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In this paper, we consider estimating spot/instantaneous volatility matrices of high-
frequency data collected for a large number of assets. We first combine classic
nonparametric kernel-based smoothing with a generalized shrinkage technique in the
matrix estimation for noise-free data under a uniform sparsity assumption, a natural
extension of the approximate sparsity commonly used in the literature. The uniform
consistency property is derived for the proposed spot volatility matrix estimator
with convergence rates comparable to the optimal minimax one. For high-frequency
data contaminated by microstructure noise, we introduce a localized pre-averaging
estimation method that reduces the effective magnitude of the noise. We then use
the estimation tool developed in the noise-free scenario and derive the uniform
convergence rates for the developed spot volatility matrix estimator. We further
combine kernel smoothing with the shrinkage technique to estimate the time-varying
volatility matrix of the high-dimensional noise vector. In addition, we consider large
spot volatility matrix estimation in time-varying factor models with observable risk
factors and derive the uniform convergence property. We provide numerical studies
including simulation and empirical application to examine the performance of the
proposed estimation methods in finite samples.
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1. INTRODUCTION

Modeling high-frequency financial data is one of the most important topics in
financial economics and has received increasing attention in recent decades.
Continuous-time econometric models such as the Itô semimartingale are often
employed in high-frequency data analysis. One of the main components in these
models is the volatility function or matrix. In the low-dimensional setting (with
a single or a small number of assets), the realized volatility is often used to
estimate the integrated volatility over a fixed time period (e.g., Andersen and
Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002, 2004; Andersen et al.,
2003). In practice, it is not uncommon that the high-frequency financial data
are contaminated by the market microstructure noise, which leads to biased
realized volatility if the noise is ignored. Hence, various modification techniques
such as the two-scale, pre-averaging and realized kernel have been introduced
to account for the microstructure noise and produce consistent volatility esti-
mation (e.g., Zhang, Mykland, and Aït-Sahalia, 2005; Barndorff-Nielsen et al.,
2008; Kalnina and Linton, 2008; Jacod et al., 2009; Podolskij and Vetter, 2009;
Christensen, Kinnebrock, and Podolskij, 2010; Park, Hong, and Linton, 2016).
Shephard (2005), Andersen, Bollerslev, and Diebold (2010), and Aït-Sahalia and
Jacod (2014) provide comprehensive reviews for estimating volatility with high-
frequency financial data under various settings.

In practical applications, financial economists often have to deal with the
situation that there are a large amount of high-frequency financial data collected
for a large number of assets. A key issue is to estimate the large volatility
structure for these assets, which has applications in various areas such as the
optimal portfolio choice and risk management. Partly motivated by developments
in large covariance matrix estimation for low-frequency data in the statistical
literature, Wang and Zou (2010), Tao, Wang, and Zhou (2013), and Kim, Wang,
and Zou (2016) estimate the large volatility matrix under an approximate sparsity
assumption (Bickel and Levina, 2008); Zheng and Li (2011) and Xia and Zheng
(2018) study large volatility matrix estimation using the large-dimensional random
matrix theory (Bai and Silverstein, 2010); and Lam and Feng (2018) propose
a nonparametric eigenvalue-regularized integrated covariance matrix for high-
dimensional asset returns. Given that there often exists co-movement between
a large number of assets driven by either observable or latent risk factors, Fan,
Furger, and Xiu (2016), Aït-Sahalia and Xiu (2017), and Dai, Lu, and Xiu (2019)
extend the methodologies developed by Fan, Liao, and Mincheva (2011, 2013) to
estimate the large volatility matrix by imposing a continuous-time factor model
structure on the high-dimensional and high-frequency data. Aït-Sahalia and Xiu
(2019) study the principal component analysis of high-frequency data and derive
the asymptotic distribution for the realized eigenvalues, eigenvectors, and principal
components.

The estimation methodologies in the aforementioned literature often rely on the
realized volatility (or covariance) matrices, measuring the volatility structure over
a fixed time interval. In practice, it is often interesting to further explore the actual
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spot/instantaneous volatility structure and its dynamic change over time, which
is a particularly important measurement for financial assets when the market is
in a volatile period (say, the global financial crisis or COVID-19 outbreak). For
a single financial asset, Fan and Wang (2008) and Kristensen (2010) introduce
a kernel-based nonparametric method to estimate the spot volatility function and
establish its asymptotic properties including the pointwise and global asymptotic
distribution theory and uniform consistency. For the noise-contaminated high-
frequency data, Zu and Boswijk (2014) combine the two-scale realized volatility
with the kernel-weighted technique to estimate the spot volatility, whereas Kanaya
and Kristensen (2016) propose a kernel-weighted pre-averaging spot volatility
estimation method. Other nonparametric spot volatility estimation methods can be
found in Fan, Fan, and Lv (2007) and Figueroa-López and Li (2020). It seems
straightforward to extend this local nonparametric method to estimate the spot
volatility matrix for a fixed number of assets. However, a further extension to the
setting with vast financial assets is nontrivial.

The main methodological and theoretical contributions of this paper are
summarized as follows.

• Large spot volatility matrix estimation with noise-free high-frequency data. We
use the nonparametric kernel-based smoothing method to estimate the volatility
and co-volatility functions as in Fan and Wang (2008) and Kristensen (2010),
and then apply a generalized shrinkage to off-diagonal estimated entries. With
small off-diagonal entries forced to be zeros, the resulting large spot volatility
matrix estimate would be nondegenerate with stable performance in finite
samples. We derive the consistency property for the proposed spot volatility
matrix estimator uniformly over the entire time interval under a uniform sparsity
assumption, which is also adopted by Chen, Xu, and Wu (2013), Chen and Leng
(2016), and Chen, Li, and Linton (2019) in the low-frequency data setting. In
particular, the derived uniform convergence rate is comparable to the optimal
minimax rate in large covariance matrix estimation (e.g., Cai and Zhou, 2012).
The number of assets is allowed to be ultra large in the sense that it can grow at
an exponential rate of 1/� with � being the sampling interval.

• Large spot volatility matrix estimation with noise-contaminated high-frequency
data and time-varying noise volatility matrix estimation. When the high-
frequency data are contaminated by the microstructure noise, we extend Kanaya
and Kristensen’s (2016) localized pre-averaging estimation method to the high-
dimensional setup. Specifically, we first pre-average the noise-contaminated log
prices via a kernel filter and then apply the same estimation method to the kernel
fitted high-frequency data (at pseudo-sampling time points) as in the noise-free
scenario. The microstructure noise vector is assumed to be heteroskedastic
with the time-varying covariance structure satisfying the uniform sparsity
assumption. We show that the existence of microstructure noises slows down
the uniform convergence rates (see Theorem 2). Furthermore, we combine the
kernel smoothing with generalized shrinkage to estimate the time-varying noise
volatility matrix and derive its uniform convergence property. To the best of our
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knowledge, there is virtually no work on high-dimensional time-varying noise
volatility matrix estimation for high-frequency data.

• Large spot volatility matrix estimation with risk factors. Since the uniform
sparsity assumption is often too restrictive, we relax this restriction in Section 4
and consider large spot volatility matrix estimation in the time-varying factor
model at high frequency, i.e., a large number of asset prices are driven by a small
number of observable common factors. By imposing the sparsity restriction
on the spot idiosyncratic volatility matrix, we obtain the so-called “low-rank
plus sparse” spot volatility structure. A similar structure (with constant betas) is
adopted by Fan et al. (2016) and Dai et al. (2019) in estimation of large volatility
matrices. We use the kernel smoothing method to estimate the spot volatility and
covariance of the observed asset prices and factors as well as the time-varying
betas, and apply the shrinkage technique to the estimated spot idiosyncratic
volatility matrix. We derive the uniform convergence property of the developed
matrix estimates, partly extending the pointwise convergence property in Kong
(2018). The developed methodology and theory can be further modified to tackle
the noise-contaminated high-frequency data.

The rest of the paper is organized as follows. In Section 2, we estimate the
large spot volatility matrix in the noise-free high-frequency data setting and
give the uniform consistency property. In Section 3, we extend the methodology
and theory to the noise-contaminated high-frequency data setting and further
estimate the time-varying noise volatility matrix. Section 4 considers the large
spot volatility matrix with systematic factors. Section 5 reports the simulation
studies, and Section 6 provides an empirical application. Section 7 concludes
the paper and discusses modification of the estimation methodology to allow
for jumps in the price or volatility. Proofs of the main theoretical results are
available in Appendix A. The Supplementary Material contains proofs of some
technical lemmas and propositions and discussions on the spot precision matrix
estimation and the asynchronicity issue. Throughout the paper, we let ‖ · ‖2 be
the euclidean norm of a vector; and for a d × d matrix A = (Aij)d×d, we let ‖A‖
and ‖A‖F be the matrix spectral norm and Frobenius norm, respectively, |A|1 =∑d

i=1

∑d
j=1 |Aij|, ‖A‖1 = max1≤j≤d

∑d
i=1 |Aij|, ‖A‖∞,q = max1≤i≤d

∑d
j=1 |Aij|q, and

‖A‖max = max1≤i≤d max1≤j≤d |Aij|.

2. ESTIMATION WITH NOISE-FREE DATA

Suppose that Xt =
(
X1,t, . . . ,Xp,t

)ᵀ
is a p-variate Brownian semi-martingale solving

the following stochastic differential equation:

dXt = μtdt +σ tdWt, (2.1)

where Wt = (
W1,t, . . . ,Wp,t

)ᵀ
is a p-dimensional standard Brownian motion,

μt = (μ1,t, . . . ,μp,t)
ᵀ

is a p-dimensional drift vector, and σ t = (σij,t
)

p×p is a p×p
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matrix. The spot volatility matrix of Xt is defined as

�t = (�ij,t
)

p×p = σ tσ
ᵀ
t . (2.2)

Our main interest lies in estimating �t when p is large. As in Chen et al. (2013)
and Chen and Leng (2016), we assume that the true spot volatility matrix satisfies
the following uniform sparsity condition: {�t : 0 ≤ t ≤ T} ∈ S(q,�(p),T), where

S(q,�(p),T) =
{
�t = (�ij,t

)
p×p , t ∈ [0,T]

∣∣ sup
0≤t≤T

‖�t‖∞,q ≤ ��(p)

}
, (2.3)

where 0 ≤ q < 1, �(p) is larger than a positive constant, T is a fixed positive
number, and � is a positive random variable satisfying E[�] ≤ C� < ∞. This is a
natural extension of the approximate sparsity assumption (e.g., Bickel and Levina,
2008; Wang and Zou, 2010; Tao et al., 2013). Section 4 below will relax this
assumption and consider estimating large spot volatility matrices with systematic
factors. The asset prices are assumed to be collected over a fixed time interval
[0,T] at 0,�,2�,. . . ,n�, where � is the sampling interval and n = �T/�� with
�·� denoting the floor function. In the main text, we focus on the case of equidistant
time points in the high-frequency data collection. The asynchronicity issue will be
discussed in Appendix C.2 of the Supplementary Material.

For each 1 ≤ i,j ≤ p, we estimate the spot covariance �ij,t by

�̂ij,t =
n∑

k=1

K∗
h (tk − t)�Xi,k�Xj,k (2.4)

with

K∗
h (tk − t) = Kh (tk − t)/

[
�

n∑
l=1

Kh (tl − t)

]
,

where tk = k�, Kh(u) = h−1K(u/h), K(·) is a kernel function, h is a bandwidth
shrinking to zero, and �Xi,k = Xi,tk − Xi,tk−1 . The use of K∗

h (tk − t) rather than
Kh(tk − t) in (2.4) is to correct a constant bias when t is close to the boundary
points 0 and T. A naive method of estimating the spot volatility matrix �t is
to directly use �̂ij,t to form an estimated matrix. However, this estimate often
performs poorly in practice when the number of assets is very large (say, p > n).
To address this issue, a commonly used technique is to apply a shrinkage function
to �̂ij,t when i 	= j, forcing very small estimated off-diagonal entries to be zeros.
Let sρ(·) denote a shrinkage function satisfying the following three conditions: (i)
|sρ(u)| ≤ |u| for u ∈ R; (ii) sρ(u) = 0 if |u| ≤ ρ; and (iii) |sρ(u)− u| ≤ ρ, where
ρ is a user-specified tuning parameter. With the shrinkage function, we construct
the following nonparametric estimator of �t:

�̂t = (�̂s
ij,t

)
p×p

with �̂s
ij,t = sρ1(t)(�̂ij,t)I(i 	= j)+ �̂ii,tI(i = j), (2.5)
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where ρ1(t) is a tuning parameter which is allowed to change over t and I(·) denotes
the indicator function. Section 5 discusses the choice of ρ1(t), ensuring that �̂t is
positive-definite. Our estimation method of the spot volatility matrix can be seen as
a natural extension of the kernel-based large sparse covariance matrix estimation
(e.g., Chen et al., 2013; Chen and Leng, 2016; Chen et al., 2019) from the low-
frequency data setting to the high-frequency one. We next give some technical
assumptions which are needed to derive the uniform convergence property of �̂t.

Assumption 1.

(i) {μi,t} and {σij,t} are adapted locally bounded processes with continuous sample
path.

(ii) With probability one,

min
1≤i≤p

inf
0≤s≤T

�ii,s > 0, min
1≤i	=j≤p

inf
0≤s≤T

�∗
ij,s > 0,

where �∗
ij,s = �ii,s +�jj,s +2�ij,s. For the spot covariance process {�ij,t}, there

exist γ ∈ (0,1) and B(t,ε), a positive random function slowly varying at ε = 0
and continuous with respect to t, such that

max
1≤i,j≤p

∣∣�ij,t+ε −�ij,t

∣∣≤ B(t,ε)|ε|γ +o(|ε|γ ), ε → 0. (2.6)

Assumption 2.

(i) The kernel K(·) is a bounded and Lipschitz continuous function with a
compact support [−1,1]. In addition,

∫ 1
−1 K(u)du = 1.

(ii) The bandwidth h satisfies that h → 0 and h
� log(p∨�−1)

→ ∞.
(iii) Let the time-varying tuning parameter ρ1(t) in the generalized shrinkage be

chosen as

ρ1(t) = M(t)ζ�,p, ζ�,p = hγ +
[
� log(p∨�−1)

h

]1/2

,

where γ is defined in (2.6) and M(t) is a positive function satisfying that

0 < CM ≤ inf
0≤t≤T

M(t) ≤ sup
0≤t≤T

M(t) ≤ CM < ∞.

Remark 1. (i) Assumption 1 imposes some mild restrictions on the drift and
volatility processes. By a typical localization procedure as in Section 4.4.1 of Jacod
and Protter (2012), the local boundedness condition in Assumption 1(i) can be
strengthened to the uniform boundedness over the entire time interval, i.e., with
probability one,

max
1≤i≤p

sup
0≤s≤T

|μi,s| ≤ Cμ < ∞, max
1≤i≤p

sup
0≤s≤T

�ii,s ≤ C� < ∞,

which are the same as Assumption A2 in Tao et al. (2013) and Assumptions
(A.ii) and (A.iii) in Cai et al. (2020). It may be possible to relax the uniform
boundedness restriction (when T is allowed to diverge) at the cost of more lengthy
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proofs (e.g., Kanaya and Kristensen, 2016). Assumption 1(ii) gives the smoothness
condition on the spot covariance process, which is crucial to the derivation of the
uniform asymptotic order for the kernel estimation bias. In the low-dimensional
setting when p is fixed, the smoothness condition (2.6) is standard. For example,
when the spot covariance is driven by continuous semimartingales, (2.6) holds
with γ < 1/2 (e.g., Ch. V, Exercise 1.20 in Revuz and Yor, 1999). In the high-
dimensional setting, as we need to derive the uniform estimation bias rate, we
require the smoothness condition uniformly over the index pairs (i,j). If �ij,t is a
deterministic function of t as in Kristensen (2010) and Remark 2(ii), the uniform
smoothness condition (2.6) would be comparable to those in Chen and Leng (2016)
and Chen et al. (2019). However, the smoothness restriction rules out volatility
jumps, in which case the developed estimation methodology needs to be modified
(see the discussion in Section 7).

(ii) Assumption 2(i) contains some commonly used conditions for the kernel
function. Assumption 2(ii) and (iii) imposes some mild conditions on the band-
width and time-varying shrinkage parameter. In particular, when p diverges at a
polynomial rate of 1/�, Assumption 2(ii) reduces to the conventional bandwidth
restriction. Assumption 2(iii) is comparable to that assumed by Chen and Leng
(2016) and Chen et al. (2019). It is worthwhile to point out that the developed
methodology and theory still hold when the time-varying tuning parameter in
Assumption 2(iii) is allowed to vary over entries in the spot volatility matrix
estimation. For example, we set ρij(t) = ρ(t)(�̂ii,t�̂jj,t)

1/2 in the numerical studies
and shrink the (i,j)-entry to zero if �̂ij,t ≤ ρ(t)(�̂ii,t�̂jj,t)

1/2.

The following theorem gives the uniform convergence property (in the matrix
spectral norm) for the spot volatility matrix estimator �̂t under the uniform sparsity
assumption.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied, and {�t : 0 ≤
t ≤ T} ∈ S(q,�(p),T). Then we have

sup
0≤t≤T

∥∥�̂t −�t

∥∥= OP

(
�(p)ζ

1−q
�,p

)
, (2.7)

where �(p) is defined in (2.3) and ζ�,p is defined in Assumption 2(iii).

Remark 2. (i) The first term of ζ�,p is hγ , which is the bias rate due to
application of the local smoothing technique. It is slower than the conventional
h2-rate since we do not assume existence of smooth derivatives of �ij,t (with
respect to t). The second term of ζ�,p is the square root of �h−1 log(p ∨ �−1),
a typical uniform asymptotic rate for the kernel estimation variance component.
The uniform convergence rate in (2.7) is also similar to those obtained by Chen and
Leng (2016) and Chen et al. (2019) in the low-frequency data setting (disregarding
the bias order). Note that the dimension p affects the uniform convergence rate
via �(p) and log(p∨�−1) and the estimation consistency may be achieved in the
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ultrahigh-dimensional setting when p diverges at an exponential rate of n = �T/��.
Treating (nh) as the “effective” sample size in the local estimation procedure and
disregarding the bias rate hγ , the rate in (2.7) is comparable to the optimal minimax
rate in large covariance matrix estimation (e.g., Cai and Zhou, 2012).

(ii) If we further assume that �ij,t is deterministic with continuous second-order
derivative with respect to t, and K(·) is symmetric, we may improve the kernel
estimation bias order. In fact, following the proof of Theorem 1, we may show that

sup
h≤t≤T−h

∥∥�̂t −�t

∥∥= OP

(
�(p)ζ

1−q
�,p,�

)
, (2.8)

where ζ�,p,� = h2 +
[

� log(p∨�−1)

h

]1/2
. The above uniform consistency property only

holds over the trimmed time interval [h,T −h] due to the kernel boundary effect. In
practice, however, it is often important to investigate the spot volatility structure
near the boundary points. For example, when we consider one trading day as a
time interval, it is particularly interesting to estimate the spot volatility matrix near
the opening and closing times which are peak times in stock market trading. To
address this issue, we may replace K∗

h (tk − t) in (2.4) by a boundary kernel weight
defined by

K�
h,t(tk − t) = Kt

(
tk − t

h

)
/

[
�

n∑
l=1

Kt

(
tl − t

h

)]
,

where Kt(·) is a boundary kernel satisfying
∫ (T−t)/h
−t/h uKt(u)du = 0 (a key condition

to improve the bias order near the boundary points). Examples of boundary kernels
can be found in Fan and Gijbels (1996) and Li and Racine (2007). With this
adjustment in the kernel estimation, we can extend the uniform consistency result
(2.8) to the entire interval [0,T].

3. ESTIMATION WITH CONTAMINATED HIGH-FREQUENCY DATA

In practice, it is not uncommon that high-frequency financial data are contaminated
by the market microstructure noise. The kernel estimation method proposed in
Section 2 would be biased if the noise is ignored in the estimation procedure.
Consider the following additive noise structure:

Ztk = Xtk + ξ k = Xtk +ω(tk)ξ
∗
k, (3.1)

where tk = k�, k = 1, . . . ,n, Zt = (Z1,t, . . . ,Zp,t
)ᵀ

is a vector of observed asset
prices at time t, and ξ k = (ξ1,k, . . . ,ξp,k)

ᵀ
is a p-dimensional vector of noises with

nonlinear heteroskedasticity, ω(·) = [ωij(·)
]

p×p is a p × p matrix of deterministic

functions, and ξ ∗
k =

(
ξ ∗

1,k, . . . ,ξ
∗
p,k

)ᵀ
independently follows a p-variate identical

distribution with identity covariance matrix. The noise structure defined in (3.1)
is similar to Kalnina and Linton’s (2008) setting which also contains a nonlin-
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ear mean function and allows the existence of endogeneity for a single asset.
Throughout this section, we assume that {ξ ∗

k} is independent of the Brownian
semimartingale {Xt}.

3.1. Estimation of the Spot Volatility Matrix

To account for the microstructure noise and produce consistent volatility matrix
estimation, we apply the pre-averaging technique as the realized kernel estimate
(Barndorff-Nielsen et al., 2008) can be seen as a member of the pre-averaging
estimation class whereas the two-scale estimate (Zhang et al., 2005) can be re-
written as the realized kernel estimate with the Bartlett-type kernel (up to the
first-order approximation). The pre-averaging method has been studied by Jacod
et al. (2009), Podolskij and Vetter (2009), and Christensen et al. (2010) in
estimating the volatility for a single asset and is further extended by Kim et al.
(2016) and Dai et al. (2019) to the large high-frequency data setting. Kanaya and
Kristensen (2016) use a localized pre-averaging technique to estimate the spot
volatility function for a single asset and derive the uniform convergence rate for the
developed estimate. A similar technique is also used by Xiao and Linton (2002)
to improve convergence of the nonparametric spectral density estimator for time
series with general autocorrelation for low-frequency data.

We first pre-average the observed high-frequency data via a kernel filter, i.e.,

X̃τ = T

n

n∑
k=1

L†
b(tk − τ)Ztk (3.2)

with L†
b(tk − τ) = Lb (tk − τ)/

∫ T
0 Lb(s − τ)ds, where Lb(u) = b−1L(u/b), L(·) is a

kernel function and b is a bandwidth. Let �X̃i,l = X̃i,τl − X̃i,τl−1 , where X̃i,τl is the
ith component of X̃τl and τ0,τ1, . . . ,τN are the pseudo-sampling time points in the
fixed interval [0,T] with equal distance �∗ = T/N. Replacing �Xi,k by �X̃i,l in
(2.4), we estimate the spot covariance �ij,t by

�̃ij,t =
N∑

l=1

K†
h(τl − t)�X̃i,l�X̃j,l, (3.3)

where

K†
h(τl − t) = Kh (τl − t)/

[
�∗

N∑
k=1

Kh (τk − t)

]
.

Furthermore, to obtain a stable spot volatility matrix estimate in finite samples
when p is large, as in (2.5), we apply shrinkage to �̃ij,t, 1 ≤ i 	= j ≤ p, and
subsequently construct

�̃t = (�̃s
ij,t

)
p×p

, �̃s
ij,t = sρ2(t)

(
�̃ij,t

)
I(i 	= j)+ �̃ii,tI(i = j), (3.4)
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where ρ2(t) is a time-varying shrinkage parameter. We next give some conditions
needed to derive the uniform consistency property of �̃t.

Assumption 3.

(i) Let E(ξ ∗
i,k) = 0 and

E

[
exp
(

s|uᵀ
ξ ∗

k |
)]

≤ Cξ < ∞, 0 < s ≤ s0,

for any p-dimensional vector u satisfying ‖u‖2 = 1.
(ii) The deterministic functions ωij(·) are bounded uniformly over i,j ∈ {1, . . . ,p},

and satisfy that

max
1≤i≤p

sup
0≤t≤T

p∑
j=1

ω2
ij(t) ≤ Cω < ∞.

Assumption 4.

(i) The kernel function L(·) is Lipschitz continuous and has a compact support
[−1,1]. In addition,

∫ 1
−1 L(u)du = 1.

(ii) The bandwidth b and the dimension p satisfy that

b → 0,
�2ι−1b

log(p∨�−1)
→ ∞, p�exp{−s�−ι} → 0,

where 0 < ι < 1/2 and 0 < s ≤ s0.
(iii) Let ν�,p,N =√N log(p∨�−1)

[
b1/2 + (�−1b)−1/2

]→ 0 and the time-varying

tuning parameter ρ2(t) be chosen as ρ2(t) = M(t)
(
ζ ∗

N,p +ν�,p,N

)
, where M(t)

is defined as in Assumption 2(iii) and ζ ∗
N,p is defined as ζ�,p with N replacing

�−1.

Remark 3. We allow nonlinear heteroskedasticity on the microstructure noise.
The moment condition in Assumption 3(i) is weaker than the sub-Gaussian
condition (e.g., Bickel and Levina, 2008; Tao et al., 2013), which is commonly
used in large covariance matrix estimation when p is ultra large. The boundedness
condition on ωij(·) in Assumption 3(ii) is comparable to the local boundedness
restriction in Assumption 1(i). Assumption 4(ii) imposes some mild restrictions
on b and p, which imply that there is a trade-off between them. When ι is
larger, p diverges at a faster exponential rate of 1/�, but the bandwidth condition
becomes more restrictive. If p is divergent at a polynomial rate of 1/�, we may
let ι be sufficiently close to zero, and then the bandwidth condition reduces
to the conventional one as in Assumption 2(ii). The condition ν�,p,N → 0 in
Assumption 4(iii) is crucial to show that the error of the kernel filter X̃τ tends
to zero asymptotically, whereas the form of the time-varying shrinkage parameter
ρ2(t) is relevant to the uniform convergence rate of �̃ij,t (see Proposition A.2).

https://doi.org/10.1017/S0266466624000264 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000264


NONPARAMETRIC ESTIMATION OF LARGE SPOT VOLATILITY MATRICES 11

Theorem 2. Suppose that Assumptions 1(i) and (ii), 2(i), 3, and 4 are satisfied,
and Assumption 2(ii) holds with �−1 replaced by N. When {�t : 0 ≤ t ≤ T} ∈
S(q,�(p),T), we have

sup
0≤t≤T

∥∥�̃t −�t

∥∥= OP

(
�(p)

[
ζ ∗

N,p +ν�,p,N
]1−q

)
, (3.5)

where ζ ∗
N,p and ν�,p,N are defined in Assumption 4(iii).

Remark 4. The uniform convergence rate in (3.5) relies on �(p), ζ ∗
N,p, and

ν�,p,N . With the high-frequency data collected at pseudo-time points with sampling
interval �∗ = T/N, the rate ζ ∗

N,p is comparable to ζ�,p for the noise-free kernel

estimator in Section 2. The rate ν�,p,N is due to the error of the kernel filter X̃τ

in the first step of pre-averaging estimation. In particular, when q = 0, �(p) is

bounded, b = �1/4 and h = N− 1
2γ+1 with N = �

− 2γ+1
2(4γ+1) , the uniform convergence

rate in (3.5) becomes �
γ

2(4γ+1)
√

log(p∨�−1). Furthermore, if γ = 1/2, the rate is
simplified to �1/12

√
log(p∨�−1), comparable to those derived by Zu and Boswijk

(2014) and Kanaya and Kristensen (2016) in the univariate high-frequency data
setting.

3.2. Estimation of the Time-Varying Noise Volatility Matrix

It is often interesting to further explore the volatility structure of microstructure
noise. Chang et al. (2024) estimate the constant covariance matrix for high-
dimensional noise and derive the optimal convergence rates for the developed
estimate. In the present paper, we consider the time-varying noise covariance
matrix defined by

�(t) = ω(t)ω
ᵀ
(t) = [�ij(t)

]
p×p , 0 ≤ t ≤ T . (3.6)

It is sensible to assume that {�(t) : 0 ≤ t ≤ T} satisfies the uniform sparsity
condition as in (2.3). For each 1 ≤ i,j ≤ p, we estimate �ij(t) by the kernel
smoothing method:

�̂ij(t) = �

2

n∑
k=1

K∗
h1

(tk − t)�Zi,tk�Zj,tk, (3.7)

where h1 is a bandwidth, �Zi,tk = Zi,tk −Zi,tk−1 and K∗
h1

(tk − t) is defined similarly
to K∗

h (tk − t) in (2.4) but with h1 replacing h. As in (2.5) and (3.4), we again apply
shrinkage to �̂ij(t), 1 ≤ i 	= j ≤ p, and construct

�̂(t) = [�̂s
ij(t)
]

p×p
, �̂s

ij(t) = sρ3(t)
(
�̂ij(t)

)
I(i 	= j)+ �̂ii(t)I(i = j), (3.8)

where ρ3(t) is a time-varying shrinkage parameter. To derive the uniform consis-
tency property of �̂(t), we need to impose a stronger moment condition on ξ ∗

k and
smoothness restriction on �ij(·).
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Assumption 5.

(i) For any p-dimensional vector u satisfying ‖u‖2 = 1, E
[
exp
(
s(u

ᵀ
ξ ∗

k)
2
)] ≤

C�
ξ < ∞, 0 < s ≤ s0.

(ii) The time-varying function �ij(t) satisfies that

max
1≤i,j≤p

∣∣�ij(t)−�ij(s)
∣∣≤ C�|t − s|γ1,

where C� is a positive constant and 0 < γ1 < 1.
(iii) The bandwidth h1 and the dimension p satisfy that

h1 → 0,
�2ι�−1h1

log(p∨�−1)
→ ∞, p�−1 exp{−s�−ι�/Cω} → 0,

where 0 < ι� < 1/2, 0 < s ≤ s0 and Cω is defined in Assumption 3(ii).

Remark 5. Assumption 5(i) strengthens the moment condition in Assumption
3(i) and is equivalent to the sub-Gaussian condition (see Assumption A1 in Tao
et al., 2013). The smoothness condition in Assumption 5(ii) is similar to (2.6),
crucial to derive the asymptotic order of the kernel estimation bias. The restrictions
on h1 and p in Assumption 5(iii) are similar to those in Assumption 4(ii), allowing
p to be divergent to infinity at an exponential rate of 1/�.

In the following theorem, we state the uniform consistency result for �̂(t) with
convergence rate comparable to that in Theorem 1.

Theorem 3. Suppose that Assumptions 1, 2(i), 3, and 5 are satisfied, and
Assumption 2(ii) and (iii) holds when ρ1(t), ζ�,p, and h are replaced by ρ3(t), δ�,p,

and h1, respectively, where δ�,p = hγ1
1 +

[
� log(p∨�−1)

h1

]1/2
. If {�(t) : 0 ≤ t ≤ T} ∈

S(q,�(p),T), we have

sup
0≤t≤T

∥∥�̂(t)−�(t)
∥∥= OP

(
�(p)δ

1−q
�,p

)
. (3.9)

Remark 6. If the bandwidth parameter h1 in (3.7) is the same as h in (2.4),

we may find that the uniform convergence rate OP

(
�(p)δ

1−q
�,p

)
would be the

same as that in Theorem 1. Treating (nh1) as the “effective” sample size and
disregarding the bias order, we may show that the uniform convergence rate in (3.9)
is comparable to the optimal minimax rate derived by Chang et al. (2024) for the
constant noise covariance matrix estimation. Meanwhile, the kernel estimation bias
order hγ1

1 may be improved by strengthening the smoothness condition on �ij(·)
and adopting the boundary kernel weight as suggested in Remark 2(ii). It is worth
pointing out that the estimation in (3.7) relies on the independence assumption
on the microstructure noise. It becomes inconsistent when the noise is temporally
correlated and an appropriate modification technique such as ReMeDI in Li and
Linton (2022) may be required.
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4. ESTIMATION WITH OBSERVED FACTORS

The large spot volatility matrix estimation with the shrinkage technique developed
in Sections 2 and 3 heavily relies on the uniform sparsity assumption (2.3).
However, the latter may be too restrictive in practice since the price processes
of a large number of assets are often driven by some common factors such as
the market factor, resulting in strong correlation among assets and failure of the
sparsity condition. To address this problem, we next consider the nonparametric
time-varying regression at high frequency:

dYt = β(t)dFt +dXt, (4.1)

where β(t) = [β1(t), . . . ,βp(t)
]ᵀ

is a p× k matrix of time-varying betas (or factor
loadings), Ft and Xt are k-variate and p-variate continuous semi-martingales
defined by

dFt = μF
t dt +σ F

t dWF
t and dXt = μX

t dt +σ X
t dWX

t , (4.2)

respectively, μF
t and μX

t are drift vectors, σ F
t =

(
σ F

ij,t

)
k×k

, σ X
t =

(
σ X

ij,t

)
p×p

, WF
t

and WX
t are k-dimensional and p-dimensional standard Brownian motions. For

the time being, we assume that Yt and Ft are observable and noise free but Xt is
latent. Extension of the methodology and theory to the noise-contaminated high-
frequency data will be considered later in this section.

Estimation of the constant betas via the ratio of realized covariance to realized
variance is proposed by Barndorff-Nielsen and Shephard (2004), and extension
to time-varying beta estimation has been studied by Mykland and Zhang (2006),
Reiß, Todorov, and Tauchen (2015), Aït-Sahalia, Kalnina, and Xiu (2020), and
Andersen, Thyrsgaard, and Todorov (2021), some of which allow for jumps in
the semimartingale processes. For example, Andersen et al. (2021) consider the
intraday variation in the cross-sectional dispersion of time-varying betas when the
asset number is either fixed or divergent; Liao and Todorov (2024) test changes
in the span of betas with latent systematic risk factors. The main interest of this
section lies in estimating the large spot volatility structure �Y

t of Yt within the

model framework (4.1). Letting �F
t = σ F

t

(
σ F

t

)ᵀ
and �X

t = σ X
t

(
σ X

t

)ᵀ
and assuming

orthogonality between Xt and Ft (see Assumption 6(iii) below), it follows from
(4.1) that

�Y
t = β(t)�F

t β(t)
ᵀ +�X

t . (4.3)

As in Fan et al. (2011, 2013), we impose the uniform sparsity restriction on �X
t

instead of �Y
t , i.e.,

{
�X

t : 0 ≤ t ≤ T
}∈S(q,�(p),T). This is a reasonable assump-

tion in practical applications as the asset prices, after removing the influence of
systematic factors, are expected to be weakly correlated. Fan et al. (2016) and Dai
et al. (2019) use a similar framework with constant betas to estimate large volatility
matrices.
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Suppose that we observe Yt and Ft at regular points: tk = k�, k = 1, . . . ,n, as in
Sections 2 and 3. Let �YF

t be the spot covariance between Yt and Ft. We may use
the kernel smoothing method as in (2.4) to estimate �Y

t , �F
t and �YF

t , i.e.,

�̂
Y
t =

n∑
k=1

K∗
h (tk − t)�Yk�Y

ᵀ
k , (4.4)

�̂
F
t =

n∑
k=1

K∗
h (tk − t)�Fk�F

ᵀ
k , (4.5)

�̂
YF
t =

n∑
k=1

K∗
h (tk − t)�Yk�F

ᵀ
k , (4.6)

where �Yk = Ytk −Ytk−1 , �Fk = Ftk −Ftk−1 , and K∗
h (tk − t) is defined as in (2.4).

Consequently, the time-varying betas β(t) and the spot idiosyncratic volatility
matrix �X

t are estimated by

β̂(t) = [β̂1(t), . . . ,β̂p(t)
]ᵀ = �̂

YF
t

(
�̂

F
t

)−1
(4.7)

and

�̂
X
t = (�̂X

ij,t

)
p×p

= �̂
Y
t − �̂

YF
t

(
�̂

F
t

)−1(
�̂

YF
t

)ᵀ
. (4.8)

With the uniform sparsity condition, it is sensible to further apply shrinkage to
�̂X

ij,t, i.e.,

�̂
X,s
t =

(
�̂

X,s
ij,t

)
p×p

with �̂
X,s
ij,t = sρ4(t)(�̂

X
ij,t)I(i 	= j)+ �̂X

ii,tI(i = j), (4.9)

where ρ4(t) is a time-varying shrinkage parameter. We finally estimate �Y
t as

�̂
Y,s
t = β̂(t)�̂

F
t β̂(t)

ᵀ + �̂
X,s
t = �̂

YF
t

(
�̂

F
t

)−1(
�̂

YF
t

)ᵀ
+ �̂

X,s
t . (4.10)

We need the following assumption to derive the uniform convergence property for
�̂

X,s
t and �̂

Y,s
t .

Assumption 6.

(i) Assumption 1 is satisfied for {Xt} defined in (4.2) (with minor notational
changes).

(ii) Let {μF
t }, {σ F

t }, and {�F
t } satisfy the boundedness and smoothing conditions

as in Assumption 1.
(iii) For any 1 ≤ i ≤ p and 1 ≤ j ≤ k,

[
Xit,Fjt

]= 0 for any t ∈ [0,T], where Xi,t is the
ith element of Xt, Fj,t is the j-th element of Ft, and [·,·] denotes the quadratic
covariation.

(iv) The time-varying beta function βi(·) satisfies that

max
1≤i≤p

sup
0≤t≤T

‖βi(t)‖ 2 ≤ Cβ < ∞, max
1≤i≤p

‖βi(t)−βi(s)‖ 2 ≤ Cβ |t − s|γ ,
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where γ is the same as that in Assumption 1(ii). In addition, there exists a
positive definite matrix �β(t) (with uniformly bounded eigenvalues) such that

sup
0≤t≤T

∥∥∥∥1

p
β(t)

ᵀ
β(t)−�β(t)

∥∥∥∥= o(1). (4.11)

Remark 7. The uniform boundedness and smoothness conditions imposed
on the drift and spot volatility functions of Xt and Ft in Assumption 6(i) and
(ii) are the same as those in Assumption 1. This is crucial to ensure that the
uniform convergence rates of �̂

Y
t , �̂

F
t , and �̂

YF
t (in the max norm) derived

in Proposition A.4 are the same as that in Proposition A.1. The orthogonality
condition in Assumption 6(iii) is commonly used to consistently estimate the time-
varying factor model (e.g., Fan et al., 2016; Dai et al., 2019). Assumption 6(iv) is a
rather mild restriction on time-varying betas and may be strengthened to improve
the estimation bias order (see the discussion in Remark 2(ii)). The condition (4.11)
indicates that all the factors are pervasive.

We next present the convergence property of �̂
X,s
t and �̂

Y,s
t defined in (4.9) and

(4.10), respectively. Due to the nonparametric factor regression model structure
(4.1), the largest k eigenvalues of �Y

t are spiked, diverging at a rate of p. Hence,
�Y

t cannot be consistently estimated in the absolute term. To address this problem,
as in Fan et al. (2011, 2013), we measure the spiked volatility matrix estimate in
the following relative error:∥∥∥�̂Y,s

t −�Y
t

∥∥∥�Y
t

= 1√
p

∥∥∥(�Y
t

)−1/2
(
�̂

Y,s
t −�Y

t

)(
�Y

t

)−1/2
∥∥∥F,

where the normalization factor p−1/2 is used to guarantee that
∥∥�Y

t

∥∥
�Y

t
= 1.

Theorem 4. Suppose that Assumptions 2(i) and (ii) and 6 are satisfied, and
Assumption 2(iii) holds with ρ1(t) replaced by ρ4(t). When

{
�X

t : 0 ≤ t ≤ T
} ∈

S(q,�(p),T), we have

sup
0≤t≤T

∥∥∥�̂X,s
t −�X

t

∥∥∥= OP

(
�(p)ζ

1−q
�,p

)
, (4.12)

where �(p) is defined in (2.3) and ζ�,p is defined in Assumption 2(iii); and

sup
0≤t≤T

∥∥∥�̂Y,s
t −�Y

t

∥∥∥�Y
t

= OP

(
p1/2ζ 2

�,p +�(p)ζ
1−q
�,p

)
. (4.13)

Remark 8. Although Xt is latent in model (4.1), the uniform convergence rate
for �̂

X,s
t in (4.12) is the same as that in Theorem 1 when Xt is observable. Treating

(nh) as the effective sample size in kernel estimation and disregarding the bias
order in ζ�,p, the uniform convergence rate for �̂

Y,s
t in (4.13) is comparable to

the convergence rates derived by Fan et al. (2011) in low frequency and Fan
et al. (2016) in high frequency. To guarantee uniform consistency in the relative
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matrix estimation error, we have to further assume that pζ 4
�,p = o(1), limiting the

divergence rate of the asset number, i.e., p can only diverge at a polynomial rate of
n = �T/��.

We next modify the above methodology and theory to accommodate microstruc-
ture noise in the asset prices and factors. Assume that

ZY,tk = Ytk +ωY(tk)ξ
∗
Y,k, ZF,tk = Ftk +ωF(tk)ξ

∗
F,k, (4.14)

where ωY(·) and ωF(·) are matrices of deterministic functions similar to ω(·), and
{ξ ∗

Y,k} and {ξ ∗
F,k} are i.i.d. sequences of random vectors similar to {ξ ∗

k}. Since both
Yt and Ft are latent, we need to first adopt the pre-averaging technique proposed
in Section 3.1 to obtain the approximation of Yt and Ft, and then apply the kernel
smoothing and generalized shrinkage as in (4.4)–(4.10). This results in a three-
stage estimation procedure which we describe as follows.

1. As in (3.2), we pre-average the noise-contaminated ZY,tk and ZF,tk via the kernel
filter:

Ỹτ = T

n

n∑
k=1

L†
b(tk − τ)ZY,tk, F̃τ = T

n

n∑
k=1

L†
b(tk − τ)ZF,tk, (4.15)

where L†
b(tk −τ) is defined as in (3.2) and we consider τ as the pseudo-sampling

time points: τl = l�∗, l = 0,1, . . . ,N = �T/�∗�.
2. With Ỹτl and F̃τl , l = 1, . . . ,N, we estimate �Y

t ,�
F
t , and �YF

t by the kernel
smoothing as in (4.4)–(4.6):

�̃
Y
t =

N∑
l=1

K†
h(τl − t)�Ỹl�Ỹ

ᵀ
l ,

�̃
F
t =

N∑
l=1

K†
h(τl − t)�F̃l�F̃

ᵀ
l ,

�̃
YF
t =

N∑
l=1

K†
h(τl − t)�Ỹl�F̃

ᵀ
l ,

where K†
h(τl − t) is defined as in (3.3), �Ỹl = Ỹτl −Ỹτl−1 , and �F̃l = F̃τl −F̃τl−1 .

Furthermore, estimate β(t) and �X
t by

β̃(t) = �̃
YF
t

(
�̃

F
t

)−1
, �̃

X
t = (�̃X

ij,t

)
p×p

= �̃
Y
t − �̃

YF
t

(
�̃

F
t

)−1(
�̃

YF
t

)ᵀ
.

3. Apply the generalized shrinkage to �̃X
ij,t, i.e.,

�̃
X,s
t =

(
�̃

X,s
ij,t

)
p×p

with �̃
X,s
ij,t = sρ5(t)(�̃

X
ij,t)I(i 	= j)+ �̃X

ii,tI(i = j),
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where ρ5(t) is the shrinkage parameter, and then estimate �Y
t by

�̃
Y,s
t = β̃(t)�̃

F
t β̃(t)

ᵀ + �̃
X,s
t = �̃

YF
t

(
�̃

F
t

)−1(
�̃

YF
t

)ᵀ
+ �̃

X,s
t .

As shown in Theorem 2, the existence of microstructure noises slows down the
uniform convergence rates. Following the proof of Lemma B.1 in Appendix B, we
may show that

max
0≤l≤N

∣∣Ỹτl −Yτl

∣∣
max + max

0≤l≤N

∣∣̃Fτl −Fτl

∣∣
max = OP

(
ν�,p,N

)
,

where | · |max denotes the L∞-norm of a vector, and ν�,p,N is defined in
Assumption 4(iii). Modifying Proposition A.4 and the proof of Theorem 4 in
Appendix A, we can prove that (4.12) and (4.13) hold but with ζ�,p replaced by
ζ ∗

N,p +ν�,p,N defined in Assumption 4(iii), i.e.,

sup
0≤t≤T

∥∥∥�̃X,s
t −�X

t

∥∥∥= OP
(
�(p)(ζ ∗

N,p +ν�,p,N)1−q
)
,

sup
0≤t≤T

∥∥∥�̃Y,s
t −�Y

t

∥∥∥�Y
t

= OP
(
p1/2(ζ ∗

N,p +ν�,p,N)2 +�(p)(ζ ∗
N,p +ν�,p,N)1−q

)
.

5. MONTE CARLO SIMULATION STUDIES

In this section, we report the Monte Carlo simulation studies to assess the
numerical performance of the proposed large spot volatility matrix and time-
varying noise volatility matrix estimation methods under the sparsity condition
and the factor-based spot volatility matrix estimation. Here we only consider the
synchronous high-frequency data. Additional simulation results for asynchronous
high-frequency data are provided in the Supplementary Material.

5.1. Simulation for Sparse Volatility Matrix Estimation

5.1.1. Simulation Setup. We generate the noise-contaminated high-frequency
data according to model (3.1), where ω(t) is taken as the Cholesky decomposition

of the noise covariance matrix �(t) = [�ij(t)
]

p×p, ξ ∗
k =
(
ξ ∗

1,k, · · · ,ξ ∗
p,k

)ᵀ
is an inde-

pendent p-dimensional vector of cross-sectionally independent standard normal
random variables, the latent return process Xt of p assets is generated from the
following drift-free model:

dXt = σ tdWX
t , t ∈ [0,T], (5.1)

WX
t = (

WX
1,t, . . . ,W

X
p,t

)ᵀ
is a standard p-dimensional Brownian motion, and σ t

is chosen as the Cholesky decomposition of the spot covariance matrix �t =(
�ij,t

)
p×p. In the simulation, we consider the volatility matrix estimation over the

time interval of a full trading day, and set the sampling interval to be 15 seconds,
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i.e., � = 1/(252 × 6.5 × 60 × 4), to generate synchronous data. We consider
three structures in �t and �(t): “banding,” “block-diagonal,” and “exponentially
decaying.” Following Wang and Zou (2010), we generate the diagonal elements
of �t from the following geometric Ornstein–Uhlenbeck model (e.g., Barndorff-
Nielsen and Shephard, 2002):

d log�ii,t = −0.6
(
0.157+ log�ii,t

)
dt +0.25dW�

i,t, W�
i,t = ιiW

X
i,t +

√
1− ι2i W∗

i,t,

where W∗
t = (

W∗
1,t, . . . ,W

∗
p,t

)ᵀ
is a p-dimensional standard Brownian motion

independent of WX
t , and ιi is a random number generated uniformly between

−0.62 and −0.30, reflecting the leverage effects. The diagonal elements of �(t)
are defined as daily cyclical deterministic functions of time:

�ii (t) = ci

{
1

2
[cos (2π t/T)+1]× (ω−ω

)+ω

}
,

where ω = 1 and ω = 0.1 reflect the observation by Kalnina and Linton (2008)
that the noise level is high at both the opening and the closing times of a trading
day and is low in the middle of the day, and the scalar ci controls the noise ratio for
each asset which is chosen to match the highest noise ratio considered by Wang
and Zou (2010). As in Barndorff-Nielsen and Shephard (2002, 2004), we define a
continuous-time stochastic process κ�

t by

κ�
t = e2κt −1

e2κt +1
, dκt = 0.03(0.64−κt)dt +0.118κtdWκ

t ,

Wκ
t = √

0.96W
t −0.2

p∑
i=1

WX
i,t/

√
p,

where W
t is a standard univariate Brownian motion independent of WX

t and W∗
t .

Let

κ�
t = κ −κ

2
[cos (2π t/T)+1]+κ,

where κ = 0.5 and κ = −0.5. We will use κ�
t and κ�

t to define the off-diagonal
elements in �t and �(t), respectively, which are specified as follows.

• Banding structure for �t and �(t): The off-diagonal elements are defined by

�ij,t = (κ�
t

)|i−j|√
�ii,t�jj,t · I (|i− j| ≤ 2),

�ij(t) = (κ�
t

)|i−j|√
�ii(t)�jj(t) · I (|i− j| ≤ 2),

for 1 ≤ i 	= j ≤ p.
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• Block-diagonal structure for �t and �(t): The off-diagonal elements are
defined by

�ij,t = (κ�
t

)|i−j|√
�ii,t�jj,t · I ((i,j) ∈ B),

�ij(t) = (κ�
t

)|i−j|√
�ii(t)�jj(t) · I ((i,j) ∈ B),

for 1 ≤ i 	= j ≤ p, where B is a collection of row and column indices (i,j) located
within randomly generated diagonal blocks1.

• Exponentially decaying structure for �t and �(t): The off-diagonal elements
are defined by

�ij,t = (κ�
t

)|i−j|√
�ii,t�jj,t, �ij(t) = (κ�

t

)|i−j|√
�ii(t)�jj(t), 1 ≤ i 	= j ≤ p.

(5.2)

It is clear that the (exact) sparsity condition is not satisfied when the off-diagonal
elements of �t and �(t) are exponentially decaying as in (5.2). The number of
assets p is set as p = 200 and 500 and the replication number is R = 200.

5.1.2. Volatility Matrix Estimation. In the simulation studies, we consider the
following volatility matrix estimates.

• Noise-free spot volatility matrix estimate �̂t: This infeasible estimate serves
as a benchmark in comparing the numerical performance of various estimation
methods. As in Section 2, we apply the kernel smoothing method to estimate �ij,t

by directly using the latent return process Xt, where the bandwidth is determined
by the leave-one-out cross validation. We apply four shrinkage methods to �̂ij,t

for i 	= j: hard thresholding (Hard), soft thresholding (Soft), adaptive LASSO
(AL), and smoothly clipped absolute deviation (SCAD). For comparison, we
also compute the naive estimate without applying any regularization technique.

• Noise-contaminated spot volatility matrix estimate �̃t: We combine the kernel
smoothing with pre-averaging in Section 3.1 to estimate �ij,t by using the
noise-contaminated process Zt. As in the noise-free estimation, we apply four
shrinkage methods to �̃ij,t for i 	= j and also compute the naive estimate without
applying the shrinkage.

• Time-varying noise volatility matrix estimate �̂(t): We combine the kernel
smoothing with four shrinkage techniques in the estimation as in Section 3.2
and also the naive estimate without shrinkage.

The choice of tuning parameter in shrinkage is similar to that in Dai et al. (2019).
For example, in the noise-free spot volatility estimate, we set the tuning parameter
as ρij(t) = ρ(t)(�̂ii,t�̂jj,t)

1/2 where ρ(t) is chosen as the minimum value among the
grid of values on [0,1] such that the shrinkage estimate of the spot volatility matrix

1As in Dai et al. (2019), to generate blocks with random sizes, we fix the largest block size at 20 when p = 200
and randomly generate the sizes of the remaining blocks from a random integer uniformly picked between 5 and 20.
When p = 500, the largest size is 40, and the random integer is uniformly picked between 10 and 40. Block sizes are
randomly generated but fixed across all Monte Carlo repetitions.
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is positive-definite. To evaluate the estimation performance of �̂t, we consider 21
equidistant time points on [0,T] and compute the following Mean Frobenius Loss
(MFL) and Mean Spectral Loss (MSL) over 200 repetitions:

MFL = 1

200

200∑
m=1

⎛⎝ 1

21

21∑
j=1

∥∥∥̂�(m)

tj
−�(m)

tj

∥∥∥
F

⎞⎠,

MSL = 1

200

200∑
m=1

⎛⎝ 1

21

21∑
j=1

∥∥∥�̂(m)

tj
−�(m)

tj

∥∥∥
⎞⎠,

where tj, j = 1,2, . . . ,21 are the equidistant time points on the interval [0,T], and
̂�

(m)

tj
and �

(m)
tj are, respectively, the estimated and true spot volatility matrices at

tj for the mth repetition. The “MFL” and “MSL” can be similarly defined for �̃t

and �̂(t).

5.1.3. Simulation Results. Table 1 reports the simulation results when the
dimension is p = 200. The three panels in the table (from top to bottom) report the
results where the true volatility matrix structures are banding, block-diagonal, and
exponentially decaying, respectively. In each panel, the MFL results are reported
on the left, whereas the MSL results are on the right. The first two rows of each
panel contain the MFL and MSL results for the spot volatility matrix estimation,
whereas the third row contains the results for the time-varying noise volatility
matrix estimation.

For the noise-free estimate �̂t, when the volatility matrix structure is banding,
the performance of the four shrinkage estimators is substantially better than that
of the naive estimate (without any shrinkage). In particular, the results of the
soft thresholding, adaptive LASSO and SCAD are very similar and their MFL
and MSL values are approximately one third of those of the naive estimator.
Meanwhile, the performance of the hard thresholding is less accurate (despite the
much stronger level of shrinking used), but is still much better than the naive
estimate. These results show that the shrinkage technique is an effective tool
in estimating the sparse volatility matrix. Similar results are obtained for the
noise-contaminated estimate �̃t. Unsurprisingly, due to the microstructure noise,
the MFL and MSL values of the local pre-averaging estimates are noticeably
higher than the corresponding values of the noise-free estimates. We next turn
the attention to the time-varying noise volatility matrix estimate �̂(t). As in the
spot volatility matrix estimation, the naive method again produces the highest
MFL and MSL values. The performance of the four shrinkage estimators are
similar with the adaptive LASSO and SCAD being slightly better than the hard and
soft thresholding. The simulation results for the block-diagonal and exponentially
decaying covariance matrix settings, reported in the middle and bottom panels
of Table 1, are fairly close to those for the banding setting. Overall, the results
in Table 1 show that the shrinkage methods perform well not only in the sparse
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Table 1. Estimation results for the spot volatility and time-varying noise covari-
ance matrices when p = 200.

“Banding”

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD

̂�t MFL 14.396 11.407 5.490 4.038 4.830 MSL 3.963 1.799 1.073 0.867 0.987

�̃t MFL 18.497 12.899 12.196 12.064 12.177 MSL 4.796 2.347 2.260 2.255 2.262

�̂(t) MFL 11.714 4.226 4.740 3.237 3.960 MSL 3.281 0.682 1.039 0.571 0.753

“Block-diagonal”

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD

�̂t MFL 14.398 11.277 5.818 4.786 5.424 MSL 4.000 2.293 1.310 1.233 1.386

�̃t MFL 18.475 12.811 12.192 12.059 12.158 MSL 4.915 2.777 2.663 2.669 2.662

�̂(t) MFL 11.713 4.076 4.875 3.240 3.964 MSL 3.274 0.741 1.098 0.606 0.816

“Exponentially decaying”

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD

�̂t MFL 14.402 12.033 6.091 5.287 5.976 MSL 4.078 2.456 1.410 1.348 1.510

�̃t MFL 18.738 13.464 12.748 12.655 12.739 MSL 4.977 2.934 2.810 2.819 2.815

�̂(t) MFL 11.715 4.330 4.860 3.355 4.077 MSL 3.297 0.774 1.085 0.626 0.833

Note: The selected bandwidths are h∗ = 90 for �̂t , h∗ = 90 and b∗ = 4 for �̃t , and h∗
1 = 90 for �̂(t),

where h∗ = h/�, b∗ = b/�, and h∗
1 = h1/�.

covariance matrix settings but also in the non-sparse one (i.e., the exponentially
decaying setting).

The simulation results when the dimension is p = 500 are reported in Table 2.
Overall, the results are very similar to those in Table 1, so we omit the detailed
discussion and comparison to save space.

5.2. Simulation for Factor-Based Spot Volatility Matrix Estimation

5.2.1. Simulation Setup. We generate Yt via (4.1), where the p-dimensional
idiosyncratic returns follow the dynamics of dXt defined in (5.1). In this
simulation, we only consider p = 500. As in Aït-Sahalia et al. (2020), we adopt a

three-factor model, where the factors Ft = (F1,t,F2,t,F3,t
)ᵀ

are generated by⎛⎝dF1,t

dF2,t

dF3,t

⎞⎠=
⎛⎝μF

1
μF

2
μF

3

⎞⎠dt +
⎛⎝σ1,t 0 0

0 σ2,t 0
0 0 σ3,t

⎞⎠⎛⎝ 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

⎞⎠⎛⎝dWF
1,t

dWF
2,t

dWF
3,t

⎞⎠ .

The factor volatilities are driven by

dσ 2
k,t = κ̃k

(
α̃k −σ 2

k,t

)
dt + ν̃kσk,tdW̃k,t, k = 1,2,3,
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Table 2. Estimation results for the spot volatility and time-varying noise covari-
ance matrices when p = 500.

“Banding”

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD

�̂t MFL 21.971 4.067 5.167 4.916 3.954 MSL 3.907 0.621 0.715 0.698 0.568

�̃t MFL 28.479 19.193 18.617 17.930 18.466 MSL 4.767 2.339 2.281 2.228 2.281

�̂(t) MFL 18.269 4.045 4.826 5.532 4.547 MSL 3.307 0.461 0.540 0.675 0.519

“Block-diagonal”

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD

�̂t MFL 21.973 5.703 6.429 5.928 5.480 MSL 3.999 0.855 1.134 0.895 0.886

�̃t MFL 28.682 19.685 19.155 18.539 19.029 MSL 4.917 2.854 2.782 2.736 2.798

�̂(t) MFL 18.271 4.208 4.935 5.686 4.684 MSL 3.312 0.522 0.603 0.751 0.572

“Exponentially decaying”

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD

�̂t MFL 21.973 6.069 6.697 6.120 5.739 MSL 4.035 0.894 1.173 0.927 0.921

�̃t MFL 28.867 20.195 19.561 18.950 19.454 MSL 4.938 2.914 2.836 2.788 2.850

�̂(t) MFL 18.275 4.335 5.001 5.763 4.745 MSL 3.322 0.533 0.610 0.757 0.578

Note: The selected bandwidths are h∗ = 240 for �̂t , h∗ = 240, b∗ = 4 for �̃t and h∗
1 = 240 for �̂(t),

where h∗ = h/�, b∗ = b/�, and h∗
1 = h1/�.

where E[dWF
k,tdW̃k,t] = ρkdt, allowing for potential leverage effects in the factor

dynamics. Both WF
k,t and W̃k,t are standard univariate Brownian motions. We set

(κ̃1,κ̃2,κ̃3) = (3,4,5), (α̃1,α̃2,α̃3) = (0.09,0.04,0.06), (ν̃1,ν̃2,ν̃3) = (0.3,0.4,0.3),(
μF

1 ,μ
F
2 ,μ

F
3

) = (0.05,0.03,0.02), (ρ1,ρ2,ρ3) = (−0.6, −0.4, −0.25), and
(ρ12,ρ13,ρ23) = (0.05,0.10,0.15), and consider the following three cases for

generating the time-varying beta processes βi(t) = [
βi,1(t),βi,2(t),βi,3(t)

]ᵀ
,

i = 1, . . . ,p.

• Constant betas. The factor loadings are constants over time, i.e., βi,l(t) = βi,l,
i = 1, . . . ,p, and l = 1,2,3. For each i, we set βi,1 ∼ U(0.25,2.25) and βi,2,βi,3 ∼
U(−0.5,0.5).

• Deterministic time-varying betas. Consider the following deterministic
function:

βi,l (t) = 1

2

[
cos
(
π(t −ωi,l)/T

)+1
]×(β i,l −β

i,l

)
+β

i,l
, i = 1, . . . ,p, l = 1,2,3,

where ωi,1,ωi,2,ωi,3 ∼ U(0,2T), (β
i,1

,β i,1) is a pair of random numbers from

U(0.25,2.25) whereas (β
i,2

,β i,2) and (β
i,3

,β i,3) are pairs of random numbers
from U(−0.5,0.5).
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• Stochastic time-varying betas. As in Aït-Sahalia et al. (2020), we consider the
following diffusion process:

dβi,l(t) = κ
β

i,l

(
α

β

i,l −βi,l(t)
)

dt +υ
β

i,ldWβ

i,l,t, i = 1, . . . ,p, l = 1,2,3,

where Wβ

i,l,t are standard Brownian motions independently over i and l,

κ
β

i,1,κ
β

i,2,κ
β

i,3 ∼ U(1,3), α
β

i,1 ∼ U(0.25,2.25), α
β

i,2,α
β

i,3 ∼ U(−0.5,0.5), and

υ
β

i,1,υ
β

i,2,υ
β

i,3 ∼ U(2,4).

We also generate the noise-contaminated version of Yt and Ft as in Section 5.1.1,
i.e., ξ ∗

Y,k and ξ ∗
F,k are independent vectors of cross-sectionally independent stan-

dard normal random variables, and the noise covariance structure satisfies the
banding, block-diagonal, or exponential decaying assumption as for �(·).

5.2.2. Simulation Results. For ease of comparison, we use exactly the same
bandwidth as in our first experiment. The results for the noise-free and noise-
contaminated spot idiosyncratic volatility matrix estimates �̂

X
t and �̃

X
t measured

by MFL and MSL are reported in Table 3, which reveal some desirable obser-
vations. First, we note that our estimation results in terms of MFL and MSL are
almost identical across different types of dynamics of factor loadings, indicating
that the developed estimation procedure is robust in finite samples to different
assumptions of the factor loading dynamics as long as they satisfy our smooth
restriction (see Assumption 6(iv)). Second, the MFL and MSL values are similar
to those reported in Table 2, which were obtained based on the data generating
model without common factors. This means that the proposed nonparametric
time-varying high-frequency regression can effectively remove common factors,
resulting in accurate estimation of the spot idiosyncratic volatility matrix.

Let �̂
Y
t and �̃

Y
t denote the noise-free and noise-contaminated factor-based spot

volatility matrix estimates, respectively. As discussed in Section 4, we measure
the accuracy of the spiked volatility matrix estimate by the relative error defined
above Theorem 4, i.e., consider the following Mean Relative Loss (MRL):

MRL = 1

200

200∑
m=1

⎛⎝ 1

21

21∑
j=1

∥∥∥�Y,(m)

tj
−�Y,(m)

tj

∥∥∥
�

Y,(m)
tj

⎞⎠,

where �
Y,(m)

t denotes �̂
Y
t or �̃

Y
t in the mth replication. The relevant results are

reported in Table 4. We can see that the performance of the shrinkage estimates
is substantially better than that of the naive estimate. Unsurprisingly, due to the
presence of microstructure noise, the MRL results of �̃

Y
t are much higher than

those of �̂
Y
t . As in Table 3, our proposed estimation is robust to different factor

loading dynamics.
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Table 3. Estimation results for the spot idiosyncratic volatility matrices.

“Banding”

β Dynamics Frobenius norm Spectral norm

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD

Constant �̂
X
t MFL 21.9037 4.2461 5.2485 4.9880 3.9910 MSL 3.8887 0.6359 0.7291 0.7154 0.5720

�̃
X
t MFL 30.6646 19.3752 18.3036 17.7552 18.1388 MSL 11.1910 2.3576 2.2653 2.2160 2.2554

Deterministic �̂
X
t MFL 21.9127 4.1916 5.2503 4.9898 3.9842 MSL 3.8901 0.6313 0.7288 0.7144 0.5712

�̃
X
t MFL 30.5672 19.3633 18.2947 17.7267 18.1284 MSL 10.9662 2.3571 2.2636 2.2128 2.2536

Stochastic �̂
X
t MFL 21.9099 4.2123 5.2498 4.9893 3.9872 MSL 3.8896 0.6331 0.7289 0.7149 0.5717

�̃
X
t MFL 30.7323 19.3896 18.3164 17.7839 18.1538 MSL 11.3262 2.3603 2.2708 2.2203 2.2602

“Block-diagonal”

β Dynamics Frobenius norm Spectral norm

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD

Constant �̂
X
t MFL 21.9047 5.6802 6.4718 5.9421 5.4710 MSL 3.9741 0.8722 1.1481 0.9106 0.9014

�̃
X
t MFL 30.7266 19.8195 18.8114 18.3162 18.6638 MSL 10.9751 2.8701 2.7656 2.7097 2.7551

Deterministic �̂
X
t MFL 21.9137 5.6821 6.4738 5.9436 5.4729 MSL 3.9754 0.8718 1.1479 0.9103 0.9012

�̃
X
t MFL 30.6284 19.8161 18.8043 18.2953 18.6547 MSL 10.7452 2.8706 2.7663 2.7092 2.7559

Stochastic �̂
X
t MFL 21.9108 5.6811 6.4732 5.9433 5.4722 MSL 3.9751 0.8721 1.1480 0.9104 0.9013

�̃
X
t MFL 30.7955 19.8314 18.8237 18.3434 18.6767 MSL 11.1149 2.8719 2.7691 2.7142 2.7584

(Continued)
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Table 3. Continued

“Exponentially decaying”

β Dynamics Frobenius norm Spectral norm

Naive Hard Soft AL SCAD Naive Hard Soft AL SCAD

Constant �̂
X
t MFL 21.9057 6.0626 6.7715 6.1573 5.7617 MSL 4.0142 0.9106 1.1898 0.9453 0.9388

�̃
X
t MFL 30.8728 20.3802 19.2709 18.7715 19.1262 MSL 10.8858 2.9381 2.8260 2.7707 2.8154

Deterministic �̂
X
t MFL 21.9147 6.0709 6.7737 6.1589 5.7637 MSL 4.0156 0.9112 1.1896 0.9450 0.9387

�̃
X
t MFL 30.7746 20.3564 19.2632 18.7460 19.1173 MSL 10.6538 2.9354 2.8247 2.7673 2.8140

Stochastic �̂
X
t MFL 21.9118 6.0636 6.7730 6.1585 5.7630 MSL 4.0151 0.9106 1.1897 0.9451 0.9388

�̃
X
t MFL 30.9430 20.3820 19.2839 18.8017 19.1405 MSL 11.0295 2.9381 2.8291 2.7745 2.8173
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Table 4. Mean relative loss for the factor-based spot volatility matrix
estimation.

“Banding”

β Dynamics Naive Hard Soft AL SCAD

Constant �̂
Y
t 1.1192 0.5417 0.7802 0.7762 0.4391

�̃
Y
t 2.2280 1.7243 1.4939 1.4478 1.4654

Deterministic �̂
Y
t 1.1207 0.5257 0.7823 0.7775 0.4371

�̃
Y
t 2.2287 1.7182 1.4882 1.4385 1.4586

Stochastic �̂
Y
t 1.1208 0.5389 0.7829 0.7780 0.4406

�̃
Y
t 2.2273 1.7279 1.4986 1.4544 1.4719

“Block-diagonal”

β Dynamics Naive Hard Soft AL SCAD

Constant �̂
Y
t 1.1192 0.3842 0.3650 0.3962 0.3249

�̃
Y
t 1.7146 0.8421 0.7938 0.7176 0.7514

Deterministic �̂
Y
t 1.1201 0.3840 0.3651 0.3958 0.3241

�̃
Y
t 1.7152 0.8410 0.7911 0.7155 0.7486

Stochastic �̂
Y
t 1.1202 0.3868 0.3678 0.3983 0.3272

�̃
Y
t 1.7146 0.8435 0.7949 0.7188 0.7528

“Exponentially decaying”

β Dynamics Naive Hard Soft AL SCAD

Constant �̂
Y
t 1.1192 0.4086 0.3726 0.4055 0.3347

�̃
Y
t 1.7338 0.8636 0.8047 0.7272 0.7619

Deterministic �̂
Y
t 1.1201 0.4079 0.3727 0.4051 0.3339

�̃
Y
t 1.7344 0.8614 0.8016 0.7249 0.7589

Stochastic �̂
Y
t 1.1203 0.4111 0.3754 0.4075 0.3370

�̃
Y
t 1.7338 0.8645 0.8058 0.7283 0.7631

6. EMPIRICAL STUDY

We apply the proposed methods to the intraday returns of the S&P 500 component
stocks to demonstrate the effectiveness of our nonparametric spot volatility matrix
estimation in revealing time-varying patterns. We consider the 5-minute returns
of the S&P 500 stocks collected in September 2008. On September 15, Lehman
Brothers filed for bankruptcy, causing shockwaves throughout the global financial
system. Hence, it is interesting to examine how the spot volatility structure of
the returns evolved during this one-month period. In addition, to demonstrate the
effectiveness of our model with observed risk factors in explaining the systemic
component of the dependence structure, we also collect the 5-minute returns of
12 factors. The first three factors are constructed in Aït-Sahalia et al. (2020) as
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our proxy for the market (MKT), small-minus-big market capitalization (SMB),
and high-minus-low price-earning ratio (HML). The other nine factors are the
widely available sector SDPR ETFs, which are intended to tract the following nine
largest S&P sectors: Energy (XLE), Materials (XLB), Industrials (XLI), Consumer
Discretionary (XLY), Consumer Staples (XLP), Health Care (XLV), Financial
(XLF), Information Technology (XLK), and Utilities (XLU). We sort our stocks
according to their GICS (Global Industry Classification Standard) codes, so that
they are grouped by sectors in the above order. Consequently, the correlation
(sub)matrix for stocks within each sector corresponds to a block on the diagonal
of the full correlation matrix (e.g., Fan et al., 2016).

We only use stocks that are included in the S&P 500 index and whose GICS
codes are unchanged in September 2008. We also exclude stocks that do not belong
to any of the above nine sectors. This leaves us with a total of p = 482 stocks. All
the returns are synchronized via the previous-tick subsampling technique (Zhang,
2011), and overnight returns are removed because of potential dividends and
stock splits. Consequently, we have 1,638 time-series observations for each of the
482 stocks. For the 5-minute returns, we may assume that the potential impact
of microstructure noise is negligible.2 The smoothing parameter in our kernel
estimation is chosen as h = 2/252 (equivalent to 2 trading days)3.

We start with estimating the spot volatility matrices of the total returns (i.e.,
the observed returns) without incorporating the observed factors or applying any
shrinkage. To visualize the potential time variation of the estimated spot matrices,
as in Bibinger et al. (2019), we plot the time series of deciles of the distribution
of the estimated spot variances and the pairwise correlations.4 The patterns of the
spot variances and correlations in Figure 1a,b reveal some clear evidence of time
variation in our sampling period. We note that the distributions of the variances
are relatively narrow and stay low on the first few days of the month. However,
close to Lehman Brothers’ announcement on the 15th, they start to rise and get
wider quite rapidly and reach the peak around the 17th and the 18th. The spot
variances at the peak are much higher than those on the earlier days of the month.
The distributions return to the earlier level in the following week. In contrast, the
distributions of pairwise spot correlations also start to shift up around the same
time, but quickly reach the peak on the 16th (only one day after the bankruptcy
news), and then dip to a relatively low point around the 19th before returning to
the earlier level. Such time-varying features in the dynamic covariance structure

2It is possible to estimate the spot volatility matrix of the microstructure noise vector. However, since the focus of this
paper is on the spot volatility structure of the returns and the microstructure noise for 5-minute returns is negligible,
we choose not to investigate in this section but to leave this exercise for future research.
3We tested three bandwidth choices, namely, 1 day, 2 days, and 3 days, and found that h = 1/252 (h = 3/252)
produced clearly under-smoothed (over-smoothed) time series of estimated deciles of the cross-sectional distribution
of the variances and pairwise correlations of our returns, whereas h = 2/252 seems to be the most reasonable one.
Our qualitative conclusion is unaffected by the choices of h within the range of 1–3 days. A smaller bandwidth (e.g., 2
hours), applied to data with a higher frequency (e.g., 1 minute or shorter), may be capable of revealing some intraday
patterns of the spot volatility dynamics (e.g., Andersen et al., 2024).
4The nine decile levels we use in this study are the 10th, 20th,. . ., and 90th percentiles.
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1(a): Variances of Total Returns
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1(b): Correlations of Total Returns
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1(c): Variances of Idiosyncratic Returns
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1(d): Correlations of Idiosyncratic Returns

Figure 1. Deciles of spot variances and pairwise correlations in September 2008.

are quite interesting and sensible, reflecting the impact of market news. Hence, our
proposed spot volatility matrix estimation methodology provides a useful tool for
revealing such dynamics.

To examine whether it is appropriate to directly apply shrinkage techniques to
the spot volatility matrices of the total returns, following Fan et al. (2016), we plot
in Figure 2a,b their sparsity patterns on the 16th and the 19th of September. The
deep blue dots correspond to the locations of pairwise correlations that are at least
0.15, whereas the white dots correspond to those smaller than 0.15. Note that the
covariance structure of the total returns is very dense on these two days. Therefore,
it is not appropriate to directly apply the shrinkage technique as in Sections 2 and 3.
Meanwhile, although both are quite dense, we can still clearly see their differences.
Consistent with our observation from the decile plots of the correlations, we can
see that the plot for the 16th is almost completely covered by blue dots, but the
plot for the 19th has significantly more areas covered in white.

We next incorporate the 12 observed factors in the large spot volatility matrix
estimation as suggested in Section 4. In particular, we are interested in estimating
the spot idiosyncratic volatility matrix, which is expected to satisfy the sparsity
restriction. To save space, we choose to only report results using the SCAD
shrinkage due to its satisfactory performance in our simulation. In Figure 1c,d, we
plot the deciles of the estimated spot idiosyncratic variances and correlations over
trading days. In Figure 1c, we observe a significant upward shift of the distribution
of the spot variances of the idiosyncratic returns around the time of Lehman
Brothers’ bankruptcy, indicating that the observed factors may not fully capture the
time variation of the spot variances. In contrast, the deciles of the spot correlations
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Figure 2. Sparsity patterns of the total and idiosyncratic volatility matrix estimates on September 16
and 19, 2008.

in Figure 1d seem to be quite flat throughout the entire month, suggesting that the
systematic factors may explain the time variation in the distribution of the pairwise
correlations better than that of the variances.

We finally plot the sparsity patterns of the two estimated spot idiosyncratic
volatility matrices on September 16 and 19 in Figure 2c,d, respectively. Unlike
Figure 2a,b, we note that the estimated spot idiosyncratic volatility matrices are
highly sparse on both days. This is consistent with our observation from Figure 1d,
confirming that the observed factors can effectively account for the time variation
in the spot covariance structure of the returns. Meanwhile, we also note that the two
idiosyncratic volatility matrices are clearly not diagonal and still carry some visible
time variation. Lastly, it is worth mentioning that the estimated spot idiosyncratic
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volatility matrices do not exhibit significant correlations within the blocks along
the diagonal lines, except for some very limited actions in the lower right corner
of the two matrices, which corresponds to the XLU sector.

7. CONCLUSION

We develop the nonparametric kernel-weighted smoothing combined with the
generalized shrinkage to estimate the high-dimensional spot volatility and time-
varying noise covariance matrices under the uniform sparsity assumption. A local-
ized pre-averaging method is proposed to accommodate the market microstructure
noise. We further estimate the spot volatility matrix with observed common
risk factors, relaxing the sparse structural restriction. The uniform consistency
properties with convergence rates are derived for the proposed matrix estimates.
The simulation results show that the estimation methods work well in finite
samples for both the noise-free and noise-contaminated data and the empirical
study demonstrates the effectiveness of the developed model and method on the
5-minute returns of S&P 500 stocks.

The methodology and theory developed in Sections 2–4 rule out jumps in prices
and volatility, which are not uncommon in practice when the high-frequency
financial data are collected for a large number of assets. There have been extensive
studies on testing and estimation of jumps in high-frequency data (e.g., Lee and
Mykland, 2008; Jacod and Todorov, 2010; Aït-Sahalia, Jacod, and Li, 2012;
Bibinger, Jirak, and Vetter, 2017; Li, Todorov, and Tauchen, 2017, 2019). We next
briefly discuss the modification of the proposed high-dimensional spot volatility
matrix estimation to accommodate price jumps. For notational brevity, we only
consider the noise-free high-frequency data as in Section 2, and the amendment is
similar for the estimators in Sections 3 and 4. We replace the stochastic differential
equation (2.1) by

dXt = μtdt +σ tdWt +dJt,

where Jt is a p-dimensional pure jump process, i.e., Jt = ∑s≤t �Js where �Js

denotes jumps of the process. Assume that the price jumps are of finite activity for
convenience. As recommended by Mancini (2009) and Jacod and Protter (2012),
we adopt a standard truncation to eliminate price jumps in estimating �ij,t. Define

Tij,k = I
(∣∣�Xi,k

∣∣≤ �ϕ,
∣∣�Xj,k

∣∣≤ �ϕ
)
,

where 0 < ϕ < 1/2. Then, we may estimate �ij,t by

�̂T
ij,t =

n∑
k=1

K∗
h (tk − t)�Xi,k�Xj,kTij,k.

A generalized shrinkage is then applied to �̂T
ij,t, i 	= j, as in (2.5). We conjecture

that Theorem 1 continues to hold when there exist price jumps. Furthermore, when
there are possible jumps in volatility, as suggested by Bibinger et al. (2017), we
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may use the one-sided kernel smoothing to estimate the left and right limits of the
spot volatility and subsequently construct a suitable test statistic. It is nontrivial
to extend the methodology and theory in Bibinger et al. (2017) to the high-
dimensional setting. We will explore it in our future study.

APPENDIX

A. Proofs of the Main Results

In this appendix, we give the proofs of the main theorems. We start with four propositions
whose proofs are available in Appendix B of the Supplementary Material.

Proposition A.1. Suppose that Assumptions 1 and 2(i) and (ii) are satisfied. Then, we
have

max
1≤i,j≤p

sup
0≤t≤T

∣∣�̂ij,t −�ij,t
∣∣= OP

(
ζ�,p

)
, (A.1)

where ζ�,p = hγ +
[

� log(p∨�−1)
h

]1/2
.

Proposition A.2. Suppose that Assumptions 1, 2(i), 3, and 4(i) and (ii) are satisfied, and
Assumption 2(ii) holds with �−1 replaced by N.

max
1≤i,j≤p

sup
0≤t≤T

∣∣�̃ij,t −�ij,t
∣∣= OP

(
ζ∗

N,p +ν�,p,N

)
, (A.2)

where ζ∗
N,p and ν�,p,N are defined in Assumption 4(iii).

Proposition A.3. Suppose that Assumptions 1, 2(i), 3, and 5 are satisfied. Then, we have

max
1≤i,j≤p

sup
0≤t≤T

∣∣�̂ij(t)−�ij(t)
∣∣= OP

(
δ�,p

)
, (A.3)

where δ�,p = hγ1
1 +

[
� log(p∨�−1)

h1

]1/2
.

Proposition A.4. Suppose that Assumptions 2(i) and (ii) and 6 are satisfied. Then, we
have

sup
0≤t≤T

∥∥∥�̂Y
t −�Y

t

∥∥∥max = OP
(
ζ�,p

)
,

sup
0≤t≤T

∥∥∥�̂F
t −�F

t

∥∥∥max = OP
(
ζ�,p

)
,

sup
0≤t≤T

∥∥∥�̂YF
t −�YF

t

∥∥∥max = OP
(
ζ�,p

)
,

where ζ�,p is defined as in Proposition A.1.
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Proof of Theorem 1. By the definition of �̂
s
t and the property of sρ(·), we readily have

that

sup
0≤t≤T

∥∥�̂s
t −�t

∥∥≤ sup
0≤t≤T

max
1≤i≤p

p∑
j=1

∣∣∣�̂s
ij,t −�ij,t

∣∣∣
= sup

0≤t≤T
max

1≤i≤p

∣∣�̂ii,t −�ii,t
∣∣+ sup

0≤t≤T
max

1≤i≤p

p∑
j=1, 	=i

∣∣sρ1(t)
(
�̂ij,t

)
I
(∣∣�̂ij,t

∣∣> ρ1(t)
)−�ij,t

∣∣
= sup

0≤t≤T
max

1≤i≤p

∣∣�̂ii,t −�ii,t
∣∣+ sup

0≤t≤T
max

1≤i≤p

p∑
j=1, 	=i

∣∣sρ1(t)
(
�̂ij,t

)
I
(∣∣�̂ij,t

∣∣> ρ1(t)
)−

�ij,tI
(∣∣�̂ij,t

∣∣> ρ1(t)
)−�ij,tI

(∣∣�̂ij,t
∣∣≤ ρ1(t)

)∣∣
≤ sup

0≤t≤T
max

1≤i≤p

∣∣�̂ii,t −�ii,t
∣∣+ sup

0≤t≤T
max

1≤i≤p

p∑
j=1, 	=i

∣∣sρ1(t)
(
�̂ij,t

)− �̂ij,t
∣∣ I (∣∣�̂ij,t

∣∣> ρ1(t)
)+

sup
0≤t≤T

max
1≤i≤p

p∑
j=1, 	=i

∣∣�̂ij,t −�ij,t
∣∣ I (∣∣�̂ij,t

∣∣> ρ1(t)
)+ sup

0≤t≤T
max

1≤i≤p

p∑
j=1, 	=i

∣∣�ij,t
∣∣ I (∣∣�̂ij,t

∣∣≤ ρ1(t)
)

=: �1 +�2 +�3 +�4. (A.4)

Define the event

G(M) =
{

max
1≤i,j≤p

sup
0≤t≤T

∣∣�̂ij,t −�ij,t
∣∣≤ Mζ�,p

}
,

where M is a positive constant. For any small ε > 0, by (A.1), we may find a sufficiently
large constant Mε > 0 such that

P(G(Mε)) ≥ 1− ε. (A.5)

By property (iii) of the shrinkage function and (A.5), we have

�2 ≤ sup
0≤t≤T

ρ1(t)

⎡⎣ max
1≤i≤p

p∑
j=1

I
(∣∣�̂ij,t

∣∣> ρ1(t)
)⎤⎦

and

�3 ≤ Mεζ�,p

⎡⎣ sup
0≤t≤T

max
1≤i≤p

p∑
j=1

I
(∣∣�̂ij,t

∣∣> ρ1(t)
)⎤⎦

conditional on G(Mε). By the reverse triangle inequality and Proposition A.1,∣∣�̂ij,t
∣∣≤ ∣∣�ij,t

∣∣+Mεζ�,p

on G(Mε). Setting CM = 2Mε in Assumption 2(iii), as {�t : 0 ≤ t ≤ T} ∈ S(q,�(p),T),
we have
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�2 +�3 ≤ ζ�,p(CM +Mε)

⎡⎣ sup
0≤t≤T

max
1≤i≤p

p∑
j=1

I
(∣∣�̂ij,t

∣∣> CMζ�,p
)⎤⎦

≤ ζ�,p(CM +Mε)

⎡⎣ sup
0≤t≤T

max
1≤i≤p

p∑
j=1

I
(∣∣�ij,t

∣∣> Mεζ�,p
)⎤⎦

= OP
(
ζ�,p

)⎡⎣ sup
0≤t≤T

max
1≤i≤p

p∑
j=1

|�ij,t|q(
Mεζ�,p

)q
⎤⎦

= OP

(
��(p)ζ

1−q
�,p

)
= OP

(
�(p)ζ

1−q
�,p

)
(A.6)

on the eventG(Mε), where CM is defined in Assumption 2(iii). Note that the events {|�̂ij,t| ≤
ρ1(t)} and G(Mε) jointly imply that {|�ij,t| ≤ (CM +Mε

)
ζ�,p}. Then, we may show that

�4 ≤ sup
0≤t≤T

max
1≤i≤p

p∑
j=1

|�ij,t|I
(|�ij,t| ≤ (CM +Mε

)
ζ�,p

)

≤ (CM +Mε

)1−q
ζ

1−q
�,p sup

0≤t≤T
max

1≤i≤p

p∑
j=1

|�ij,t|q

= OP

(
��(p)ζ

1−q
�,p

)
= OP

(
�(p)ζ

1−q
�,p

)
. (A.7)

By Proposition A.1, we readily have that

�1 = OP
(
ζ�,p

)= OP

(
�(p)ζ

1−q
�,p

)
. (A.8)

By (A.6)–(A.8), and letting ε → 0 in (A.5), we complete the proof of Theorem 1. �

Proof of Theorem 2. The proof is similar to the proof of Theorem 1 with Proposition A.2
replacing Proposition A.1. Details are omitted to save space. �

Proof of Theorem 3. The proof is similar to the proof of Theorem 1 with Proposition A.3
replacing Proposition A.1. Details are omitted to save space. �

Proof of Theorem 4. By Proposition A.4 and the definition of �̂X
ij,t in (4.8), we may

show that

max
1≤i,j≤p

sup
0≤t≤T

∣∣∣�̂X
ij,t −�X

ij,t

∣∣∣= OP
(
ζ�,p

)
. (A.9)

With (A.9), following the proof of Theorem 1, we complete the proof of (4.12).
We next turn to the proof of (4.13). Note that

sup
0≤t≤T

∥∥∥�̂Y,s
t −�Y

t

∥∥∥2
�Y

t
≤ 2 sup

0≤t≤T

[∥∥∥�̂X,s
t −�X

t

∥∥∥2
�Y

t
+
∥∥∥β̂(t)�̂

F
t β̂(t)

ᵀ −β(t)�F
t β(t)

ᵀ∥∥∥2
�Y

t

]
.

For any p × p matrix �, since all the eigenvalues of �Y
t are strictly larger than a positive

constant,

‖�‖2
�Y

t
= 1

p

∥∥∥∥(�Y
t

)−1/2
�
(
�Y

t

)−1/2
∥∥∥∥2

F ≤ C

p
‖�‖2

F, (A.10)
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where C > 0 is a generic constant whose value may change from line to line. By (4.12) and
(A.10), we prove

sup
0≤t≤T

∥∥∥�̂X,s
t −�X

t

∥∥∥2
�Y

t
≤ C

p
sup

0≤t≤T

∥∥∥�̂X,s
t −�X

t

∥∥∥2
F ≤ C sup

0≤t≤T

∥∥∥�̂X,s
t −�X

t

∥∥∥2 = OP

(
[�(p)ζ

1−q
�,p ]2

)
.

(A.11)

By the definition of β̂(t) in (4.7) and Proposition A.4, we readily have that

max
1≤i≤p

sup
0≤t≤T

∥∥β̂i(t)−βi(t)
∥∥2 = OP

(
ζ�,p

)
. (A.12)

Write Dβ
t = β̂(t)−β(t) and DF

t = �̂
F
t −�F

t . Note that

β̂(t)�̂F
t β̂(t)

ᵀ −β(t)�F
t β(t)

ᵀ = Dβ
t DF

t Dβᵀ
t +Dβ

t �F
t Dβᵀ

t +Dβ
t DF

t β(t)
ᵀ +Dβ

t �F
t β(t)

ᵀ

+β(t)DF
t Dβᵀ

t +β(t)�F
t Dβᵀ

t +β(t)DF
t β(t)

ᵀ
.

By (A.10), (A.12), and Proposition A.4, we have

sup
0≤t≤T

∥∥∥Dβ
t DF

t Dβᵀ
t

∥∥∥2
�Y

t
≤ C sup

0≤t≤T

1

p

∥∥∥Dβ
t DF

t Dβᵀ
t

∥∥∥2
F

≤ C

p
sup

0≤t≤T

∥∥∥Dβ
t

∥∥∥4
F sup

0≤t≤T

∥∥∥DF
t

∥∥∥2

= OP

(
pζ 6

�,p

)
. (A.13)

Similarly, we can show that

sup
0≤t≤T

∥∥∥Dβ
t �F

t Dβᵀ
t

∥∥∥2
�Y

t
≤ C sup

0≤t≤T

1

p

∥∥∥Dβ
t

∥∥∥4
F = OP

(
pζ 4

�,p

)
. (A.14)

By (4.3), Assumption 6(iv) and the Sherman–Morrison–Woodbury formula, we may show
that

sup
0≤t≤T

∥∥∥∥β(t)
ᵀ (

�Y
t

)−1
β(t)

∥∥∥∥= OP(1). (A.15)

Using (A.12), (A.15), and Proposition A.4, we have

sup
0≤t≤T

∥∥∥Dβ
t DF

t β(t)
ᵀ∥∥∥2

�Y
t

= 1

p
sup

0≤t≤T
trace

{
DF

t Dβᵀ
t

(
�Y

t

)−1
Dβ

t DF
t β(t)

ᵀ (
�Y

t

)−1
β(t)

}
≤ C

p
sup

0≤t≤T

∥∥∥Dβ
t

∥∥∥2
F sup

0≤t≤T

∥∥∥DF
t

∥∥∥2 sup
0≤t≤T

∥∥∥∥β(t)
ᵀ (

�Y
t

)−1
β(t)

∥∥∥∥
≤ C

p
sup

0≤t≤T

∥∥∥Dβ
t

∥∥∥2
F sup

0≤t≤T

∥∥∥DF
t

∥∥∥2 = OP

(
ζ 4
�,p

)
(A.16)

and

sup
0≤t≤T

∥∥∥β(t)DF
t Dβᵀ

t

∥∥∥2
�Y

t
= OP

(
ζ 4
�,p

)
. (A.17)
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Similar to the proof of (A.16), we also have

sup
0≤t≤T

∥∥∥Dβ
t �F

t β(t)
ᵀ∥∥∥2

�Y
t

≤ C

p
sup

0≤t≤T

∥∥∥Dβ
t

∥∥∥2
F sup

0≤t≤T

∥∥∥�F
t

∥∥∥2 = OP

(
ζ 2
�,p

)
(A.18)

and

sup
0≤t≤T

∥∥∥β(t)�F
t Dβᵀ

t

∥∥∥2
�Y

t
= OP

(
ζ 2
�,p

)
. (A.19)

By (A.15) and Proposition A.4, we may show that

sup
0≤t≤T

∥∥∥β(t)DF
t β(t)

ᵀ∥∥∥2
�Y

t
= 1

p
sup

0≤t≤T
trace

{
DF

t β(t)
ᵀ (

�Y
t

)−1
β(t)DF

t β(t)
ᵀ (

�Y
t

)−1
β(t)

}
≤ C

p
sup

0≤t≤T

∥∥∥DF
t

∥∥∥2 sup
0≤t≤T

∥∥∥∥β(t)
ᵀ (

�Y
t

)−1
β(t)

∥∥∥∥2 = OP

(
ζ 2
�,p/p

)
.

(A.20)

With (A.13), (A.14), and (A.16)–(A.20), we have

sup
0≤t≤T

∥∥∥β̂(t)�̂F
t β̂(t)

ᵀ −β(t)�F
t β(t)

ᵀ∥∥∥2
�Y

t
= OP

(
pζ 4

�,p + ζ 2
�,p

)
. (A.21)

By virtue of (A.11) and (A.21), we complete the proof of (4.13). �

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/
S0266466624000264.
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