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Introduction. In this paper we calculate the localisation at the prime 3 of the
integral cohomology ring of the Mathieu group A/24, together with its mod-3 cohomology
ring. The main results are:

THEOREM 1. The ring H*(M24, Z)(3) is the commutative graded Z^-algebra with
generators

Generator

Degree

Additive order

P 0 v £

4 16 11 12

3 3 3 32

and relations v2 = 0 and /30 = O. The Chern classes of the Todd representation in GLU¥2

generate the even-degree part of this ring.

THEOREM 2. The commutative graded F3-algebra H*(M24, F3) has generators

Generator

Degree

B

3

b

4

N

10

n,X

11

X

12

T

15

t

16

Bn =bN TX = Tn = tN tX = tn
and relations

= X2 = 0.

In [9], Thomas uses our results to prove that the elliptic cohomology of the classifying
space BM24 is generated by Chern classes, and is therefore concentrated in even
dimensions.

1. The Mathieu group Mu. The Mathieu group M24 is a 5-transitive degree 24
permutation group of order 210.33.5 . 7 .11.23. We can read off the 3-local structure we
require from the Atlas [2], The Sylow 3-subgroups are isomorphic to 31

+
+2

) the extraspecial
3-group of order 33 and exponent 3. This has a presentation

3'+
+2 s (A, B, C | A* = B3 = C3 = 1, CA = AC, CB = BC, AB = BAC).

Let P be a Sylow 3-subgroup of G. We see that each 32 is self-centralising, and that
the Sylow 3-normaliser N = NC(P) is isomorphic to V+2\D&. The outer automorphism
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group of 3'++2 is isomoprhic to GL2F3, which has Sylow 2-subgroups isomorphic to the
semidihedral group SD]6. As SD]b has exactly one subgroup isomorphic to Ds, there is
only one conjugacy class of subgroups of GL2F3 isomorphic to Ds. Hence, choosing new
generators for P if necessary, we may assume that the D8 is generated by elements J and
K as follows: conjugation by J sends A to B2, sends B to A and fixes C; and conjugation
by K sends A to B2, sends B to A2 and C to C2.

There are two conjugacy classes of elements of order 3 in M24. We may assume that
we have chosen generators for P and N/P such that in P, the elements of class 3A are C,
A'C and B'C, whereas A'B'C and ArB~rC have class 3B. Here r e {1,2} and
r e {0,1,2}.

2. The 3-local integral cohomology. We shall now calculate the 3-local integral
cohomology ring, using a well-known result from the book of Cartan and Eilenberg.

THEOREM 3. ([1]) Let G be a finite group with Sylow p-subgroup P. Recall that a class
x in H*(/\ Z ) ^ is stable if, for each g in G, the image (under conjugation by g) of x in
H*(PS, Z)(p) has the same restriction to P n Ps as has x itself.

The restriction map from G to P is an isomorphism between H*(G, Z)^) and the ring
of stable classes in H*(P, Z ) ^ . •

Here P is 3V+2, whose integral cohomology was calculated by Lewis.

THEOREM 4. ([6]) The cohomology ring H*(3++2, Z) is generated by

Generator

Degree

Additive order

«1,«2 V,,V2 K £

2 3 4 6

3 3 3 32

The v, square to zero. The remaining relations are:

(XjK = - a 3

V,K = -a2v,
a1v2=a2v1

K2 = a\ - OL\OL\ + a2

^ = «

The automorphism which sends A to Ar Bs C , B to ArBsC and C to O fixes K, sends
£ to ;3£ and sends

a)>-*r'ai + ra2 a2>-*s'al+ sa2 v} *-»/(r'v, + rv2) V2H-»;(,SI'VI + SV2). I

We start by calculating the cohomology of N: this is the ring of classes in H*(P, Z)(3)

which are invariant under the action of the Sylow 3-normaliser, i.e., under conjugation by
J and K.

PROPOSITION 5. The ring H*(/V,Z)(3) is generated by a = a\-\-a\, K, r\ = £2 and
v = (ajVj + a2v2)^. Additive exponents are obvious, and v squares to zero. The other
relation is a2 = K2.

Proof. We wish to diagonalise the action of J. Write $f3 for the module generated by
the otj and the v, over the ring generated by the a,. Then %, is an F3-vector space, and
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additively a direct summand of H*(/>, Z)(3). Extending the scalars to F9 makes the action
of J diagonalisable. Write i for a primitive fourth root of unity in F9.

J fixes K and £, multiplies a] - ia2 by i, and a2 + ia2 by —i. Hence in even degree the
fixed classes are generated by K,£,a\ + al and (a, =F ia2)

4. In both cases this last
expression is a\ + a2, which is - x a . Similarily, the only odd-degree generator needed is
a, v, + a2v2, which we call p..

K fixes K and a, and multiplies £ and p. by - 1 , whence the result. •

We now obtain a lower bound for the even-degree cohomology of G: in fact this
bound is attained

PROPOSITION 6. The Chern subring of G contains /3 = a + K, £ = 17 - K3 and 6 =
(OT-K)TJ.

Proof. Consider the Todd representation of G in GLU¥2. After lifting to characteris-
tic zero (see [8], [4]), we obtain a generalised character %% vvith partial character table

1A 3A 3B

X, 11 2 - 1 .

The irreducible representations of 3++2 are pxy for 0 < x, y < 2, and pz for 1 < z == 2.
They have characters

10 otherwise,

where w is of course exp{2m/3}. We have XT = X°° + XW + X20 + #°' + ^° 2 + # ' + ^2- Let
p r be a virtual representation affording Xr

THEOREM 7. ([5]) The irreducible representations of 31++2 have total Chern classes
c(pxy) = 1 + xa, + ya2 and c(pz) = 1 + K + z3f. •

Using the Whitney sum formula,

= 1 - (a + K) - (TJ - K3) + (a?j - a*3 - K4) + («K + K2)TJ.

So c2(Pr) = -B, c6=-£, and c8 = -(6 + P£ + i34). •

In general, H*(N, Z)(3) need not be closed under the action on H*(f\ Z)(3) of an
automorphism of P. However, in the proof of Theorem 1 we will need to be able to
approximate any automorphism of P by one that does act on H*(N, Z)(3).

LEMMA 8. Let (f> be an automorphism of P, and D a non -central element of P. Then
there is an automorphism ip of P such that ip equals <p on (D, C), and also H*(N, Z)(3) is
closed under the action of tp on H*(P, Z)(3). The map \p* fixes K and TJ, and multiplies a
and v by e, where e is +1 or - 1 according as D and (f>D are in the same or different
conjugacy classes of G.

Proof. The automorphism group of P acts transitively on the non-central elements,
and hence transitively in the subgroups of order 32. Therefore it suffices to prove the
lemma for D = B.
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Let <f>B be ArBsC, and let <pC be O. We shall find a and b such that defining tj/A to
be A"Bh gives us an automorphism i/» with the required properties. For ip to be
well-defined, we need j = as-rb. Now, i/f* sends a = a\ + a\ to (a2 + b2)a2 - (ar +
bs)a]a2 + (r2 + s2)a2. There is a unique solution modulo 3 to the equations as-br^j
and ar + bs = 0. This also satisfies a2 + b2 = r2 + s2. Hence i^*a is in H*(JV, Z)(3), and i//*v
is too. Finally, K and r\ are fixed by all automorphisms of P, and r2 + s2 is +1 or - 1
according as 4>B is in 3A or 3B. •

PROPOSITION 9. ([6]) Let D be A'B'C. Then the ring H*(Cf X Cf, Z)(3) w generated
by 8 and y in degree 2, and % in degree 3. All three generators have additive order 3, and x
squares to zero. The automorphism of C3 X C3 which switches the two factors sends 8«-» y
and X1-^ ~X- Restriction from P sends a, to rS, v, to rx, <*i to s8, v2 to sx, K to —82 and £
to y3 - y82. M

Proof of Theorem 1. We have to obtain the stable classes in H*(P, Z)(3). In
Proposition 5 we calculated H*(N, Z)(3), which consists of those classes which are stable
with respect to each g in NC(P). We now consider each g which is not in NC(P). We can
ignore those Ps whose intersection with P has order 3, because corestriction from C3 to
C3 x C3 is zero. (See Proposition 18 of [3].)

So we may suppose that Ps n P has order 32. Such g do exist, because G contains
32:GL2F3. The groups 32 in G contain either two or eight elements of class 3A, and the
centre of a Sylow 3-subgroup contains two elements of 3A. Now P and Ps cannot have the
same centre, for both would have to lie in the centraliser in G of a 3A: this is the triple
cover 3 . A6, but A6 is T.I. at 3. Hence P C\Pg contains eight elements of class 3A, and is
therefore (A,C) or (B,Q-

Suppose that P n P8 is (D, C>, with D = ArBsC central in Pg. So D is in 3A. Lemma
8 allows us to construct an automorphism i/» of P with ipD = gCg~J and if/C = gDg~\ such
that ip* fixes every element of H*(N,Z)(3). L e t / b e the automorphism of (D,C) which
switches the two factors around.

Including (D, C) in Pg and then conjugating by g is the same map to P as applying/,
then including in P and then applying ip. So a class x in H*(N, Z)(3) is in H* = (G, Z)(3) if
and only if its restriction to (Z), C) is fixed by/*.

Since r2 + s2 = 1 (mod 3), restriction sends a to S2, v to 8y(y2 - 82)x, K to -82 and TJ
to •y2(y2 - 52)2. We immediately see that v is stable, and generates the odd-degree stable
classes over the even-degree stable classes. We know from Proposition 6 that a + K,
TJ - K3 and (a - K)TJ are stable, and we can now easily verify this. We claim that these
three classes generate the even-degree stable classes. Since (a + K)(TJ - K3) - (a + K)4 =
(a + K)TJ, they certainly generate KTJ.

Let x be a (homogeneous) stable class of even degree. Subtracting powers of TJ - K3

if necessary, x contains no lone powers of TJ (i.e., x involves no monomial of the form
TJ^). Since (a + K) '+ 1 = ( - l ) V ( a + K), we may further assume that x contains no lone
powers of K. Then x cannot contain a lone a/c', because the restriction of x would contain
a lone power of 8 without the corresponding power of y required for being fixed by /*.
Hence every term in x is divisible by OTJ or KTJ. Since a2 = K2, the only terms not divisible
by KT) are of the form arj'"1"1, which can be eradicated by subtracting (a - K)TJ(TJ - K3)'.

So A: can be reduced to KTJX'. Then x' is stable, and x is a polynomial in our supposed
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generators if x' is. Since x' has lower degree, the claim follows by induction. Finally, the
relations are obvious. •

3. The mod-3 cohomology. Recall that to the short exact sequence

0 -*Z ( 3 ) ^Z ( 3 ) ^F 3 ->0 (1)

of coefficient modules there is an associated long exact sequence

^ ^ ^ H " ( G , Z ) ( 3 ^ H ' I ( G , F 3 ) ^ / / ' ' + 1 ( G , Z ) ( 3 ) - ^ . . . (2)

of cohomology groups. Using the properties of this long exact sequence, we shall derive
the structure of H*(M24, F3) from that of H*(A/24, Z)(3).

Recall that the Bockstein homomorphism A=/!|t°3 is a graded derivation, and that
the connecting map d has a property akin to Frobenius reciprocity: if x e H"(G,F3) and
y e Hm(G, Z)(3), then d(xU(y)) = d(x)y.

First we derive the Poincare series of H*(M24, F3):

THEOREM 10. The F3-cohomology ring of M2A has Poincare series

1 + f3 + t4 + f + f8 + f10 + 3f" + tn + f14 + 3?'5 +1 '6 + f18 + t '9 + t22 + P +126

(1 - /12)(1 - f16)

Proof. Consider the long exact sequence (2) of cohomology groups. Each non-zero
monomial in the generators of Theorem 1, lying in H"(G,Z)(3), contributes one basis
vector to H""1(G,F3), and one to H"(G,F3). This does apply to the £e, but naturally not
to 1. So we calculate the generating function /(/) for the number of non-zero monomials
which lie in H"(G,Z)(3).

If the only generator were /3, then f(t) would be 1/(1-/4); if 9 were the only
generator, it would be 1/(1 — z16). Since (36 = 0, the generating function for the subring
they together generate is

1 1 1 +14 +18 +112 +116

1 16 1 _ ,161 - /4 1 " f16 \-t

The subrings generated by v and by £ have generating functions 1 + tn and 1/(1 - f12)
respectively. Since we have already budgeted for all the relations, we have

By the argument at the start of this proof, the desired Poincare series is then

Proof of Theorem 2. We use the cohomology long exact sequence (2) associated to
the short exact sequence (1) of coefficients modules. Define b =;)|C(/3), t =/1(.(0), n =/*(v)
and x=\JX). By exactness there are unique 5e / / 3 (G ,F 3 ) and J V E H " such that
d(B) = /3 and d(N) = v. We want T such that d(T) = 0. This only defines T up to adding a
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multiple of bn. Since BT is in Hm, which has basis bnB,_ there is a unique Tin H15

satisfying 3(7) = 6 and BT = 0. There is similarly a unique X in H" defined by d(X) = 3£
and BA' = 0. We shall set X = ±X, with the sign to be determined later. Since the image
of d is the ideal in H*(G,Z)(3) generated by B,6, v and 3£, we have a complete set of
generators.

Most relations follow immediately. To prove that bT is zero, note that it lies in H19,
which is an F3-vector space with basis b2n, b*B, bxB. Applying d demonstrates that bT is
a scalar multiple of b2n. Multiplying by B then shows that bT is zero, for d(Bb2n) = /33v,
which is non-zero.

Since N2 lies in H20, it is a linear combination of bs and b2x. Multiplication by n
shows that N2 is zero, since nN is zero for degree reasons.

To prove that TX = Tn and tX = tn, we need a more intricate argument. Since TX
lies in H26, it must be an F3-linear combination of Bb3n, Bxn and Tn. Since bT = 0,
multiplication by b shows that TX must be scalar multiple of Tn. Applying the Bockstein
map, tX is the same multiple of tn. Since we can choose X = ±X, it is enough to prove
that tX ^ 0.

Let D = ArBsC be a non-central element of P. When we restrict from C to (D, C),
by Proposition 9 we have

= (r2 + s 2 - l ) S 2 Res 6 = (r2 +s2 + l)y2S2(y2 - 82)2. (3)

Observe that r2 + s2 = 1 (mod 3) if D is of class 3A, and - 1 if D is 3B. We have

Rest = {-}*iyHy ~8)) °DllA
B.

Hence if D e 3A, Res t is neither zero nor a zero divisor. For if y s Hm((D, C), F3) with
m > 0 and ty = 0, then d(ry) = O, and so y282(y2- 82)2d(y) = 0. If follows quickly from
Proposition 9 that d(y) = 0, and so y =/*(v) for some v e Hm((D, C), Z)(3). Since ;„. is an
injection here, it follows from ty = 0 that y262(y2 - 82)2v = 0, whence u = 0 and y = 0. So
it is enough to prove that, for some D e 3A, Res X ^ 0.

Similarly,

0 D E 3 A

So, if D e 3B, then, as above, Res b is neither zero nor a zero divisor. But b.Y = 0, and so
if D E 3B then Res X = 0.

A result of Milgram and Tezuka [7] states that the maximal elementary abelian
subgroups of 3++2 detect every non-zero element of H*(3++2, F3). Hence, for some
D E 3A, Res X ¥= 0. Note that in the special case of X, Milgram and Tezuka's result can
be quickly verified. For X e Hn(P, F3) is non-zero and in the kernel of A, and so is a
non-zero F3-linear combination of the images under ;„, of a*vu aia2

vi» ct2a2vu a\v2,
a\v\£, aiv\C a°d °2V2^ But we can quickly check from Proposition 9 that any non-zero
F3-linear combination of these elements is detected by restriction to the four maximal
elementary abelian subgroups.

We have now established the claimed relations. These show us that, as a module over
the ring generated by x and bA +1, H*(C, F3) is generated as a module by the twenty
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elements 1, B, b, bB, b2, b2B, b\ blB, T, t, N, n, nB, bn, bnB, b2n, b2nB, b3n, b\B, X.
As the free module with these generators has the correct Poincare series, there are no
further relations.

REMARK. The author is grateful to the referee for the observation that the ring
H*(Aut(Mn), F3) is isomorphic to H*(M24, F3). For we see from the Atlas [2] that M24 has
a maximal subgroup isomorphic to Aut(Mn), and that this contains copies of both 3\+2:D8

and 32:GL2F3. Consequently, we may apply the proof of Theorem 1 to Aut{MX2) and
deduce that restriction from H*(M24, Z)(3) to H*(Aut(M]2), Z)(3) is a ring isomorphism.
Now, the only information about M24 that we use in calculating H*(A/24, F3) is the
structure of the ring H*(A/24, Z)(3) and the fact that the Sylow 3-subgroups of M24 are
isomorphic to 3V+2. It therefore follows that H*(Aut(Ml2), F3) is isomorphic to
H*(M24,F3).
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