + i\alpha_2$ by -i. Hence in even degree the fixed classes are generated by κ , ζ , $\alpha_1^2 + \alpha_2^2$ and $(\alpha_1 \mp i\alpha_2)^4$. In both cases this last expression is $\alpha_1^4 + \alpha_2^4$, which is $-\kappa\alpha$. Similarly, the only odd-degree generator needed is $\alpha_1 \nu_1 + \alpha_2 \nu_2$, which we call μ . K fixes κ and α , and multiplies ζ and μ by -1, whence the result. We now obtain a lower bound for the even-degree cohomology of G: in fact this bound is attained Proposition 6. The Chern subring of G contains $\beta = \alpha + \kappa$, $\xi = \eta - \kappa^3$ and $\theta = (\alpha - \kappa)\eta$. *Proof.* Consider the Todd representation of G in $GL_{11}\mathbf{F}_2$. After lifting to characteristic zero (see [8], [4]), we obtain a generalised character χ_{τ} with partial character table $$\frac{| 1A | 3A | 3B}{\chi_{\tau} | 11 | 2 | -1}$$. The irreducible representations of 3^{1+2}_+ are ρ^{xy} for $0 \le x$, $y \le 2$, and ρ^z for $1 \le z \le 2$. They have characters $$\chi^{xy}: A^r B^s C^t \mapsto \omega^{rx+sy}$$ $$\chi^z: A^r B^s C^t \mapsto \begin{cases} 3\omega^{zt} & r=s=0\\ 0 & \text{otherwise,} \end{cases}$$ where ω is of course $\exp\{2\pi i/3\}$. We have $\chi_{\tau} = \chi^{00} + \chi^{10} + \chi^{20} + \chi^{01} + \chi^{02} + \chi^{1} + \chi^{2}$. Let ρ_{τ} be a virtual representation affording χ_{τ} . THEOREM 7. ([5]) The irreducible representations of 3_{+}^{1+2} have total Chern classes $c(\rho^{xy}) = 1 + x\alpha_1 + y\alpha_2$ and $c(\rho^z) = 1 + \kappa + z^3\zeta$. Using the Whitney sum formula, $$c(\rho_{\tau}) = (1 - \alpha_1^2)(1 - \alpha_2^2)(1 - \kappa + \kappa^2 - \zeta^2)$$ = 1 - (\alpha + \kappa) - (\eta - \kappa^3) + (\alpha \eta - \alpha^3 - \kappa^4) + (\alpha \kappa + \kappa^2)\eta. So $$c_2(\rho_{\tau}) = -\beta$$, $c_6 = -\xi$, and $c_8 = -(\theta + \beta \xi + \beta^4)$. In general, $H^*(N, \mathbb{Z})_{(3)}$ need not be closed under the action on $H^*(P, \mathbb{Z})_{(3)}$ of an automorphism of P. However, in the proof of Theorem 1 we will need to be able to approximate any automorphism of P by one that does act on $H^*(N, \mathbb{Z})_{(3)}$. Lemma 8. Let ϕ be an automorphism of P, and D a non-central element of P. Then there is an automorphism ψ of P such that ψ equals ϕ on $\langle D, C \rangle$, and also $H^*(N, \mathbf{Z})_{(3)}$ is closed under the action of ψ on $H^*(P, \mathbf{Z})_{(3)}$. The map ψ^* fixes κ and η , and multiplies α and ν by ϵ , where ϵ is +1 or -1 according as D and ϕD are in the same or different conjugacy classes of G. *Proof.* The automorphism group of P acts transitively on the non-central elements, and hence transitively in the subgroups of order 3^2 . Therefore it suffices to prove the lemma for D = B. Let ϕB be $A'B^sC'$, and let ϕC be C^j . We shall find a and b such that defining ψA to be A^aB^b gives us an automorphism ψ with the required properties. For ψ to be well-defined, we need $j \equiv as - rb$. Now, ψ^* sends $\alpha = \alpha_1^2 + \alpha_2^2$ to $(a^2 + b^2)\alpha_1^2 - (ar + bs)\alpha_1\alpha_2 + (r^2 + s^2)\alpha_2^2$. There is a unique solution modulo 3 to the equations $as - br \equiv j$ and $ar + bs \equiv 0$. This also satisfies $a^2 + b^2 = r^2 + s^2$. Hence $\psi^*\alpha$ is in $H^*(N, \mathbb{Z})_{(3)}$, and ψ^*v is too. Finally, κ and η are fixed by all automorphisms of P, and $r^2 + s^2$ is +1 or -1 according as ϕB is in 3A or 3B. PROPOSITION 9. ([6]) Let D be A'B'SC'. Then the ring $H^*(C_3^D \times C_3^C, \mathbb{Z})_{(3)}$ is generated by δ and γ in degree 2, and χ in degree 3. All three generators have additive order 3, and χ squares to zero. The automorphism of $C_3 \times C_3$ which switches the two factors sends $\delta \leftrightarrow \gamma$ and $\chi \mapsto -\chi$. Restriction from P sends α_1 to $r\delta$, v_1 to $r\chi$, α_2 to $s\delta$, v_2 to $s\chi$, κ to $-\delta^2$ and ζ to $\gamma^3 - \gamma \delta^2$. **Proof of Theorem** 1. We have to obtain the stable classes in $H^*(P, \mathbb{Z})_{(3)}$. In Proposition 5 we calculated $H^*(N, \mathbb{Z})_{(3)}$, which consists of those classes which are stable with respect to each g in $N_G(P)$. We now consider each g which is not in $N_G(P)$. We can ignore those P^g whose intersection with P has order 3, because corestriction from C_3 to $C_3 \times C_3$ is zero. (See Proposition 18 of [3].) So we may suppose that $P^g \cap P$ has order 3^2 . Such g do exist, because G contains $3^2: GL_2F_3$. The groups 3^2 in G contain either two or eight elements of class 3A, and the centre of a Sylow 3-subgroup contains two elements of 3A. Now P and P^g cannot have the same centre, for both would have to lie in the centraliser in G of a 3A: this is the triple cover $\hat{3} \cdot A_6$, but A_6 is T.I. at 3. Hence $P \cap P^g$ contains eight elements of class 3A, and is therefore $\langle A, C \rangle$ or $\langle B, C \rangle$. Suppose that $P \cap P^g$ is $\langle D, C \rangle$, with $D = A'B^sC'$ central in P^g . So D is in 3A. Lemma 8 allows us to construct an automorphism ψ of P with $\psi D = gCg^{-1}$ and $\psi C = gDg^{-1}$, such that ψ^* fixes every element of $H^*(N, \mathbb{Z})_{(3)}$. Let f be the automorphism of $\langle D, C \rangle$ which switches the two factors around. Including $\langle D, C \rangle$ in P^g and then conjugating by g is the same map to P as applying f, then including in P and then applying ψ . So a class x in $H^*(N, \mathbb{Z})_{(3)}$ is in $H^* = (G, \mathbb{Z})_{(3)}$ if and only if its restriction to $\langle D, C \rangle$ is fixed by f^* . Since $r^2 + s^2 \equiv 1 \pmod{3}$, restriction sends α to δ^2 , ν to $\delta\gamma(\gamma^2 - \delta^2)\chi$, κ to $-\delta^2$ and η to $\gamma^2(\gamma^2 - \delta^2)^2$. We immediately see that ν is stable, and generates the odd-degree stable classes over the even-degree stable classes. We know from Proposition 6 that $\alpha + \kappa$, $\eta - \kappa^3$ and $(\alpha - \kappa)\eta$ are stable, and we can now easily verify this. We claim that these three classes generate the even-degree stable classes. Since $(\alpha + \kappa)(\eta - \kappa^3) - (\alpha + \kappa)^4 = (\alpha + \kappa)\eta$, they certainly generate $\kappa\eta$. Let x be a (homogeneous) stable class of even degree. Subtracting powers of $\eta - \kappa^3$ if necessary, x contains no lone powers of η (i.e., x involves no monomial of the form η^{ℓ}). Since $(\alpha + \kappa)^{t+1} = (-1)^t \kappa^t (\alpha + \kappa)$, we may further assume that x contains no lone powers of κ . Then x cannot contain a lone $\alpha \kappa^t$, because the restriction of x would contain a lone power of δ without the corresponding power of γ required for being fixed by f^* . Hence every term in x is divisible by $\alpha \eta$ or $\kappa \eta$. Since $\alpha^2 = \kappa^2$, the only terms not divisible by $\kappa \eta$ are of the form $\alpha \eta^{t+1}$, which can be eradicated by subtracting $(\alpha - \kappa)\eta(\eta - \kappa^3)^t$. So x can be reduced to $\kappa \eta x^t$. Then x^t is stable, and x is a polynomial in our supposed generators if x' is. Since x' has lower degree, the claim follows by induction. Finally, the relations are obvious. ## 3. The mod-3 cohomology. Recall that to the short exact sequence $$0 \to \mathbf{Z}_{(3)} \xrightarrow{3 \times} \mathbf{Z}_{(3)} \xrightarrow{j} \mathbf{F}_{3} \to 0 \tag{1}$$ of coefficient modules there is an associated long exact sequence $$\dots \xrightarrow{\partial} H^n(G, \mathbf{Z})_{(3)} \xrightarrow{3\times} H^n(G, \mathbf{Z})_{(3)} \xrightarrow{j_*} H^n(G, \mathbf{F}_3) \xrightarrow{\partial} H^{n+1}(G, \mathbf{Z})_{(3)} \xrightarrow{3\times} \dots$$ (2) of cohomology groups. Using the properties of this long exact sequence, we shall derive the structure of $H^*(M_{24}, \mathbb{F}_3)$ from that of $H^*(M_{24}, \mathbb{Z})_{(3)}$. Recall that the Bockstein homomorphism $\Delta = j_* \circ \partial$ is a graded derivation, and that the connecting map ∂ has a property akin to Frobenius reciprocity: if $x \in H^n(G, \mathbb{F}_3)$ and $y \in H^m(G, \mathbb{Z})_{(3)}$, then $\partial(xj_*(y)) = \partial(x)y$. First we derive the Poincaré series of $H^*(M_{24}, \mathbf{F}_3)$: THEOREM 10. The \mathbf{F}_3 -cohomology ring of M_{24} has Poincaré series $$\frac{1+t^3+t^4+t^7+t^8+t^{10}+3t^{11}+t^{12}+t^{14}+3t^{15}+t^{16}+t^{18}+t^{19}+t^{22}+t^{23}+t^{26}}{(1-t^{12})(1-t^{16})}.$$ *Proof.* Consider the long exact sequence (2) of cohomology groups. Each non-zero monomial in the generators of Theorem 1, lying in $H^n(G, \mathbb{Z})_{(3)}$, contributes one basis vector to $H^{n-1}(G, \mathbb{F}_3)$, and one to $H^n(G, \mathbb{F}_3)$. This does apply to the ξ^{ℓ} , but naturally not to 1. So we calculate the generating function f(t) for the number of non-zero monomials which lie in $H^n(G, \mathbb{Z})_{(3)}$. If the only generator were β , then f(t) would be $1/(1-t^4)$; if θ were the only generator, it would be $1/(1-t^{16})$. Since $\beta\theta=0$, the generating function for the subring they together generate is $$\frac{1}{1-t^4}-1+\frac{1}{1-t^{16}}=\frac{1+t^4+t^8+t^{12}+t^{16}}{1-t^{16}}.$$ The subrings generated by ν and by ξ have generating functions $1 + t^{11}$ and $1/(1 - t^{12})$ respectively. Since we have already budgeted for all the relations, we have $$f(t) = \frac{1 + t^4 + t^8 + t^{12} + t^{16}}{1 - t^{16}} \times (1 + t^{11}) \times \frac{1}{1 - t^{12}}.$$ By the argument at the start of this proof, the desired Poincaré series is then f(t) + (f(t) - 1)/t. Proof of Theorem 2. We use the cohomology long exact sequence (2) associated to the short exact sequence (1) of coefficients modules. Define $b = j_*(\beta)$, $t = j_*(\theta)$, $n = j_*(\nu)$ and $x = j_*(\xi)$. By exactness there are unique $B \in H^3(G, \mathbb{F}_3)$ and $N \in H^{10}$ such that $\partial(B) = \beta$ and $\partial(N) = \nu$. We want T such that $\partial(T) = \theta$. This only defines T up to adding a multiple of bn. Since BT is in H^{18} , which has basis bnB, there is a unique T in H^{15} satisfying $\partial(T) = \theta$ and BT = 0. There is similarly a unique \bar{X} in H^{11} defined by $\partial(\bar{X}) = 3\xi$ and $B\bar{X} = 0$. We shall set $X = \pm \bar{X}$, with the sign to be determined later. Since the image of ∂ is the ideal in $H^*(G, \mathbf{Z})_{(3)}$ generated by β , θ , ν and 3ξ , we have a complete set of generators. Most relations follow immediately. To prove that bT is zero, note that it lies in H^{19} , which is an \mathbf{F}_3 -vector space with basis b^2n , b^4B , bxB. Applying ∂ demonstrates that bT is a scalar multiple of b^2n . Multiplying by B then shows that bT is zero, for $\partial(Bb^2n) = \beta^3v$, which is non-zero. Since N^2 lies in H^{20} , it is a linear combination of b^5 and b^2x . Multiplication by n shows that N^2 is zero, since nN is zero for degree reasons. To prove that TX = Tn and tX = tn, we need a more intricate argument. Since TX lies in H^{26} , it must be an \mathbf{F}_3 -linear combination of Bb^3n , Bxn and Tn. Since bT = 0, multiplication by b shows that TX must be scalar multiple of Tn. Applying the Bockstein map, tX is the same multiple of tn. Since we can choose $X = \pm \bar{X}$, it is enough to prove that $t\bar{X} \neq 0$. Let D = A'B'C' be a non-central element of P. When we restrict from G to $\langle D, C \rangle$, by Proposition 9 we have Res $$\beta = (r^2 + s^2 - 1)\delta^2$$ Res $\theta = (r^2 + s^2 + 1)\gamma^2\delta^2(\gamma^2 - \delta^2)^2$. (3) Observe that $r^2 + s^2 \equiv 1 \pmod{3}$ if D is of class 3A, and -1 if D is 3B. We have $$\operatorname{Res} t = \begin{cases} -j_* (\gamma^2 \delta^2 (\gamma^2 - \delta^2)^2) & D \in 3A \\ 0 & D \in 3B \end{cases}.$$ Hence if $D \in 3A$, Res t is neither zero nor a zero divisor. For if $y \in H^m(\langle D, C \rangle, \mathbb{F}_3)$ with m > 0 and ty = 0, then $\partial(ty) = 0$, and so $\gamma^2 \delta^2 (\gamma^2 - \delta^2)^2 \partial(y) = 0$. If follows quickly from Proposition 9 that $\partial(y) = 0$, and so $y = j_*(v)$ for some $v \in H^m(\langle D, C \rangle, \mathbb{Z})_{(3)}$. Since j_* is an injection here, it follows from ty = 0 that $\gamma^2 \delta^2 (\gamma^2 - \delta^2)^2 v = 0$, whence v = 0 and v = 0. So it is enough to prove that, for some $v \in \mathbb{Z}$ 0, Res $v \in \mathbb{Z}$ 1. Similarly. $$\operatorname{Res} b = \begin{cases} 0 & D \in 3A \\ j_*(\delta^2) & D \in 3B \end{cases}.$$ So, if $D \in 3B$, then, as above, Res b is neither zero nor a zero divisor. But $b\bar{X} = 0$, and so if $D \in 3B$ then Res $\bar{X} = 0$. A result of Milgram and Tezuka [7] states that the maximal elementary abelian subgroups of 3_+^{1+2} detect every non-zero element of $H^*(3_+^{1+2}, \mathbb{F}_3)$. Hence, for some $D \in 3A$, Res $\bar{X} \neq 0$. Note that in the special case of \bar{X} , Milgram and Tezuka's result can be quickly verified. For $\bar{X} \in H^{11}(P, \mathbb{F}_3)$ is non-zero and in the kernel of Δ , and so is a non-zero \mathbb{F}_3 -linear combination of the images under j_* of $\alpha_1^4 v_1$, $\alpha_1^3 \alpha_2 v_1$, $\alpha_1^2 \alpha_2^2 v_1$, $\alpha_2^4 v_2$, $\alpha_1 v_1 \zeta$, $\alpha_2 v_1 \zeta$ and $\alpha_2 v_2 \zeta$. But we can quickly check from Proposition 9 that any non-zero \mathbb{F}_3 -linear combination of these elements is detected by restriction to the four maximal elementary abelian subgroups. We have now established the claimed relations. These show us that, as a module over the ring generated by x and $b^4 + t$, $H^*(G, \mathbb{F}_3)$ is generated as a module by the twenty elements 1, B, b, bB, b^2 , b^2B , b^3 , b^3B , T, t, N, n, nB, bn, bnB, b^2n , b^2nB , b^3n , b^3nB , X. As the free module with these generators has the correct Poincaré series, there are no further relations. REMARK. The author is grateful to the referee for the observation that the ring $H^*(Aut(M_{12}), \mathbf{F}_3)$ is isomorphic to $H^*(M_{24}, \mathbf{F}_3)$. For we see from the Atlas [2] that M_{24} has a maximal subgroup isomorphic to $Aut(M_{12})$, and that this contains copies of both $3^{1+2}_+:D_8$ and $3^2:GL_2\mathbf{F}_3$. Consequently, we may apply the proof of Theorem 1 to $Aut(M_{12})$ and deduce that restriction from $H^*(M_{24}, \mathbf{Z})_{(3)}$ to $H^*(Aut(M_{12}), \mathbf{Z})_{(3)}$ is a ring isomorphism. Now, the only information about M_{24} that we use in calculating $H^*(M_{24}, \mathbf{F}_3)$ is the structure of the ring $H^*(M_{24}, \mathbf{Z})_{(3)}$ and the fact that the Sylow 3-subgroups of M_{24} are isomorphic to 3^{1+2}_+ . It therefore follows that $H^*(Aut(M_{12}), \mathbf{F}_3)$ is isomorphic to $H^*(M_{24}, \mathbf{F}_3)$. Acknowledgements. The author would like to thank W. Lempken for explaining the 3-local structure of M_{24} , and the referee for the above remark. The author is grateful for the support of the Deutsche Forschungsgemeinschaft. ## REFERENCES - 1. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Math. Ser., Vol. 19 (Princeton Univ. Press, 1956). - 2. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups (Oxford University Press, 1985). - 3. D. J. Green, On the cohomology of the sporadic simple group J_4 , Math. Proc. Cambridge Philos. Soc. 113 (1993), 253-266. - 4. G. D. James, The modular characters of the Mathieu groups. J. Algebra 27 (1973), 57-111. - 5. I. J. Leary, The integral cohomology rings of some p-groups, Math. Proc. Cambridge Philos. Soc. 110 (1991), 25–32. - **6.** G. Lewis, The integral cohomology rings of groups of order p^3 , Trans. Amer. Math. Soc. 132 (1968), 501-529. - 7. R. J. Milgram and M. Tezuka, The geometry and cohomology of M_{12} : II. Preprint. - 8. C. B. Thomas, Characteristic classes and 2-modular representations for some sporadic groups-II, in *Algebraic topology*, *Poznań* 1989, Lecture Notes in Math., No 1474 (Springer-Verlag, 1991), 371–381. - 9. C. B. Thomas, Elliptic cohomology of the classifying space of the Mathieu group M_{24} , in Topology and representation theory, Contemp. Math. 158 (Amer. Math. Soc., 1994), 307-318. Institut für Experimentelle Mathematik Universität GHS Essen Ellernstrasse 29 D-45326 Essen Germany